
Applied Software Engineering
Department for Computer Science

Technische Universität München
Prof. Gudrun Klinker, Ph.D.

Application Programming Interface
for Fire-wire Cameras

Dyncon1394

Johannes Schäffner

Betreuer: Dipl.-Inf. Martin Bauer
Aufgabenstellerin: Prof. Gudrun Klinker, Ph.D.

January 2005

Erklärung
Ich versichere, dass ich diese Ausarbeitung des Systementwicklungsprojekts
selbstsẗandig verfasst und nur die angegebenen Quellen und Hilfmittel verwendet
habe.

München, Januar 2005 Johannes Schäffner

1

Contents

1 Introduction 4

2 Overview 6
2.1 Definitions . 7
2.2 Dyncon1394Exception . 7
2.3 Control1394 . 8
2.4 Port1394 . 8
2.5 Bus Reset Handler . 8
2.6 Camera1394List . 9
2.7 Camera1394 . 9
2.8 SupportedFormats . 9
2.9 Feature . 9
2.10 PictureBuffer . 10
2.11 Conversions . 10
2.12 Format7Info . 10
2.13 Format7ModeInfo . 10
2.14 ServiceList . 10
2.15 BaseService . 10

3 Examples of use 11
3.1 How to detect a camera . 11
3.2 How to change the camera settings 11
3.3 How to setup the camera . 13
3.4 How to save a picture . 13
3.5 How to display pictures . 16
3.6 How to use more than one camera 17
3.7 How to end your program . 18

4 Extensions and possibilities of improvement 19
4.1 How to improve capturing . 19
4.2 How to add special cameras . 20
4.3 How to add new conversion methods 20

5 Installation 21

2

6 Summary 23

A IIDC-Specifications 24

B LibDC1394 26
B.1 Structures . 26
B.2 Definitions and Enumerations . 29

B.2.1 Formats, Modes and Frame rates 29
B.2.2 Features . 32
B.2.3 Other definitions . 33

C Example Programs 34

D Dyncon1394 Reference 43

3

Chapter 1

Introduction

There are some programs for Linux, which make the use of fire-wire cameras pos-
sible.
For example the Coriander Project, which was written by Dan Dennedy, Damien
Douxchamps, Yasutoshi Onishi, Xiong Quanren, ctions, Marcus Lim, Andreas
Micklei, Olaf Ronneberger and Johan Knol. It provides the possibility to receive
pictures from a fire-wire camera and to save them either as an image or as a video,
or to do other stuff. Admittedly, this project does not allow the developement of
new applications, because it is not an application programming interface but a soft-
ware to work with.
For that reason it was difficult and expensive to control and to manage fire-wire
cameras in Linux. If one wanted to develop a new application, which is using fire-
wire cameras, it would require some initial training.
There are two libraries in Linux, which are used, if one wants to develop an ap-
plication integrating fire-wire cameras. The first one is the LibRAW1394 Library
by Andreas Bomb and the second one is the LibDC1394 Library by Gord Peters,
Per Dalgas Jakobsen, Chris Urmson, Damien Douxchamps, Dan Dennedy, David
Moore, John Stanley and Tim Evers. The LibRAW1394 Library makes the de-
tection and the use of the several cameras possible, which are connected to the
fire-wire port, and provides the direct access and manipulation of the cameras’ reg-
isters (Only cameras built by the IIDC-Specification are supported.).
The LibDC1394 Library is attached to the LibRAW1394 and provides with the
help of several structures and functions an easier use of this cameras, so that one
does not have to know which registers he has to avail.
Both libraries are written in C, and therefor it may be possible to write C++ pro-
grams using this libraries, but it would be much easier and clearer if there was a
C++ Interface.
This software is strongly affected by the Coriander Project,because this Project
provides the whole functionality, which was wished for. So the first step was to
analyse the source code of this Project. However it was difficult to abstract appro-
priate parts, because of the mergence of the LibDC1394 Library and the Coriander

4

CHAPTER 1. INTRODUCTION 5

Code. Thus the Dyncon1394 Library is directly using the LibDC1394 Library and
the LibRAW1394 Library and only sporadically some parts from the Coriander
Project (e.g. the Conversion Functions or the busresethandler, which has the task
to manage plugged in or plugged out cameras). With this software it is now possi-
ble to develop applications in shortest time without the need of funded knowledge
about the mode of operation of the several fire-wire cameras. One can write pro-
grams with only a few lines of code, that are using cameras for example to take
pictures and to save them or to display only the captured pictures at the monitor.
Surely there are still some tasks to do, like to decrease the load of the processor
during capturing pictures, or to make it easier to upload pictures to a FTP server,
et cetera. But the software has still the version number 0.1 and for that reason it is
not as powerful as a long term project. Anyhow, it will be easy to expand and to
improve the interface, because of the object oriented programming.
The next chapters will dwell on the functionality and the use of the Dyncon1394
api, whereas at chapter 2 all classes and the most important methods are described.
You can find code examples at chapter 3, that explain how possible applications
could be developed and what you have to heed. Chapter 4 elucidates how exten-
sions and improvements of the api have to be done and chapter 5 explains how to
install the software.
In the appendix there are several example programs and tables, that illustrate the
use of the software and hopefully facilitate its comprehension.

Chapter 2

Overview

This chapter gives you an overview of all classes and explains what each class
stands for. Furthermore it will show you how the different classes worke with each
other. At Figure 2.1 you can see in which way the classes are connected and used
by each other. At first there is the Dyncon1394Exception Class, that implements

Conversions

Dyncon1394Exception

Format7ModeInfo

Format7Info Feature SupportedFormats

BaseService

ServiceListCamera1394List

Camera1394

PictureBuffer

Port1394

Control1394

Figure 2.1: Class Diagram

6

CHAPTER 2. OVERVIEW 7

several special exceptions. That way it is possible to catch separately these excep-
tions, which were thrown by the Dyncon1394 Library. All other classes are using
these exceptions.
The Control1394 Class is the main class of the Library. It administrates all cam-
eras, the fire-wire ports and all services. When you develop an application, you
only have to create a Control1394 Object, all the rest is done by the constructor of
this class.
The Port1394 Class searches for cameras connected to a fire-wire port, sets them
up and adds them to the Camera1394List.
The Camera1394List manages all connected cameras within a list.
Every single camera is represented by a Camera1394 Object. Each object holds all
necessary informations about one camera, like the node the camera is connected
and the handle it is using, but also informations like what formats the camera sup-
ports or what features the camera has.
The PictureBuffer Class is used by the Camera1394 Class and stores the captured
picture from the camera. It also has the function of converting the picture to the
RGB Format or the YUV Format.
The Feature and the SupportedFormats Classes save the informations about the
supported formats and the provided features of the camera.
If the camera is able to switch to the format7 mode, the class Format7Info is used.
At last there is the ServiceList Class that manages all services using the captured
pictures. This class is necessary because of the busresethandler function, which
is called if a camera is plugged out or in. So that the busresethandler has first to
stop all displays and then start them again.
In the next sections all important classes, functions and definitions are introduced.

2.1 Definitions

See Appendix B.1 and Appendix B.2 for all informations about the definitions and
structures.

2.2 Dyncon1394Exception

There are several different exception for Dyncon1394. All these exceptions are
derived from the Dyncon1394Exception Class, which is derived from the excep-
tion class of C++. Therefor it is possible to catch either a special Dyncon1394
Exception or to catch all Dyncon1394Exceptions or even to catch all exceptions
occurring.

• Dyncon1394Exception

• Dyncon1394AllocationError

CHAPTER 2. OVERVIEW 8

• Dyncon1394ConvertingError

• Dyncon1394InitializingError

• Dyncon1394InvalidArgument

• Dyncon1394LibdcError

• Dyncon1394NotSupported

• Dyncon1394OutOfBounds

• Dyncon1394RunTimeError

The Dyncon1394Exception is the base-exception for all other exceptions. If you
catch this exception all the others will also be caught. The Dyncon1394AllocationError
Exception is thrown when some allocation error has occurred. The Dyncon1394LibdcError
occurred if a call of a LibDC1394 function have returned an error. The function of
the other exceptions should be clear because of their name.
If some exception was thrown, one can see the error by calling the what() function
each class has implemented.

2.3 Control1394

To use a fire-wire camera connected to the computer, you have to create a Con-
trol1394 Object. This class manages all cameras and provides the user the possibil-
ity to control them easily. Basically the Control1394 Class consists of a Port1394
Class, a Camera1394List Class and a ServiceList Class. This three classes are con-
trolling the whole system and are controlled by the Control1394 Class.

2.4 Port1394

The Port1394 Class searches for all cameras at the fire-wire bus and adds them
to a list managed by the Camera1394List Class. Furthermore, it connects the
bus resethandler, which will be explained later (see Chapter 2.5).

2.5 Bus Reset Handler

The busresethandler function is called when a reset of the fire-wire bus occurs.
This reset is triggered if a new camera was plugged in or another camera was
plugged out of the fire-wire card. Then the busresethandler function stops all
displays, which are using the captured pictures from the connected cameras, and
verifies which camera is the new one or which camera is gone. After done this, the
bus resethandler function starts all display-functions again.

CHAPTER 2. OVERVIEW 9

2.6 Camera1394List

The Camera1394List List is created by the Control1394 Class and filled by the
Port1394 Class. It administrates all connected cameras within a list and provides
several functions to search for a special camera or to get a camera defined by a
number.

2.7 Camera1394

The Camera1394 Class offers all methods to change camera settings, to query the
camera status, to request camera features and the supported formats of the camera
and to capture pictures from the camera and to convert or save them. Therefor sev-
eral classes are used.
The SupportedFormats Class stores all available formats and modes for the camera.
The Feature Class has the informations about the supported features and the Pic-
tureBuffer Class responsible for capturing pictures from camera. Furthermore there
is the Format7Info Class, which provides information about all format7 modes and
settings.
The class-variables inform about the current camera settings, for example the name
of the camera or the node, to which the camera is connected to, and the camera sta-
tus, for example which format the camera is currently using or which dma device
file is to be used for this camera.

2.8 SupportedFormats

When a new Camera1394 Object is created, the LibDC1394 Library offers func-
tions to query all supported formats of the camera. This informations are saved in
the SupportedFormats Class and can be queried by the user by several functions,
which can be gleaned in [DynAPI].

2.9 Feature

The Constructor of the Camera1394 Class also creates a new Feature Object, which
stores informations about all present features and the current status of these features
(for example if the camera is able to change the brightness or which value the
brightness feature is currently set and if it is set automatically or manually). For this
purpose there are methods, like for the supported formats, to change the settings
and to query the current status.

CHAPTER 2. OVERVIEW 10

2.10 PictureBuffer

If the camera takes a picture, it is saved to a structure provided by the LibDC1394
Library. This structure is embedded in the PictureBuffer Class. In addition to that,
it is possible to convert the captured picture either to the RGB Format or to the
YUV Format by using conversion methods provided by the Conversions Class.

2.11 Conversions

The methods of the Conversions Class were took over from the Coriander Project.
There are several possibilities to convert one picture format to another. See [DynAPI]
for more information about that.

2.12 Format7Info

If the camera is able to use the format 7, all information about the different modes
and their current settings is saved in this class. The Format7ModeInfo Class stores
this informations and the Format7Info Class manages the several Format7ModeInfo
Classes (for each mode one Format7ModeInfo Class).

2.13 Format7ModeInfo

Read chapter 2.12 for more information about this class.

2.14 ServiceList

If you want to display the captured pictures on the screen, you have to add your
service to the service-list, which is realised by the ServiceList Class. This is nec-
essary, because if a reset occurs, for example if a camera was newly plugged in or
out, the busresethandler function has to stop all displaying functions and restart
them in the end. If this was not possible, all displaying functions would end by a
segmentation fault and the application would abort.

2.15 BaseService

This class is a pure virtual class and has only the two virtual functions start() and
stop(). If one wants to develop a displaying program, he has to write a class which
is inheriting from the BaseService Class. The stop() function must have the prop-
erty to shut the displaying function down and the start() function has to be able to
restart it.

Chapter 3

Examples of use

This chapter will give you a short introduction on how to use the application pro-
gramming interface. In the first sections it describes how to start writing a program
using a fire-wire camera and how to change the settings of a camera. The follow-
ing sections cover the question on how to make a camera ready for capturing and
how to get a picture from the camera. Finally in the last sections there are some
examples on how to work with these pictures and how to use more than one camera
in an application.

3.1 How to detect a camera

This section describes what has to be done to start writing an application using a
fire-wire camera. First of all you have to include the Dyncon1394 header.

#include <control1394.h>

Now you have to create a Control1394 Object.

Control1394 var_control = new Control1394();

The constructor of this class creates a Port1394 Object, a Camera1394List Object
and a ServiceList Object. The Constructor of the Port1394 Class searches for all
connected cameras on the fire-wire bus and adds them to the camera-list. After this
is done, the application programming interface gives the control back to the pro-
grammer. Now the system is ready to be used. If any error occurs the application
programming interface throws an exception. So it is a good idea to surround all
Dyncon1394 calls by atry ... catchenvironment.

3.2 How to change the camera settings

Once the Control1394 Object was created, the system is ready to use the connected
cameras. The first step is to look how many cameras are connected. This is done

11

CHAPTER 3. EXAMPLES OF USE 12

by the command:

int num_cameras = var_control->getCameralist->getSize();

After this command one is able to get for example the first connected camera.

Camera1394* camera = var_control->getCamera(0);

Now one can print the current setting of the camera.

camera->printCameraInfo();
camera->printCameraFeatures();
camera->printCameraSupportedFormats();
camera->printCameraMisc();

Whereas the first command prints the basic informations about a camera like the
model, vendor or the node the camera is connected to, the second command prints
all features with the information wether a feature is available or not and what the
current settings of a feature are. The third command prints all supported formats
and the last command prints the current settings of the camera like the current
format, the current mode or for example the current frame rate.
At this point you have all information the camera can deliver and you are now able
to change the current settings of the camera. This can be done by the following
commands.

01 try {
02 camera->setVideoFormat(FORMAT_VGA_NONCOMPRESSED);
03 camera->setVideoMode(MODE_640x480_YUV411);
04 camera->setVideoFramerate(FRAMERATE_15);
05 camera->setIsoChannelAndSpeed(0,SPEED_400)
06 camera->setBrightness(250);
07 camera->setGamma(camera->getGamma()+10);
08 camera->setZoom(40);
09 camera->updateCameraInfo();
10 camera->updateCameraMisc();
11 camera->updateFeatureInfo();
12 }
13 catch(Dyncon1394Exception& e) {
14 cout << e.what() << endl;
15 exit(1);
16 }

This are only some examples on how to change the settings of a camera. You can
find all commands in the Dyncon1394 API (see [DynAPI]).

CHAPTER 3. EXAMPLES OF USE 13

All commands are surrounded by thetry ... catchinstruction (it is a recommendable
idea to surround the whole code with this instruction). In line 2 the video format
of the camera is set to format 0 and in line 3 the video mode is set to 640x480 with
YUV411 output. You can refer to all these definitions in the Appendix B.2.
In line 6 the value for the brightness is set to 250, whereas the value for gamma is
increased by ten in line 7. After all settings are changed you have to call the update
functions, in order to transfer all settings to the Camera1394 Object.
The catch command in the end catches all exceptions that occur during Dyn-
con1394 calls and print the error message to the standard output.

3.3 How to setup the camera

Once all settings are established, the camera is ready to start capturing. First, you
have to setup the camera right. There are two possibilities to do so. The first one is
the more difficult one, so it is advisable to use the second option. But for the sake
of completeness the first option is also shown.

1 try {
2 camera->setup();
3 camera->startIsoTransmission();
4 }
5 catch(Dyncon1394Exception& e) {
6 cout << e.what() << endl;
7 exit(1);
8 }

The first command sets the camera up and the second starts the isochronous trans-
mission. This two commands are combined in one command.

1 try {
2 camera->startVideo();
3 }
4 catch(Dyncon1394Exception& e) {
5 cout << e.what() << endl;
6 exit(1);
7 }

The setup() call uses the settings made in section 3.2.

3.4 How to save a picture

Once the camera is setup, it is ready to receive pictures. For this purpose there are
also different options. You can either use one command, which is recommended or

CHAPTER 3. EXAMPLES OF USE 14

you can use all commands by your own.
All these commands only capture one picture, so if you want to get a video for an
application you have to put them into a while-loop or into something similar (see
section 3.5 for more informations).

CHAPTER 3. EXAMPLES OF USE 15

1 try {
2 camera->capture();
3 camera->preConvertCapture();
4 }
5 catch(Dyncon1394Exception& e) {
6 cout << e.what() << endl;
7 exit(1);
8 }

The capture() call fetches a picture from the camera dependent on whether the
camera is using the dma-mode or not. The picture is stored in the picture structure
of the PictureBuffer Class.
The preConvertCapture() call copies the picture to the memory area calledimage
and does some preconverting like stereo-decoding.
After this two calls the picture is ready for converting to other formats like RGB or
YUV.

1 try {
2 camera->getVideo();
3 }
4 catch(Dyncon1394Exception& e) {
5 cout << e.what() << endl;
6 exit(1);
7 }

The two commands above can be combinded in one single command. So the source
code is a little bit easier to read.

1 try {
2 camera->getFastVideo();
3 }
4 catch(Dyncon1394Exception& e) {
5 cout << e.what() << endl;
6 exit(1);
7 }

This call does in principle the same as the getVideo() call, except that the get-
FastVideo() call has fewer internal calls and uses theusleepcommand to save some
CPU-load. It is up to you which call you use, the result is the same.

camera->convertToYUV();

After capturing the picture and pre converting it, the picture is prepared to be con-
verted to another format if neccessary.

CHAPTER 3. EXAMPLES OF USE 16

The first possible format is the YUV 422 format. This call is intended for display-
ing functions that use the YUV format.

camera->convertToRGB24();

To convert the picture to the RGB format, you have to use this call. The resulting
image is then available in the RGB format with 24 Bits per pixel.

After the image was converted to the RGB format you can save it to disk in
various formats. The Dyncon1394 API is using the ImageMagick Library to do so.

1 try {
2 camera->savePicture("filename.jpg");
3 }
4 catch(Dyncon1394Exception& e) {
5 cout << e.what() << endl;
6 exit(1);
7 }

The type of the file is handed over by the extension of the filename (e.g. if you
want to save the image in JPG format, type filename.jpg). If one wants to save the
file in the Raw format you have to use this command.

1 try {
2 camera->savePicture("filename",1);
3 }
4 catch(Dyncon1394Exception& e) {
5 cout << e.what() << endl;
6 exit(1);
7 }

3.5 How to display pictures

If one wants to display the captured pictures to the screen, one basically have to
do the same as described above. First you create a Control1394 Object, then you
setup the camera and capture a picture. After this you can convert the picture into
the required format. Now it is up to you which API you want to use for displaying,
but it is important that you write your own class for displaying and let it inherit
from the BasicService Class. Then you have to implement the start() and stop()
functions. Now you have to register your service to the Servicelist. You can easily
do this by the following command.

int number_of_service =
var_control->addService(POINTER_TO_YOUR_CLASS);

CHAPTER 3. EXAMPLES OF USE 17

It is important that you register your service, because if a bus reset occurs, the
bus resethandler function will shutdown all displaying classes and then it searches
for new cameras or it deletes the plugged out camera from the camera list. That is
why your start() function has to test if the used camera is still there.
To remove a service from the Servicelist, you have to use the number, that was
returned by the addService call.

var_control->removeService(number_of_service);

Now your service is deregistered.

The last command is to gain access to the converted image.

unsigned char* im = NULL;
im = camera->getPictureBuffer()->getImage();

At this point your are able to use the image in one of your functions.

3.6 How to use more than one camera

If you want to use more than one camera, it is almost the same as if you use only
one camera. The only difference is that you have to select the other cameras as
well.

01 int count = var_control->getCameralist()->getSize();
02 Camera1394* cameras[size];
03 try {
04 for(int i=0; i < count; i++)
05 cameras[i] = var_control->getCamera(i);
06 }
07 catch(Dyncon1394Exception& e) {
08 cout << e.what() << endl;
09 exit(1);
10 }

After this code all available cameras are accessible with the cameras array.

CHAPTER 3. EXAMPLES OF USE 18

3.7 How to end your program

When your application is finishing you have to do some calls to shut down the
camera and to leave the system in a stable state. You do this with the following two
calls the second call being optional, for it only turns off the camera.

1 try {
2 camera->stopVideo();
3 camera->shutdownCamera();
4 }
5 catch(Dyncon1394Exception& e) {
6 cout << e.what() << endl;
7 exit(1);
8 }

In the end you must not forget to delete thevar controlvariable. The destructor of
the Control1394 Class destroys then all other classes. You do not have to do more.

delete var_control;

Now you are ready to use the Dyncon1394 API. For more information about pos-
sible functions and that see [DynAPI].

Chapter 4

Extensions and possibilities of
improvement

If you want to develop the Dyncon1394 API, this chapter will give you some ideas
on how to improve the Dyncon1394 API and how to add some new features to the
software.

4.1 How to improve capturing

The main idea to improve capturing is to solve the interdependency between the
capturing mechanism and the converting mechanism. One solution to this task is
to rewrite the API into several services with the help of threads.
One thread has then the function of capturing the picture from the camera and of
pre-converting it. The other threads will then be able to access these pictures and
to use them for whatever they are for. For example there could be a thread that
converts the picture to the RGB format and saves it to disk, or one that uploads all
pictures to a FTP server and so on.
Furthermore, the capturing thread has to use more than only one picture-buffer,
because otherwise there will not be any performance advantage compared to the
previous solution.
The problem about this possibility is its complexity. The racing condition between
the capturing thread and the other threads has to be solved. Otherwise your system
will frequently crash.
In some tests it turned out that the load of the CPU was at least halved. The
disadvantage of the first tests was that the system was unstable and crashed a lot.
But basically it worked and it was only a test version, so it should be possible to
improve the performance that way.

19

CHAPTER 4. EXTENSIONS AND POSSIBILITIES OF IMPROVEMENT20

4.2 How to add special cameras

If you have a special camera, which is not fully supported, it is imaginable to
write a new class, that inherit from the original Camera1394 Class and to add the
additional methods there. If there are only some extra features you can change the
Features Class as well.
This way it should be possible to support all kinds of cameras, that are available.

4.3 How to add new conversion methods

To add new conversion functions to the Dyncon1394 API, you only have to add
them to the Conversions Class or to change some functions there.

Chapter 5

Installation

Requirements

To install the software you will need the library LibRaw1394 as well as the library
LibDC1394, whereas the LibDC1394 is an upper part of the LibRAW1394, that
provides some easier functions for controlling the fire-wire cameras.
You get both libraries at [sourceforge].
To use Dyncon1394, you should download the newest versions. (Dynon1394 was
tested with the version 0.9.0 of LibRAW1394 and the version 1.0.0 of LibDC1394.)

Compiling

After LibRAW1394 and LibDC1394 were be installed, you have to change to the
dyncon1394directory and there to thesrc directory. Now typemakeand hope that
all will go well.

Installation

Once the software has been compiled without an error, you can install the library.
For that purpose you have to login asroot. Now change to thedyncon1394di-
rectory and copy the filelibdyncon1394.sofrom the lib directory to the/usr/lib
directory. At last copy the data content of theincludedirectory to the/usr/include
directory.
Now the software is ready to be used.

How to use

To use the Dynon1394-API, you have only to include the dyncon1394.h in your
own source-code (e.g.#include <dyncon1394.h>). At that point it is pos-
sible to use application programming interface.

21

CHAPTER 5. INSTALLATION 22

For more advanced informations about how to use the software, see either [DynAPI]
or read the first chapters of this article again.

Chapter 6

Summary

Recapitulating, the Dyncon1394 API is stable at this version, but it is surely not
developed completely. It is still possible to improve highly the performance of the
software and in addition to that you can also add some new services like a simple
FTP-service, that upload pictures to a FTP server, or a video-for-Linux-service.
Nevertheless, at this state one is able to use this software to develop new applica-
tions.

This project was a lot of work and at the same time also a lot of fun, because
it made it possible to develop a whole new software, that will hopefully also be of
help to other people.
At the beginning there were some difficulties on how to start approaching the task.
The Coriander Project, that offers a good possibility to use fire-wire cameras, was
therefor the first project I regarded. But it came out that only some parts of this soft-
ware were useful for this project, as Coriander is a special project, that provides a
complete application and it is not suitable for modifying it for other purposes.
Therefor, I have taken over some ideas from this project and some functions like
the conversion methods or the busresethandler function.

Finally I hope this application programming interface will be of use for others
and I expect it should be developed further.

23

Appendix A

IIDC-Specifications

This chapter explains how informations from the camera can be read out and how
these informations can be used within the software.
For that purpose there will be some tables to make the functionality clear.
This chapter is only for better understanding of the functionality of some parts of
the software, but it is not a complete documentation of the IIDC-Specification.
If you want to enhance this software and you want to know more about this Spec-
ification, see [IIDC]. There you will find the entire documentation of the IIDC-
Specifications.

The next tables are showing the bit-configuration of the register for the video
format and of the register for the video mode (format0 only). The last tables are
showing the register for the video frame rate (format 0, mode 0 only).

Name Field Bit Description

V FORMAT INQ

FORMAT 0 0 VGA non-compressed format
FORMAT 1 1 Super VGA non-compressed
FORMAT 2 2 Super VGA non-compressed
FORMAT x 3-5 Reserved for other format
FORMAT 6 6 Still Image Format
FORMAT 7 7 Partial Image Size Format

- 8-31 Reserved (All zero)

Table A.1: Bitset for the video format register

0-7 8-15 16-23 24-31
Format Reserved

Table A.2: video format register bit configuration

24

APPENDIX A. IIDC-SPECIFICATIONS 25

Name Field Bit Description

V MODE INQ 0 (Format0)

Mode 0 0 160x120 YUV444 Mode 24bit/pixel
Mode 1 1 320x240 YUV422 Mode 16bit/pixel
Mode 2 2 640x480 YUV411 Mode 12bit/pixel
Mode 3 3 640x480 YUV422 Mode 16bit/pixel
Mode 4 4 640x480 RGB Mode 24bit/pixel
Mode 5 5 640x480 Y (Mono) Mode 8bit/pixel
Mode 6 6 640x480 Y (Mono16) Mode 16bit/pixel
Mode x 7 Reserved for another Mode

- 8-31 Reserved (All zero)

Table A.3: Bitset for the video mode register

0-7 8-15 16-23 24-31
V MODE INQ Reserved

Table A.4: video mode register bit configuration

Name Field Bit Description

V RATE INQ 0 0 (Format0, Mode0)

FrameRate0 0 Reserved
FrameRate1 1 Reserved
FrameRate2 2 7.5 fps
FrameRate3 3 15 fps
FrameRate4 4 30 fps
FrameRatex 5-7 Reserved for another frame rate

- 8-31 Reserved (All zero)

Table A.5: Bitset for the video frame rate register

Appendix B

LibDC1394

B.1 Structures

dc1394camerainfo

1 /* Camera structure */
2 typedef struct __dc1394_camerainfo
3 {
4 raw1394handle_t handle;
5 nodeid_t id;
6 octlet_t ccr_offset;
7 u_int64_t euid_64;
8 char vendor[MAX_CHARS + 1];
9 char model[MAX_CHARS + 1];

10 } dc1394_camerainfo;

dc1394cameracapture

1 typedef struct __dc1394_cam_cap_struct
2 {
3 nodeid_t node;
4 int channel;
5 int frame_rate;
6 int frame_width, frame_height;
7 int * capture_buffer;
8 int quadlets_per_frame;
9 int quadlets_per_packet;

10 /* components needed for the DMA based video capture */
11 const unsigned char * dma_ring_buffer;
12 int dma_buffer_size;
13 int dma_frame_size;
14 int num_dma_buffers;

26

APPENDIX B. LIBDC1394 27

15 int dma_last_buffer;
16 int num_dma_buffers_behind;
17 const char * dma_device_file;
18 int dma_fd;
19 int port;
20 struct timeval filltime;
21 int drop_frames;
22 } dc1394_cameracapture ;

dc1394miscinfo

1 typedef struct __dc1394_misc_info
2 {
3 int format;
4 int mode;
5 int framerate;
6
7 dc1394bool_t is_iso_on;
8 int iso_channel;
9 int iso_speed;

10
11 int mem_channel_number;
12 int save_channel;
13 int load_channel;
14
15 } dc1394_miscinfo;

dc1394feature set

1 typedef struct __dc1394_feature_set_struct
2 {
3 dc1394_feature_info feature[NUM_FEATURES];
4 } dc1394_feature_set;

dc1394feature info

1
2 typedef struct __dc1394_feature_info_struct
3 {
4 unsigned int feature_id;
5 dc1394bool_t available;
6 dc1394bool_t one_push;
7 dc1394bool_t absolute_capable;
8 dc1394bool_t readout_capable;

APPENDIX B. LIBDC1394 28

9 dc1394bool_t on_off_capable;
10 dc1394bool_t auto_capable;
11 dc1394bool_t manual_capable;
12 dc1394bool_t polarity_capable;
13 dc1394bool_t one_push_active;
14 dc1394bool_t is_on;
15 dc1394bool_t auto_active;
16 char trigger_mode_capable_mask;
17 int trigger_mode;
18 dc1394bool_t trigger_polarity;
19 int min;
20 int max;
21 int value;
22 int BU_value;
23 int RV_value;
24 int target_value;
25
26 dc1394bool_t abs_control;
27 float abs_value;
28 float abs_max;
29 float abs_min;
30
31 } dc1394_feature_info;

dc1394boolt

1 /* Yet another boolean data type */
2 typedef enum
3 {
4 DC1394_FALSE= 0,
5 DC1394_TRUE
6 } dc1394bool_t;

dc1394videopolicyt

1 /* The video1394 policy: blocking (wait for a frame forever)
2 or polling (returns if no frames in buffer */
3 typedef enum
4 {
5 VIDEO1394_WAIT=0,
6 VIDEO1394_POLL
7 } dc1394videopolicy_t;

APPENDIX B. LIBDC1394 29

B.2 Definitions and Enumerations

B.2.1 Formats, Modes and Frame rates

There are several enumerations of the available video-formats and video-modes. It
is possible to use the integer numbers as well as the exact name.
These informations can also be found at the file LibDC1394control.h

Formats

FORMAT VGA NONCOMPRESSED 384
FORMAT SVGA NONCOMPRESSED1 385
FORMAT SVGA NONCOMPRESSED2 386
FORMAT STILL IMAGE 390
FORMAT SCALABLE IMAGE SIZE 391
FORMAT MIN FORMAT VGA NONCOMPRESSED
FORMAT MAX FORMAT SCALABLE IMAGE SIZE
NUM FORMATS FORMATMAX - FORMAT MIN + 1

Figure B.1: Image formats

Format VGA noncompressed - Format 0

MODE 160x120YUV444 64
MODE 320x240YUV422 65
MODE 640x480YUV411 66
MODE 640x480YUV422 67
MODE 640x480RGB 68
MODE 640x480MONO 69
MODE 640x480MONO16 70
MODE FORMAT0 MIN MODE 160x120YUV444
MODE FORMAT0 MAX MODE 640x480MONO16
NUM FORMAT0 MODES MODEFORMAT0 MAX - MODE FORMAT0 MIN + 1

Figure B.2: Format 0 modes

APPENDIX B. LIBDC1394 30

Format SVGA noncompressed 1 - Format 1

MODE 800x600YUV422 96
MODE 800x600RGB 97
MODE 800x600MONO 98
MODE 1024x768YUV422 99
MODE 1024x768RGB 100
MODE 1024x768MONO 101
MODE 800x600MONO16 102
MODE 1024x768MONO16 103
MODE FORMAT1 MIN MODE 800x600YUV422
MODE FORMAT1 MAX MODE 1024x768MONO16
NUM FORMAT1 MODES MODEFORMAT1 MAX - MODE FORMAT1 MIN + 1

Figure B.3: Format 1 modes

Format SVGA noncompressed 2 - Format 2

MODE 1280x960YUV422 128
MODE 1280x960RGB 129
MODE 1280x960MONO 130
MODE 1600x1200YUV422 131
MODE 1600x1200RGB 132
MODE 1600x1200MONO 133
MODE 1280x960MONO16 134
MODE 1600x1200MONO16 135
MODE FORMAT2 MIN MODE 1280x960YUV422
MODE FORMAT2 MAX MODE 1600x1200MONO16
NUM FORMAT2 MODES MODEFORMAT2 MAX - MODE FORMAT2 MIN + 1

Figure B.4: Format 2 modes

Format still image - Format 6

MODE EXIF 256
MODE FORMAT6 MIN MODE EXIF
MODE FORMAT6 MAX MODE EXIF
NUM FORMAT6 MODES MODEFORMAT6 MAX - MODE FORMAT6 MIN + 1

Figure B.5: Format 6 modes

APPENDIX B. LIBDC1394 31

Format scalable image size - Format 7

MODE FORMAT7 0 288
MODE FORMAT7 1 289
MODE FORMAT7 2 290
MODE FORMAT7 3 291
MODE FORMAT7 4 292
MODE FORMAT7 5 293
MODE FORMAT7 6 294
MODE FORMAT7 7 295
MODE FORMAT7 MIN MODE FORMAT7 0
MODE FORMAT7 MAX MODE FORMAT7 7
NUM MODE FORMAT7 MODE FORMAT7 MAX - MODE FORMAT7 MIN + 1

Figure B.6: Format 7 modes
COLOR FORMAT7 MONO8 320
COLOR FORMAT7 YUV411 321
COLOR FORMAT7 YUV422 322
COLOR FORMAT7 YUV444 323
MODE FORMAT7 RGB8 324
MODE FORMAT7 MONO16 325
MODE FORMAT7 RGB16 326
COLOR FORMAT7 MIN COLOR FORMAT7 MONO8
COLOR FORMAT7 MAX COLOR FORMAT7 RGB16
NUM COLOR FORMAT7 COLORFORMAT7 MAX - COLOR FORMAT7 MIN + 1

Figure B.7: Format 7 color modes

Frame rates

FRAMERATE 1 875 32
FRAMERATE 3 75 33
FRAMERATE 7 5 34
FRAMERATE 15 35
FRAMERATE 30 36
FRAMERATE 60 37
FRAMERATE MIN FRAMERATE 1 875
FRAMERATE MAX FRAMERATE 60
NUM FRAMERATES FRAMERATEMAX - FRAMERATE MIN + 1

Figure B.8: Frame rates

APPENDIX B. LIBDC1394 32

B.2.2 Features

Enumeration of features

FEATURE BRIGHTNESS 416
FEATURE EXPOSURE 417
FEATURE SHARPNESS 418
FEATURE WHITE BALANCE 419
FEATURE HUE 420
FEATURE SATURATION 421
FEATURE GAMME 422
FEATURE SHUTTER 423
FEATURE GAIN 424
FEATURE IRIS 425
FEATURE FORCUS 426
FEATURE TEMPERATURE 427
FEATURE TRIGGER 428
FEATURE ZOOM 429
FEATURE PAN 430
FEATURE TILT 431
FEATURE OPTICAL FILTER 432
FEATURE CAPTURESIZE 433
FEATURE CAPTUREQUALITY 434
FEATURE MIN FEATURE BRIGHTNESS
FEATURE MAX FEATURE CAPTUREQUALITY
NUM FEATURES FEATUREMAX - FEATURE MIN + 1

Figure B.9: Features

Trigger modes

TRIGGERMODE 0 352
TRIGGERMODE 1 353
TRIGGERMODE 2 354
TRIGGERMODE 3 355
TRIGGERMODE MIN TRIGGER MODE 0
TRIGGERMODE MAX TRIGGER MODE 3
NUM TRIGGERMODE TRIGGERMODE MAX - TRIGGER MODE MIN + 1

Figure B.10: Trigger modes

APPENDIX B. LIBDC1394 33

B.2.3 Other definitions

Data speed

SPEED100 0
SPEED200 1
SPEED400 2
SPEEDMIN SPEED100
SPEEDMAX SPEED 400
NUM SPEED SPEEDMAX - SPEED MIN + 1

Figure B.11: Data speed

Format7 setup flags

QUERY FROM CAMERA -1
USE MAX AVAIL -2
USE RECOMMENDED -3

Figure B.12: Format7 setup flags

Return values

DC1394SUCCESS 1
DC1394FAILURE -1
DC1394NO FRAME -2
DC1394NO CAMERA 0xffff

Figure B.13: Return values

Video1394 policy

VIDEO1394WAIT 0
VIDEO1394POLL 1

Figure B.14: Video1394 policy

Not classified

MAX CHARS 32
DC1394FALSE 0
DC1394TRUE 1

Figure B.15: Not classified

Appendix C

Example Programs

These example programs can be found in the demo directory of dyncon1394.

Program 1: CamInfo

This program demonstrates how to get informations about a camera.

1 #include <iostream>
2 #include <dyncon1394.h>
3
4 using namespace std;
5
6 int main (int argc,char **argv) {
7 cout << "Camera Information" << endl;
8
9 // get control center for cameras

10 try {
11 Control1394* control1394 = new Control1394();
12 // get count of cameras
13 int count = control1394->getCameralist()->getSize();
14 Camera1394* cams[count];
15 // fetch all available cameras
16 for(int i = 0;i< count; i++)
17 cams[i] = control1394->getCamera(i);
18
19 // print information for all cameras
20 for(int i = 0;i < count; i++) {
21 cout << "==\n";
22 cams[i]->printCameraInfo();
23 cams[i]->printCameraMisc();
24 cams[i]->printCameraFeatures();
25 cams[i]->printSupportedFormats();

34

APPENDIX C. EXAMPLE PROGRAMS 35

26 cout << "==\n";
27 }
28 // delete control
29 delete control1394;
30 }
31 catch(Dyncon1394Exception& e) {
32 cout << e.what() << endl;
33 }
34 return 0;
35 }

Program 2: SavePic

This program captures a frame from the camera and saves it to disk.

1 #include <iostream>
2 #include <dyncon1394.h>
3
4 using namespace std;
5
6 int main (int argc,char **argv) {
7 cout << "Save pciture of camera" << endl;
8
9 try {

10 // get control over cameras
11 Control1394* control1394 = new Control1394();
12
13 int count = control1394->getCameralist()->getSize();
14 if(count < 1) {
15 cout << "There is no camera\n";
16 exit(1);
17 }
18
19 // get first camera
20 Camera1394* cam = control1394->getCamera(0);
21
22 // stop video, if camera is active
23 cam->stopVideo();
24
25 // set video mode to 640x480 YUV 4:1:1
26 cam->setVideoMode(66);
27
28 // iso channel 0, camera speed 2 (400 Mbps)
29 cam->setIsoChannelAndSpeed(0,2);

APPENDIX C. EXAMPLE PROGRAMS 36

30
31 // set to 30 fps
32 cam->setVideoFramerate(36);
33
34 // update settings
35 cam->updateCameraMisc();
36
37 // setup camera
38 cam->startVideo();
39
40 // get picture
41 cam->getVideo();
42
43 // convert picture to rgb24
44 cam->convertToRGB24();
45
46 // resolution of picture
47 cout << "Camera resolution: " << cam->getPictureBuffer()->getWidth()
48 << "x" << cam->getPictureBuffer()->getHeight() << endl;
49
50 // stop receiving pictures
51 cam->stopVideo();
52
53 // cam save picture
54 cam->savePicture("picture.jpg",1);
55
56 // delete control
57 delete control1394;
58 }
59 catch(Dyncon1394Exception& e) {
60 cout << e.what() << endl;
61 }
62 return 0;
63 }

Program 3: Settings

This program demonstrates how to change the camera settings

1 #include <iostream>
2 #include <dyncon1394.h>
3
4 using namespace std;
5

APPENDIX C. EXAMPLE PROGRAMS 37

6 int main (int argc,char **argv) {
7 cout << "Use more cameras" << endl;
8
9 try {

10 // get control over cameras
11 Control1394* control1394 = new Control1394();
12
13 // get count of cameras
14 int count = control1394->getCameralist()->getSize();
15
16 if(count < 1) {
17 cout << "No camera found\n";
18 delete control1394;
19 exit(1);
20 }
21
22 Camera1394* cam;
23
24 // get camera
25 cam = control1394->getCamera(0);
26
27 // stop video in case the camera is active
28 cam->stopVideo();
29
30 // set camera to factory settings
31 cam->setFactorySettings();
32
33 // update current settings
34 cam->updateCameraMisc();
35
36 // update camera information
37 cam->updateCameraInfo();
38
39 // set video mode to 640x480 YUV 4:1:1
40 cam->setVideoMode(66);
41
42 // set Iso channel to 0 and Iso speed to 2 (400Mbps)
43 cam->setIsoChannelAndSpeed(0,2);
44
45 // set framerate to 30 fps
46 cam->setVideoFramerate(36);
47
48 if(cam->isFeaturePresent(FEATURE_HUE)) {
49 cout << "Before any setting - Hue = " << cam->getHue() << endl;

APPENDIX C. EXAMPLE PROGRAMS 38

50
51 // increase hue by 10
52 cam->setHue(cam->getHue()+10);
53
54 cout << "After first setting - Hue = " << cam->getHue() << endl;
55
56 // decrease hue by 10
57 cam->setHue(cam->getHue()-10);
58
59 cout << "After second settig - Hue = " << cam->getHue() << endl;
60 }
61
62 if(cam->isFeaturePresent(FEATURE_BRIGHTNESS)) {
63 cout << "Brightness is set to " << cam->getBrightness() << endl;
64 // get current value for brightness
65 int oldvalue = cam->getBrightness();
66
67 // get maximum for brightness
68 int maxvalue = cam->getFeature(FEATURE_BRIGHTNESS)->getMaxValue();
69 cout << "Maximum value for brightness: " << maxvalue << endl;
70
71 // set brightness to maximum
72 cam->setBrightness(maxvalue);
73
74 cout << "Brightness is set to " << cam->getBrightness() << endl;
75
76 // set brightness to old value
77 cam->setBrightness(oldvalue);
78 cout << "Brightness is set to " << cam->getBrightness() << endl;
79 }
80
81 // delete camera control
82 delete control1394;
83 }
84 catch(Dyncon1394Exception& e) {
85 cout << e.what() << endl;
86 }
87 return 0;
88 }

Program 3: UseMoreCams

This program demonstrates the use of more than one camera.

APPENDIX C. EXAMPLE PROGRAMS 39

1 #include <iostream>
2 #include <dyncon1394.h>
3
4 using namespace std;
5
6 int main (int argc,char **argv) {
7 cout << "Use more cameras" << endl;
8
9 try {

10 // get control over cameras
11 Control1394* control1394 = new Control1394();
12
13 // get count of cameras
14 int count = control1394->getCameralist()->getSize();
15
16 Camera1394* cams[count];
17
18 // fetch cameras
19 for(int i=0;i < count; i++)
20 cams[i] = control1394->getCamera(i);
21
22 // setup cameras
23 for(int i=0; i < count; i++) {
24
25 cams[i]->stopVideo();
26
27 cams[i]->setFactorySettings();
28
29 cams[i]->updateCameraMisc();
30
31 cams[i]->updateCameraInfo();
32
33 cams[i]->setVideoMode(66);
34
35 cams[i]->setIsoChannelAndSpeed(i,2);
36
37 cams[i]->setVideoFramerate(36);
38 }
39
40 // start cameras and fetch one rgb24 picture from each camera
41 for(int i=0;i< count; i++) {
42
43 cams[i]->startVideo();
44

APPENDIX C. EXAMPLE PROGRAMS 40

45 cams[i]->getVideo();
46
47 cams[i]->convertToRGB24();
48 }
49
50 // stop cameras and save pictures
51 for(int i = 0;i < count; i++) {
52
53 cams[i]->stopVideo();
54
55 char* filename = (char*)malloc(sizeof(char)*25);
56 sprintf(filename,"Picture_Camera%i.jpg",i+1);
57
58 cams[i]->savePicture(filename,1);
59 }
60
61 // delete camera control
62 delete control1394;
63
64 }
65 catch(Dyncon1394Exception& e) {
66 cout << e.what() << endl;
67 }
68 return 0;
69 }

Program 5: Display

This program sets a camera up and displays the captured frames. It is not register-
ing itself to the Servicelist, so it will crash if the camera is plugged out.

1 #include <iostream.h>
2 #include <ptc.h>
3 #include <dyncon1394.h>
4
5 int main()
6 {
7 Control1394* control1394;
8 Camera1394* camera;
9 try {

10 control1394 = new Control1394();
11
12 camera = control1394->getCamera(0);
13

APPENDIX C. EXAMPLE PROGRAMS 41

14 if(camera == NULL) {
15 cout << "No camera found\n";
16 delete control1394;
17 exit(1);
18 }
19
20 camera->printCameraInfo();
21 camera->setVideoMode(66);
22 camera->setIsoChannelAndSpeed(0,2);
23 camera->setVideoFramerate(36);
24 camera->printCameraMisc();
25
26 camera->startVideo();
27
28 unsigned int width = 640;
29 unsigned int height = 480;
30 Console *console = new Console();
31 Format format(24,0xFF0000,0xFF00,0xFF);
32 try {
33 // try to open the console matching the image resolution
34 console->open("Display Camera Picture",width,height,format);
35 }
36 catch (Error&) {
37 // fallback to the default resolution
38 console->open("Display Camera Picture",format);
39 }
40
41 //Surface surface(width,height,format);
42 while (true) {
43 if (console->key()) {
44 // read console key press
45 const Key key = console->read();
46
47 try {
48 switch (key.code()) {
49 case Key::LEFT:
50 camera->setBrightness(camera->getBrightness()+10);
51 break;
52 case Key::RIGHT:
53 camera->setBrightness(camera->getBrightness()-10);
54 break;
55 case Key::UP:
56 unsigned int max;
57 max = camera->getFeature(FEATURE_BRIGHTNESS)->getMaxValue();

APPENDIX C. EXAMPLE PROGRAMS 42

58 camera->setBrightness(max);
59 break;
60 case Key::DOWN: camera->setBrightness(0); break;
61 }
62 }
63 catch(Dyncon1394Exception& e) {
64 cout << e.what() << endl;
65 }
66
67 if (key.code()==Key::ESCAPE) break;
68 }
69 camera->getFastVideo();
70 camera->convertToRGB24();
71 console->load((void*)camera->getPictureBuffer()->getImage(),
72 width,height,width*3,Format(24,0xFF,0xFF00,0xFF0000),
73 Palette());
74 console->update();
75 }
76 camera->stopVideo();
77 delete control1394;
78 control1394 = NULL;
79 }
80 catch (Error &error) {
81 error.report();
82 camera->stopVideo();
83 delete control1394;
84 }
85 catch(Dyncon1394Exception& e) {
86 cout << e.what() << endl;
87 camera->stopVideo();
88 delete control1394;
89 }
90 return 0;
91 }

Appendix D

Dyncon1394 Reference

The Reference of Dyncon1394 is located in the doc directory of Dyncon1394.
See [DynAPI] for more information.

43

Bibliography

[Coriander] Coriander 1.0.0-pre3

[LibDC1394] LibDC1394 1.0.0

[LibRAW1394] LibRAW1394 0.9.0

[OpenPTC] OpenPTC

[ImageMagick] ImageMagick 6.0.6.2 C++-API

[Linux1394] www.linux1394.org

[sourceforge] www.sourceforge.org

[C++Prog] Biarne StroustrupDie C++ Programmiersprache
Addison-Weslay Verlag 2000

[DynAPI] Dyncon1394 Reference

[IIDC] IIDC-Specification - 1394 Trade Association

44

