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Abstract

Abstract

Bundle Adjustment is a widely used discipline in computer vision. Reconstructions of a
scene, obtained from images, can be improved with this technique minimising the reprojec-
tion error in the images. This thesis provides an approach of performing a bundle adjust-
ment procedure on a scene consisting of points, lines and camera poses.
A method is presented to reconstruct points, lines and camera poses from an image se-
quence, obtained from a calibrated camera. These reconstructions are then used as initial-
isation for the bundle adjustment procedure. In this minimisation algorithm the points,
lines and camera poses are refined simultaneously, minimising the the reprojection error of
points and lines in the images. Appropriate parametrisations for points, lines and camera
poses are given such that a bundle adjustment problem can be formulated to optimise these
entities.
The reconstruction of points, lines and cameras, that is needed as initialisation for the bun-
dle adjustment procedure, is obtained from three images each time computing the trifocal
tensor from the image correspondences. From this tensor an euclidean reconstruction of
the camera poses is computed. Then points and lines are reconstructed by triangulation.
The single reconstructions are concatenated to a large scene.
The Algorithm is tested on synthetic data as well as on real images. The experimental
results given for varying image errors on points and lines as well as for varying configu-
rations of the scene. Even in the case of noisy point and line data the algorithm performs
robustly. The presented concept might be used to augment a tracking system that considers
points as image features only.
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Outline of the Thesis

Outline of the Thesis

Chapter 1: In the first chapter the introduction to the thesis is provided. First the prob-
lem is defined. Then the related work to the topic is presented. In the subsequent section
the theoretical background on the the topics that are treated in this thesis are introduced.
Furthermore some theoretical and mathematical background is provided.

Chapter 2: In the second chapter the reconstruction process from point and line features
across three views is describe in detail. The methods used in the thesis are explained and
then summarised in terms of an algorithms. In the end of the chapter the single steps are
outlined in a summary.

Chapter 3: The third chapter treats the topic of Bundle Adjustment in the presence of
point and line features. First an appropriate parametrisation of points, lines and cameras
is provided, then the bundle adjustment procedure is explained in detail. In the end of the
chapter the procedure is summarised and outlined as algorithm.

Chapter 4: Chapter four provides an evaluation and the results of the reconstruction and
refinement process. First the evaluation on synthetic data is shown in various tests, then
the algorithm is applied and evaluated on real image data.

Chapter 5: In the last chapter the developed method is summarised and possibilities for
further developments and improvements are discussed.

vii



1 Introduction

1.1 Motivation

Computer vision is a discipline that deals with extracting information from images. One of
the main task is to extract information about objects in the three-dimensional world from
images such as their position, shape, colour or kind. Furthermore knowledge about the
camera system that is recording the images of the scene can be provided. Thus, the internal
camera parameters like the focal length as well the external camera parameters can be ob-
tained.
One field of research in computer vision where image features are used to estimate the rela-
tions of camera views and scene is tracking. Such tracking algorithms estimate the camera
poses and the scene structure from images. Since image data are noisy the reconstructions
are obtained with a certain error. This error in the reconstruction can be reduced with bun-
dle adjustment procedures, that optimises the reconstructions.
Most of the feature tracking algorithms are based on point features. Significant points in
the images are extracted, correspondences across multiple images are found and the spatial
relations of the cameras and the scene points are reconstructed from the image correspon-
dences.
In human made environments however straight edges are present everywhere. The pro-
jection of a three-dimensional straight edge into the image plane of a perspective camera
causes in a straight line. Lines have some interesting properties and behave different to
points in several ways. Imagine a scene in a human made environment. Lets take the ex-
ample in figure 4.10 on page 68. Seven images of a scene are illustrated. The scene consists
of many edges and corners, that can be extracted in the images. The camera that recorded
the scene moved smoothly around the scene and provides images from different perspec-
tives. It is obvious to see that many significant points are not visible across the complete
sequence or may be occluded in some perspectives by other objects. These points can not
be used as correspondence across the complete scene. The edges however are more robust
against occlusion. Even so an edge may be occluded partially in some of the images, the
partially visible line in the image provides the same informations as the complete line does,
if lines are considered as infinite lines without endpoints. Thus, lines are less affected by
occlusion than points. Another advantage of lines towards points is the fact that lines can
be detected more accurate in an image than points. Since one line can provide the same in-
formations as many points lying on a line, the amount of data can be reduced, substituting
the points by a line fitted trough them. Doing this mismatches of points can be avoided
considering one single line instead of a bundle of points lying arbitrarily on this line.
Despite these advantages care is needed when dealing with lines. If an image of a 3D point
is provided, it is clear that the three-dimensional point must lie on the ray going trough
the camera centre and the image line. Thus, the unknown informations can be reduced to
a one-dimensional space. If however an image of a line is provided, the three-dimensional
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line lies on a plane that is formed by the camera centrer and the image line. Thus, the
search space for the three-dimensional line has two dimensions. This shows that image
points provide more information for the reconstruction than image lines. These coherences
are illustrated in figure 1.1.

Figure 1.1: Projection of points and lines: C denotes the camera centre, x and l respectively
denotes the point and line in the image. X and L stands for the corresponding point and
line in 3D. The point X lies on the ray going trough the camera centre C and the image
point x. The line L lies on the plane formed by the camera centre C and the image line l.

Points in the euclidean space are represented simply by its euclidean coordinates. Lines
however can not be represented in such a geometrically meaningful way. Thus, caution is
needed when representing lines. The representation of points lines and cameras will be an
important issue in this thesis.
Klein and Murray presented a camera pose estimation algorithm in 2007 [32]. Based on
point feature correspondences across images they estimate the poses of the camera-views
and the point-positions in 3D from images obtained from an image stream in real time. In a
second process, a map is build consisting of interesting points and the cameras. This map,
that is enlarged permanently, will continuously be refined by a global minimisation pro-
cess, called bundle adjustment. The application performs very well and robust.
Based on this approach the idea arose to augment such a system considering not only
points, but also line features in the images. Thus, the reconstruction of the scene is com-
posed of points, lines and cameras. One of the challenging problems is the bundle adjust-
ment process. This minimisation procedure must be formulated such that the estimation of
the scene is improved simultaneously for points, lines and cameras based on a reprojection
error for points and lines in the images. The objective is to adapt the points, lines and cam-
eras in 3D such that the reprojection error in the images is minimised.
The minimisation process must be initialised with estimations of the three-dimensional
points, lines and cameras. This initialisation does not need to be optimal, but the better
it is, the better the bundle adjustment algorithm performs. Thus, algorithms are required
that reconstruct points, lines and cameras from image correspondences. Since the tracking
process must be real-time capable, the reconstruction algorithms should perform fast but
as accurate as well. The task of the minimisation algorithm however is not to perform in
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1 Introduction

real time, but to provide accurate results.
In chapter 2 and chapter 3 algorithms for the desired Tasks are presented. In chapter 4 the
algorithms are evaluated.

1.2 Related Work

This section provides an overview on the research that is done on topics related to the
reconstruction of points and lines from images as well as on bundle adjustment procedures
to improve the reconstructions. The reconstruction of scenes from images has been an active
field of research for many years in the disciplines of photogrammetry and computer vision.
The chapter can also be seen as a historical overview on computer vision. Starting with the
first trials of scene reconstructions, the state of the art techniques are outlined, then tracking
algorithms that requires the knowledge of reconstruction procedures are presented. Finally
bundle adjustment techniques are introduced. These techniques, that has their origin in the
field of photogrammetry and are used to refine the reconstructions, are pointed out in the
context of computer vision.

1.2.1 Scene Reconstruction

The objective of computer vision is to extract the three dimensional structure of the world
from images. In 1965 Roberts presented a method to obtain three-dimensional description
of the world from the edge informations in an image. To do this he made assumptions on
the scene that where used as previous knowledge for the reconstruction [48]. In 1976 Rosen-
feld et al. investigated on the understanding and interpretation of lines in an image in the
context of a three-dimensional scene [49]. Kanade in the year 1980 examined the problem
of obtaining three-dimensional informations from images based on origami models. The
paper deals with the question: “how do we understand the possible three-dimensional
configurations from a collection of lines ”. Based on a 3D model a 3D meaning is assigned
to the lines in the image [31]. Feature based stereo correspondence algorithms where de-
veloped for instance by Marr and Poggio in 1976 [38], Mayhew and Frisby in 1981 [41] and
Lucas and Kanade in 1981, that developed a fast technique for image registration [37]. Marr
in 1982 explored the human vision from a philosophical and computational point of view
[39]. In the 1980s a lot of work was put in the improving of image analysis. Thus, image
pyramids where introduced, for instance by Burt and Adelson in 1983 [10]. Canny in 1986
described a new approach for the computation of edge points in the image [11]. At this time
a wide variety of different algorithms for image understanding and 3D reconstruction was
available. Blake and Zisserman in 1987 for instance introduced a new concept for fitting
piecewise continuous functions to visual data [8]. Poggio et al. in 1985 described regulari-
sation methods for ill posed problems [46]. Faugeras and Hébert 1987 investigated on the
representation of information in 3D and described algorithms to construct these represen-
tations [19]. In the 1990s a lot of attention was given to the concept of projective reconstruc-
tion. In this process no knowledge about the intrinsic camera parameters is required (for
the camera parameters refer to chapter 1.3.2). Faugeras in 1992 examined the problem of de-
termining the kind of 3D reconstruction that can be received from a stereo rig for which no
three-dimensional reference data for the calibration is available. The only available infor-
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mations are pixel correspondences between the two images [20]. Hartley in 1992 described
how internal camera parameters can be determined from a set of three-dimensional points
[27]. In 1994 Hartley investigates on projective reconstructions of geometric configurations
from two of more perspective views. He used the fundamental matrix that describes the
epipolar correspondences between two views. He describes a method how the fundamen-
tal matrix can be determined from 7 point correspondences across two images or from 6
point correspondences across three images [22].
The concept of the fundamental matrix was introduced in 1981 from Longuet and Higgins.
They described an algorithm for reconstructing the three-dimensional structure of a scene
from a stereo pair with unknown spatial relations. If eight point correspondences across
the images are provided, the relative orientation of the two projections can be obtained by
solving a system of eight linear equations. The spatial coordinates of all visible points can
then be obtained [35]. In 1998 Zhang considered the essential matrix for calibrated images
pairs as well as the fundamental matrix for uncalibrated image pairs. He gave methods to
compute either the fundamental and the essential matrix [65]. These methods are still used
in modern approaches.
In 1992 Tomasi Kanade proposed a factorisation method to obtain the shape of the scene as
well as the camera pose [60]. Triggs in 1996 described an algorithm to recover the structure
of the scene and the cameras from multiple perspective cameras by factorisation methods
[62]. This mehtod can be seen as generalisation of the algorithm of Tomasi Kanade. Nagel
Enkelmann in 1986 used the optical flow techniques for the mapping from one image to the
next one in an image stream [43]. In 1992 Bergen et al. examined the use of four different
flow techniques for motion estimation [5]. The techniques are affine flow, planar surface
flow, rigid body motion, and general optical flow. The technique of optical flow for motion
estimation was improved in several ways, for instance by Black in 1996 allowing multiple
flows in one image caused by transparency, depth discontinuities, independently moving
objects, reflections, shadows and others [7]. Bruhn et al. in 2005 combined local optical flow
methods with global optical flow methods [9].
Also the stereo-optical methods where content of research. Okutomi and Kanade 1993 pre-
sented a stereo matching method that uses multiple stereo pairs with various baselines to
obtain precise distance estimates [44]. Seitz et al. presented a quantitative comparison of
several multi view stereo reconstruction algorithms [51].
To describe the spatial relation of an image triplet the trifocal tensor was introduced. The
discovery of the tensor may be attributed to Spetsakis, Aloimonos and to Weng. Spetsakis
and Aloimonos in 1991 presented a multi frame motion estimation technique based on the
principle of the trifocal tensor. Weng presented in 1988 a robust technique for motion and
structure estimation from image sequences. He used the principle of the trifocal tensor for
scene reconstruction from line correspondences [64]. Shashua in 1994 showed the existence
of a trilinear relationship between three perspective images [52]. In 1995 he presented new
results on the trilinera relationsip [53]. Hartley in 1995 [23] and 1997 [24] showed that the
relations of Shashua for points and for lines can be expressed in a common way, the trifocal
tensor. In further research other properties of the trifocal tensor where proposed. Faugeras
and Mourrain in 1995 explored the geometric and algebraic relations between correspon-
dences of points and lines in an arbitrary number of images. They provided a new method
for deriving the trilinear relations [18].
For reconstructing lines different approaches where proposed. Hartley and Sturm in 1997
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proposed an optimal triangulation method for points from two images [28]. Schmid and
Zisserman in 1997 presented a method for matching individual line segments between im-
ages [50]. Chiba and Kanade in 1998 proposed an automatic line tracking method for line
segments over an image sequence using the gray level information of the images and the
geometric attributes of the line segments [13]. In 1999 Baillard et al. presented an algo-
rithm that automatically reconstructs buildings from aerial images based on line segments
[3]. Hartley and Zisserman in 2003 suggested various methods for point and line recon-
structions based on triangulation [25]. Matinec and Pajdla in 2003 propose a factorisation
method for line reconstruction from many perspective images. [40]. Bartoli and Sturm in
2005 presented a structure from motion algorithm based on line features [4].

1.2.2 Tracking and Mapping Techniques

The methods of computer vision where also used for feature tracking applications. Smith
Cheeseman in 1987 presented a method for estimating the relationship and the expected
error between coordinate frames. This estimation method can be used to estimate the like-
lihood whether a particular reference object in its field of view lies in front of a camera
attached to a robot. This work may be seen as the invention of the EKF-SLAM (extended
Kalman filter - simultaneous localization and mapping) methods [56]. Another important
work on the topic of simultaneous localisation and mapping was published in 1991 by
Leonard and Durrant-Whyte. They formulated the problem of localisation and mapping of
a robot in an environment as “chicken egg problem ”and discussed the problem of precise
motion of a robot in an environment on the basis of an accurate self made map, sensing the
environment [34]. In 2003 Montemerlo et al. presented an improved algorithm of the simul-
taneous localisation and mapping problem, called FastSLAM. The improvements affect the
efficiency of the algorithm as well a the accuracy of the map [42]. Davison et al. 2007 pre-
sented a method called monoSLAM. This real time algorithm can recover the 3D trajectory
of a monocular camera that is moved through a previously unknown scene. The algorithm
is proposed a the first pure-vision SLAM algorithm for structure from motion problems
that achieves real-time behaviour and drift free performance.[15]. Eade and Drummond in
2006 presented a real-time monocular SLAM system for a single camera system, applying
the FastSLAM-type particle filter to single-camera SLAM [17]. Klein and Murray in 2007
presented a method for the estimation of camera poses in an unknown scene. The system
called PTAM is designed specially for hand-held cameras in small workspaces. The nov-
elty compared to existing SLAM methods was the splitting of the tracking and mapping
procedure, that where executed in two separate tasks. While one task deals with the ro-
bust tracking of the camera and performs in real time, the other task generates a map of
3D point features. On this mapping task a non real time capable bundle adjustment pro-
cedure is executed that continuously refines the map [32]. In 2008 this PTAM system was
extended by Castle et al. to allow one or more cameras to work in several maps, separately
or simultaneously [12].

1.2.3 Optimisation Techniques

Bundle adjustment originally comes from the field of photogrammety. Many textbooks
about this topic are available. Atkinson [1] gives an introduction in the field of non-linear
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optimisation problems for photogrammety. Björck in 1996 provided a textbook that treats
several methods of least squares problems such as methods for sparse least squares prob-
lems, iterative methods, modified least squares, weighted problems, and constrained and
regularized problems applicable for a great number of scientific areas [6].
In the context of computer vision Triggs et al. in 2000 gave a survey of the theory and
methods of bundle adjustment. It provides a survey of the theory and methods of bundle
adjustments for computer vision. The paper is dedicated to people that already have some
knowledge and experience with bundle adjustment methods. Topics such as the choice
of an appropriate cost function and robustness, numerical methods such as sparse Newton
methods and recursive methods are treated [63]. Hartley and Zisserman introduced in their
textbook several non-linear optimisation algorithms for computer vision applications [25].
Full global optimization techniques that later where realised to be the same as the bundle
adjustment technique where proposed. For instance the method of Taylor et al. in 1991
that addressed a special case of the structure from motion problem for static scenes [59] or
the method of Szeliski and Kang in 1993. They presented a shape and motion estimation
algorithm based on non-linear least squares [58]. Also Azarbayejani et al. in 1995 presented
a formulation for recursive recovery of motion, structure and the focal length from feature
correspondences from an image sequence. The used techniques later where assigned to the
field of bundle adjustment [2]. Sibley in 2008 presented an approach for deriving a rela-
tive objective function for bundle adjustment for a simultaneous localisation an mapping
method [54].

1.3 Multiple View Geometry

In this section the principals of multiple view geometry that are used for this thesis are in-
troduced. In [21] Forsyth and Ponce give detailed explanations on the various principles
of computer vision. Hartley and Zisserman in [25] provide the geometrical and algebraical
concepts of multiple view geometry and computer vision, completed with algorithms and
helpful suggestions. From there most concepts of computer vision used here where bor-
rowed.

1.3.1 Projective Geometry

The projective geometry describes perspective transformations in the two dimensional and
three dimensional space as well as the mapping from the three dimensional space to the two
dimensional space. In contrast to the euclidean geometry, that describes the metric prop-
erties of figures, the projective geometry allows projective transformations. For instance,
two parallel lines that lie in the same plane do intersect in the projective space in the point
at infinity. This point that belongs to the set of ideal points plays an important role in the
projective geometry. Throughout this thesis the projective space is denoted with P whereas
the euclidean space is denoted with R. Points in the projective space are represented as
homogeneous coordinates. In the projective 3-space P3 a point X is represented as homo-
geneous 4 vector, adding a 1 as last coordinates to the euclidean coordinates according to
X = (X,Y, Z, 1)>. To a homogeneous point a projective transformation can be applied. Let
H be a 4×4 matrix and representing the projective transformation. The matrix H is a homo-
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geneous matrix with 16 elements and 15 degrees of freedom plus an overall scaling of the
matrix. This matrix can represent several forms of linear transformations. Zisserman and
Hartley in [25] in chapter 2 - chapter 4 give a detailed overview of the projective geometry
in two and three dimensions.

1.3.2 Camera Model

A camera projects a scene from the 3D space into a 2D image plane. Points and lines can
be mapped using a 3 × 4 camera matrix P. This camera matrix encapsulates the pose of
the camera in the world, called extrinsic camera parameters as well as the internal calibration
parameters of the camera, called intrinsic camera parameters. Thus, P has 11 degreed of
freedom, 6 for the camera pose and 5 for the internal calibration. A camera matrix P is
composed of

P = KR
�
I | − C̃

�
. (1.1)

The matrix K contains the internal parameters of the camera, the matrix R and the vector
C̃ describe the orientation and the position of a camera in a world frame. Hartley and
Zisserman in [25] describe several camera models. Here a general projective camera model
is used.
The 3 × 4 camera matrix P can be rewritten as P = [M | p4]. It is recommended from [25]
chapter 6.2 to normalise the camera matrix so that ‖m3‖ = 1 where m3 is the 3rd row of the
matrix M. Furthermore if det(M) < 0, the camera matrix P must be multiplied by −1. This
is important to define a right handed camera frame.

Extrinsic Camera Parameter

The frame attached to a camera is related to a world frame via a translation and a rotation.
In the three-dimensional space there are 6 degrees of freedom that describe the pose of the
camera frame relative to the world frame, 3 for the translation and 3 for the rotation. These
parameters are called the extrinsic camera parameter.
Suppose that C = (XC , YC , ZC , 1)

> is a homogeneous vector representing the centre of the
camera frame. It specifies the translation of the camera frame relative to the world frame.
The matrix R is a 3 × 3 rotation matrix that represents the rotation of the camera frame
relative to the world frame.
A rotation matrix R of the form

R =

264r11 r12 r13
r21 r22 r23
r31 r32 r33

375 (1.2)

can be composed of a sequence of three rotations around the three axis x, y, z. Thus,
R = Rz(φ)Ry(θ)Rx(ψ). The angle ψ denotes the rotation around the x-axis, θ denotes the ro-
tation around the y-axis and φ denotes the rotation around the z-axis. The order of rotation
influences the final result. Here the rotations are defined in the order of first rotating around
the x-axis, then around the y-axis and finally around the z-axis. The rotation matrices Rx,
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Ry, Rz are defined as

Rx(ψ) =

2641 0 0
0 cos(ψ) −sin(ψ)
0 sin(ψ) cos(ψ)

375 (1.3)

Ry(θ) =

264 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

375 (1.4)

Rz(φ) =

264cos(φ) −sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

375 . (1.5)

from the equations 1.3 to 1.5 the rotation matrix R can be obtained according to

R = Rz(φ)Ry(θ)Rx(ψ)

=

264cos(φ)cos(θ) cos(φ)sin(ψ)sin(θ)− cos(ψ)sin(φ) sin(φ)sin(ψ) + cos(φ)cos(ψ)sin(θ)
cos(θ)sin(φ) cos(φ)cos(ψ) + sin(φ)sin(ψ)sin(θ) cos(ψ)sin(φ)sin(θ)− cos(φ)sin(ψ)
−sin(θ) cos(θ)sin(ψ) cos(ψ)cos(θ)

375 .
(1.6)

Intrinsic Camera Parameter

The intrinsic parameters of a camera may be described as the focal length of the lens, the
principal point, the pixel size and a skew factor in the case of non square pixel. The matrix
K, also called calibration matrix, encapsulates those parameters according to

K =

264αx s x0
0 αy y0
0 0 1

375 . (1.7)

The parameters αx and αy represent the focal length with respect to the pixel dimensions in
x and y direction and are determined according to αx = fmx and αy = fmy where f is the
focal length of the lens and mx = 1/(pixelsizex) and my = 1/(pixelsizey) are the numbers
of pixel per unit distance in image coordinates in x and y direction. The parameter s is
the skew factor of the pixels. In most cases it is equal to zero. The parameters x0 and y0
represent the principal point. It describes the centre of projections in the image frame.

1.3.3 Camera Decomposition

A 3×4 camera matrix P can be decomposed into P = KR
�
I | − C̃

�
. The intrinsic parameter

matrix K is a 3 × 3 upper triangular matrix, The 3 × 3 rotation matrix R is an orthogonal
matrix and C̃ is the inhomogeneous 3-vector of the camera centrer in the world frame. In
[25], chapter 6.2.4, Hartley and Zisserman present methods to find the camera centre, the
orientation of the camera and the intrinsic camera matrix.

8
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The camera centre C = (XC , YC , ZC , T )
> may be obtained according to

XC = det([p2, p3, p4])

YC = −det([p1, p3, p4])

ZC = det([p1, p2, p4])

T = −det([p1, p2, p3]) (1.8)

The vector pi denotes the ith column of the matrix P. The inhomogeneous 3-vector of the
camera centre is therefore C̃ = (XC/T, YC/T, ZC/T )

>.
The camera matrix can be written as P =

�
KR | −KRC̃

�
=
�
M | −MC̃

�
. From the 3 × 3

matrix M the matrices K and R may be found using the RQ-decomposition. This decompo-
sition decomposes the matrix M into a product of an upper triangular and an orthogonal
matrix according to M = KR. The RQ-decomposition is described in [25], appendix A4.4.1,
page 579.

1.3.4 Camera Calibration

For the development of the system a customary Webcam, the Logitech QuickCam Pro 4000
was used. As objective a fish eye lens was mounted. Experiments has shown that with a
wide angle lens better results can be achieved than with a normal angle lens. Images where
recorded with a resolution of 640x480 pixels. The camera was calibrated according to the
technique of Zhang, proposed in [66]. As calibration tool the Ubitrack system, introduced
in [30] by Huber et al. and in [47] by Pustka et al. was used. With the calibration a distortion
of the camera images was achieved such that straight lines in the world are visualised as
streight lines in the image. Furthermore a precise calibration matrix K of the camera was
obtained. This intrinsic parameter matrix is of the form

K =

264373, 17518 0 320, 86825
0 389, 21025 241, 71514
0 0 1

375 . (1.9)

The camera has a sensor size of 1/4′′. This results in a pixel size: 5.6µm× 5.6µm.

When working with synthetic data an approximation of the calibration matrix was used.
This calibrations matrix is of the form

K =

264380 0 320
0 380 240
0 0 1

375 . (1.10)

1.3.5 Two View Geometry

Suppose, two images of the same scene are given, recorded from different positions of view.
These views ma be acquired from a moving camera in different time steps. The relations
between these two cameras are described by the epipolar geometry, that depends only on
the internal parameters of the cameras and its relative pose. The fundamental matrix F
represents the algebraic relations of the epipolar geometry. Hartley and Zisserman cover

9
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the epipolar geometry in [25], chapter 9. In chapter 10 the perspective reconstruction of a
camera pair from the fundamental matrix is described. Chapter 11 describes methods for
computing the fundamental matrix from image correspondences. Chapter 12 describes tri-
angulation methods to recover the scene structure.
The fundamental matrix F is a 3× 3 matrix. It can be obtained from point correspondences
across two images. From the fundamental matrix a perspective reconstruction of the camera
pair can be obtained in the general case. If any knowledge about the internal camera pa-
rameter or the scene is provided, an euclidean reconstruction up to a scale factor is possible.
Knowing the cameras, the scene points can be recovered from the image correspondences.

1.3.6 Three View Geometry

What the fundamental matrix F is for two views, the trifocal tensor T is for the three view
geometry. Given three views of a scene with image correspondences, a tensor can be com-
puted that encapsulates the relative geometric relations between the three cameras. Hartley
and Zisserman introduce the trifocal tensor in [25], chapter 15. In chapter 16 they describe
the computation of the trifocal tensor from point and line correspondences.
The 3 × 3 × 3 tensor can be determined from point and line correspondences across three
cameras. It can be used to determine the three camera matrices, again up to a perspective
transformation. With further knowledge about the scene or the intrinsic camera parame-
ters an euclidean reconstruction can be obtained. One important difference between the
trifocal tensor and the fundamental matrix is, that informations from line correspondences
can directly be included in the computation of the trifocal tensor. The fundamental matrix
however can deal only with point correspondences. In the present problem this fact was
the decisive reason to use the trifocal tensor for the initial reconstruction. In Chapter 2 the
reconstruction process from an image using the trifocal tensor is explained in detail.

1.3.7 Points and Lines 2D

Hartley and Zisserman in [25], chapter 2.2 explain the relations of points in the projective
plane. A point x in the euclidean 2 space P2 is simply represented by its euclidean coordi-
nates x = (x, y)>. If the point is represented in the projective 2 space R2, a 1 is added to
the point vector according to x = (x, y, 1)>. Thus, the point is represented as homogeneous
vector.
A line l in the plane is described by the equation ax + by + c = 0. Thus, the line can be
expressed by the homogeneous vector l = (a, b, c)>. A homogeneous point x lies on the line
l if and only if the equation x>l = l>x = 0 is satisfied. The intersection point x = (x, y, 1)>

of the two lines l1 = (a1, b1, c1)
> and l2 = (a2, b2, c2)

> can be determined from the cross
product of the lines according to x = l1 × l2 = [l1]×l2. The 3 × 3 matrix [l1]× is the skew
symmetric matrix corresponding to l1 = (a1, b1, c1)

> according to

[l1]× =

264 0 −c1 b1
c1 0 −a1
−b1 a1 0

375 . (1.11)

This matrix can be used to express the cross product. The skew symmetric matrix will ap-
pear in the following chapters in different coherences.

10



1 Introduction

A line l = (a, b, c)> joining two points x1 = (x1, y1, 1)
> and x2 = (x2, y2, 1)

> can be com-
puted as the cross product of the points according to x = l1 × l2 = [l1]×l2.
It is recommended to normalise lines represented as l = (a, b, c)> such that the norm
of the first two elements ‖(a, b)>‖ is equal to one. Homogeneous points represented as
x = (x, y, w)> should be normalised such that the last element w is equal to 1.

1.3.8 Points and Lines in 3D

A point X in the euclidean 3-space R3 is simply represented by its euclidean coordinates
X = (X,Y, Z)>. In the projective 3-space P3 the homogeneous representation is appropri-
ate. Thus, X = (X,Y, Z, 1)>.

A suitable representation of a line in the euclidean 3-space R3 is the Plücker matrix L. The
basic concepts of the Plücker matrix are borrowed from Hartley and Zisserman in [25],
chapter 3.3.2, page 68 ff.
The Plücker matrix is a 4× 4 skew-symmetric homogeneous matrix

L =

26664
0 l1 l2 l3
−l1 0 l4 l5
−l2 −l4 0 l6
−l3 −l5 −l6 0

37775 (1.12)

with 6 independent elements not equal to zero, from which their 5 ratios are significant.
Since det(L) = 0 the number of degrees of freedom is 4. A line in the euclidean 3-space can
be defined by the intersection of two orthogonal planes. Each of the intersection points on
the planes has two degrees of freedom. Thus, in total the line has 4 degrees of freedom.
This is visualised in figure 1.2.

Figure 1.2: Definition of a line in the euclidean 3-space: In (a) the line L is defined by its points
of intersection A, B on the two orthogonal planes π1, π2. In (b) the line L is specified as
the intersection of the two arbitrary planes π1 and π2.
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Suppose A and B are two points in 3-space, then

L = AB> − BA>. (1.13)

The Plücker Matrix L can be understood as the line in 3D joining the two points A,B in
space. It is independent of the choice of the points on the line.
A line in 3D can be defined also as intersection of two planes in 3-space. Thus, a dual
Plücker representation L∗ is obtained. Suppose P and Q are two planes in 3-space, then

L∗ = PQ> −QP>. (1.14)

L∗ has similar properties as L. L can be converted to L∗ and vice versa by the rewrite rule

l12 : l13 : l14 : l23 : l42 : l34 = l∗34 : l
∗
42 : l

∗
23 : l

∗
14 : l

∗
13 : l

∗
12. (1.15)

To project a line L in the image plane of a camera P, the transformation

[̂l]x = PLP> (1.16)

can be applied. [̂l]x is a 3× 3 skew-symmetric matrix.

[̂l]x =

264 0 −c b
c 0 −a
−b a 0

375 (1.17)

It is defined as the corresponding skew-symmetric matrix of the line vector l̂ =
�
â, b̂, ĉ

�>
.

Thus, the line vector l̂ is

l̂ =

264âb̂
ĉ

375 =

264− P2LP3>

P1LP3>

− P1LP2>

375 . (1.18)

The vector l̂ =
�
â, b̂, ĉ

�>
is the reprojection of the line L in the image of camera P, the 4-

vector Pk denotes the kth row of the matrix P.
The line vector l̂, that is defined up to a scale factor, represents the parameters of the equa-
tion âx+ b̂y+ c = 0 that describes a line in the 2D space. The line vector is normalised such
that ‖(â, b̂)>‖ = 1.
The line l = (a, b, c)> is the 2D line corresponding to the 3D lines L measured in the image
plane of the camera P. It is normalised in the same way as the reprojected line according to
‖(a, b)>‖ = 1.

1.3.9 Reconstruction Theory

From several views of a scene the scene can be reconstructed. However, independent of the
number of images the scene can not be determined uniquely. Only a relative reconstruc-
tion of the scene can be obtained. Its absolute position in the world cannot be determined.
Depending on additional knowledge about the scene or the camera, different stages of re-
construction can be obtained. With no further knowledge a perspective reconstruction is
possible. This reconstruction can be updated up to a true reconstruction incorporation in-
formations about the scene of the cameras. In [25], chapter 1, Hartley and Zisserman give an
overview of the different reconstructions. In chapter 10 they explain how reconstructions
can be upgraded using further informations about the camera and the scene.

12
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Projective Reconstruction

Without any knowledge about the scene or the internal camera parameters, the scene can
be reconstructed up to a perspective ambiguity. Imagine, the camera P is reconstructed
from point correspondences. Let X be a point in space. Then the point x, the projection
of point X in the image plane of camera P is given by the coherence x = PX. Let H be a
4 × 4 transformation matrix that represents a projective transformation. This matrix can
be applied to the points X and cameras P without any influence on the projected points x
according to x = PX = (PH−1)(HX). The matrix H is arbitrary. This ambiguity is called a
projective ambiguity.

Euclidean Reconstruction

If the camera calibration is known, an euclidean reconstruction can be obtained from im-
age correspondences. In an euclidean reconstruction the shape of the scene is determined
exactly up to a common scale factor. This was desired in the present application. Since
the camera calibration is known as described in section 1.3.4, the reconstruction from im-
age correspondences is computed up to an overall scale factor. This reconstruction is also
known as similarity reconstruction.

True Reconstruction

In a true reconstruction, the original scene is recovered without the ambiguities mentioned
before. It can be seen as an upgrade of the euclidean reconstruction. If additionally to
the camera calibration a reference length in the scene is known, the scale factor can be
determined and the scene can be upgraded to a true reconstruction.

1.4 Bundle Adjustment

Bundle Adjustment is a technique that can be used to refine reconstructions of three-dimensional
scenes obtained from images. The 3D structure as well as the parameters of the cameras
are estimated. The name bundle is related to the bundle of light rays going from a three-
dimensional object through the camera centres. These rays are adjusted adapting the object
as well as the camera centre. In [63] an introduction on various techniques and algorithms
on the field of bundle adjustment is given. In [25] optimisation algorithms for computer
vision applications are provided.
In the late 18th century and at the beginning of the 19th century Gauss and Legendre in-
dependently developed the theory of minimising the least squares. These methods where
then used for estimation problems in astronomy and geodesy by Gauss (refer to [63], ap-
pendix A, for the history of bundle adjustment). Basically this was the basis for modern
bundle adjustment techniques. The goal is to minimising a cost function that describes
the error of the system. Such a cost function can be the sum of squares of the reprojection
errors in the images, that is defined in chapter 3.4. Assuming that the error is normally
distributed, the sum of squares is the Maximum Likelihood solution. Bundle Adjustment
is often used as a final step in pose estimation processes in computer vision. Bundle adjust-
ment is a very flexible technique. It can not only be used for quadric cost functions. Since
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in the problem described in this thesis the quadric model was used, the other models will
not be dealt with. In [63] bundle adjustment is described in a more general way. Because of
the flexibility of bundle adjustment a lot of minimisation problems can be formulated. To
obtain good results, a good initialisation is required. Since the concept is not restricted in
the number of parameters to be optimised, it can become a extremely large minimisation
problem.
Bundle adjustment is an iterative minimisation problem. Depending on the purpose vari-
ous algorithms such the Levenberg-Marquardt algorithm or the Gauss newton iteration can
be used for the minimisation. In chapter 2 the cameras and the scene consisting of points
and lines are estimated. These results are used as initialisation for the bundle adjustment
procedure, described in chapter 3. There the algorithm is explained in detail and the math-
ematical steps for parametrising the points, lines and cameras are pointed out.

14



2 Pose Estimation and Reconstruction

Suppose, an image stream of a scene, recorded by a camera, is provided. If the intrinsic
parameters of the camera are known and correspondences across the camera views can be
obtained, an euclidean reconstruction of the scene, consisting of the point and line features
as well as the camera poses can be computed. If only point correspondences across the
images are provided, a reconstruction can be obtained from two images. If point and line
correspondences across the images are given, at least three images are required to obtain
a reconstruction of the scene. This is the case in the present problem as already stated in
chapter 1. From an image stream a reconstruction of the scene, consisting of points, lines
as well as cameras is required. This chapter explains a method to compute the trifocal
tensor from line and point correspondences across three views. From this tensor the scene
consisting of points and lines as well as the three cameras can be reconstructed up to a scale
factor. In a next step, the single reconstructions will be concatenated to obtain a large scene
that consists of all the points, lines and a large number of cameras.

2.1 Pose Estimation

2.1.1 The Trifocal Tensor

To estimate the Camera Poses and the structure of the scene, the trifocal tensor T is used.
T is a 3 × 3 × 3 Matrix and encapsulates the geometric relations between three cameras in
the same way as the fundamental matrix does for 2 views.
Hartley and Zisserman in [25], chapter 15 and Hartley in [26] provide a good introduction
in the basics of the trifocal tensor. Furthermore several methods for the computation of the
tensor and for recovering the scene structure are described. Here only the tasks which are
relevant for the present problem are considered.
The trifocal tensor can be obtained from a set of point and line correspondences across three
images. From the trifocal tensor, the three camera matrices and the fundamental matrices
of every two camera pairs can be recovered. Without any knowledge of the scene and
the internal camera calibration, the camera matrices can be recovered up to a perspective
ambiguity. With further knowledge about the intrinsic camera parameters an euclidean
reconstruction can be obtained. This is the case in the present situation. It can be assumed
that the camera is well calibrated and the intrinsic camera parameters are known.
Let the first camera be chosen as P = [I | 0]. Then a consistent triplet of cameras with the
second camera P′ and the third camera P′′ can be obtained.
Since T is a 3× 3× 3 Matrix, it has 27 entries. The trifocal tensor consists of 26 independent
ratios except for the common scale factor of the matrix.
Even though the tensor has 27 entries with 26 independent ratios and an overall scaling of
the matrix, there are only 18 independent degrees of freedom. Each of the three camera
matrices has 11 degrees of freedom. From this 33 degrees of freedom the 15 degrees of
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freedom for the projective world frame must be subtracted. Therefore the tensor has 33 −
15 = 18 degrees of freedom. Thus, there are 26− 18 = 8 independent algebraic constraints.
The trifocal tensor T is said to be geometrically valid or satisfies all internal constraints if
there exist three camera matrices

P = [I | 0] , P′ =
�
M′ | p′4

�
and P′′ =

�
M′′ | p′′4

�
(2.1)

such that T corresponds to the three camera matrices according to

Ti = m′ip
′′>
4 − p′4m′′>i . (2.2)

m′i and m′′i respectively is the ith column of M′ and M′′. The set of three matrices {T1,T2,T3}
forms the trifocal tensor T .

Point and Line Correspondences Across Images

Point and line correspondences provide the set of equations that forms the linear system of
equations of the form At = 0. The vector t is composed of the 27 entries of trifocal tensor
T . Equations of point correspondences may be combined with equations of lines as well
as with equations of a mixture of point and line correspondences. In table 2.1 the available
equations are summarised. The relations are illustrated in figure 2.1.

Correspondence Relation Number of
Equations

point-point-point (x↔ x′ ↔ x′′) [x′]×

�P
i

x(i)Ti

�
[x′′]× = 03×3 4

point-point-line (x↔ x′ ↔ l′′) [x′]×

�P
i

x(i)Ti

�
l′′ = 03×1 2

point-line-line (x↔ l′ ↔ l′′) l
′>
�P

i

x(i)Ti

�
l′′ = 0 1

line-line-line (l↔ l′ ↔ l′′) l
′> [T1 T2 T3] l

′′
= l> 2

Table 2.1: Trifocal tensor relations between point and line correspondences. Pure correspon-
dences of points or lines are possible as well as any mixture of point and line correspon-
dences. In the last column the number of linear independent equations are denoted. The
table is borrowed from [25], chapter 16.1, page 391 with slightly variations.

To define the trifocal tensor up to scale, at least 26 independent equations are required. If
more than 26 equations are present, a solution is obtained by a linear least-squares minimi-
sation. One minimises ‖At‖ subject to the constraint ‖t‖ = 1.

In the present problem, pure point correspondences x↔ x′ ↔ x′′ as well as pure line corre-
spondences l ↔ l′ ↔ l′′ in the images are considered. Since a point-point-point correspon-
dence provides 4 independent equations, at least 7 point correspondences are required. On
the other hand, a line-line-line correspondence provides two independent equations. Thus,
at least 13 line correspondences are necessary. Any mixture of point correspondence and
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Figure 2.1: Point and line correspondences across three views. The space point X lies on the
space line L. The cameras are represented by C,C′,C′′ that indicates the camera centrers
of the three views. (a) point-point-point correspondence (x↔ x′ ↔ x′′). (b) point-point-
line correspondence (x ↔ x′ ↔ l′′). (c) point-line-line correspondence (x ↔ l′ ↔ l′′).
(d) line-line-line correspondence (l↔ l′ ↔ l′′).

line correspondence is possible. The only constraint is that at least 26 independent equa-
tions are provided.

Retrieve Epipoles from the Trifocal Tensor

The projection of the camera center of the first image into the second and third image are
the epipoles e′ = P′C and e′′ = P′′C, as illustrated in figure 2.2.
Suppose plane π′, that is the back projection from line l′ is an epipolar plane regarding to
the first and the second camera. Thus, it passes trough the camera centrer C and C′. Let X
be a point in 3D space lying on plane π′. Then the ray trough point X and camera centre C
lies in the plane π′. Therefore the line l′ in the second image is the epipolar line of the point
x′, the projection of the world point X in the second image.
The plane π′′ is the back projection from line l′. This plane intersects the plane π′ in the 3D
line L. The ray through x and C lies in the plane π′ and must intersect the line L. Thus, the
ray trough x and the planes π′ and π′′ intersect in the same point. This gives a point-line-
line correspondence x↔ l′ ↔ l′′. This satisfies the equation l

′>(
P
i x(i)Ti)l′′ = 0. Since this

is true for every line l′′ and l′ respectively, the following relation holds:

l
′>
 X

i

x(i)Ti

!
= 0> and

 X
i

x(i)Ti

!
l′′ = 0 (2.3)
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Figure 2.2: Epipoles and the trifocal tensor: Scene consisting of three cameras with camera cen-
tres C, C′ and C′′. It describes the epipolar relations across three views.

Thus, l
′> is the left null space of

P
i

x(i)Ti and l′′ is the right null space of
P
i

x(i)Ti.

If the point x changes, the epipolar lines l′,l′′ changes similarly. The epipoles e,e′ however
remains unchanged because the epipolar lines in one image intersect in the same point, the
epipole.
Consider now the three different choices (1, 0, 0)>, (0, 1, 0)> and (0, 0, 1)> of the homoge-
neous point x. The equation

P
i x(i)Ti is equal to T1,T2 and T3 for the three different choices

of x. Since the epipole e′ is the common intersection of all epipolar lines l′i, it can be repre-
sented as the common intersection of the left null-vectors of the matrices T1,T2 and T3.
In the same way, the epipole e′′ is the common intersection of the right null-spaces of the
matrices T1,T2 and T3. Thus, the epipoles can be computed as the null vectors of the 3 × 3
matrices composed of the epipolar lines corresponding to the three choices of x.

e′>
�
l′1, l
′
2, l
′
3

�
= 0 and e′′>

�
l′′1, l

′′
2, l
′′
3

�
= 0 (2.4)

Retrieve Fundamental Matrices from the Trifocal Tensor

From the trifocal tensor the fundamental matrices between the first and the other views can
be obtained easily. In [25] the following equations are provided:

F21 = [e′]× [T1,T2,T3] e′′ (2.5)

F31 = [e′′]×
�
T>1 ,T

>
2 ,T

>
3

�
e′ (2.6)

The epipoles can be obtained according to equation 2.4. [e′]× and [e′′]× respectively are the
skew symmetric matrices corresponding to e′ and e′′.
The fundamental Matrix F21 satisfies the relation x>F21x′ for the point correspondence x↔
x′. The similar coherence is valid for F31.
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Retrieve Camera Matrices from the Trifocal Tensor

Up to a perspective ambiguity, a consistent triplet of camera matrices P,P′,P′′ can be ob-
tained directly by the trifocal tensor. The first camera is defined as P = [I | 0]. Then the
second camera can be computed according to

P′ =
�
[T1,T2,T3] e′′ | e′

�
. (2.7)

The camera pair {P,P′} now is consistent with the fundamental matrix F21. Choosing the
third camera in the same way building a camera pair {P,P′′} consistent with the fundamen-
tal matrix F31, gives an inconsistent camera triplet {P,P′,P′′}, because the two camera pairs
do no necessarily define the same projective world frame. A third camera, that is consistent
to the camera pair {P,P′} can be obtained according to

P′′ =
�
(e′′e′′> − I)

�
T>1 ,T

>
2 ,T

>
3

�
e′ | e′′

�
. (2.8)

2.1.2 Computation of the Trifocal Tensor from Three Images

There are several methods for computing the trifocal tensor. The following algorithms are
described and evaluated by Hartley and Zisserman in [25], chapter 16.
Minimising the geometric distance with the maximum Likelihood solution is the Gold Stan-
dard procedure and provides the best results. Another iterative method where the geometric
distance is minimised is the Sampson geometric approximation, which is a good approxima-
tion to the gold standard method. Since both methods are iterative, they can poorly be
applied in a real time procedure. The normalised linear algorithm is a linear algorithm that
computes the trifocal tensor directly from a set of linear equations. This algorithm does
not enforce the internal constraints of the trifocal tensor. Nevertheless it can be used to ini-
tialise the other algorithms that enforce the internal constraints. The algebraic minimisation
algorithm will be initialised with the normalised algorithm. Then it corrects the trifocal tensor
such that it corresponds to a geometric configuration. A geometrically valid tensor can be
found non-iteratively, this tensor can be optimised iteratively with a Levenberg-Marquardt
algorithm. This algorithm, that is used here to determine the trifocal tensor T is described
next.

The algebraic minimisation algorithm

The algebraic minimisation algorithm consists of two phases. In a first step a tensor is
computed with a linear algorithm. This tensor does not necessarily satisfies the internal
constraints. In a second step, based on the former result, a geometrically valid tensor is
computed. This tensor then will be optimised iteratively.
From the equations in table 2.1 one can form the linear system of equations At = 0. Each
correspondence provides a number of equations, but only a subset of them are linearly
independent. For instance the point-point-point correspondence has a 3 × 3 null space,
thus, 9 equations are provided. From those equations only four are linearly independent.
Thus, only the four linearly independent equations must be considered. The line-line-line
correspondence has a 3 × 1 null space. From these three equations only two are linearly
independent.
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Point Correspondences: From the equation for point-point-point correspondences of ta-
ble 2.1 one can obtain four linearly independent equations. These equations are of the form

x(k)
�
x′(i)x′′(l)Tk(3, 3)− x′′(l)Tk(i, 3)− x′(i)Tk(3, l) + Tk(i, l)

�
= 0 (2.9)

for i, l = 1, 2 and k = 1 − 3 for each combination of i and l. Each of the four equations,
evaluated for k = 1− 3 leads to one equation of the linear system of equations At = 0.
x(k) is the kth element of the homogeneous 3 vector x that is a point coordinate in the
image. The image frame is specified by the number of primes. Tk(i, l) is the element in row
i, column l of matrix Tk. The point-point-point correspondence is visualised in figure 2.3.

Figure 2.3: Point correspondence across three views

Line Correspondences: A line l = (a, b, c)> in the euclidean 2-space is represented as a
vector with 3 elements. This vector represents the line ax+ by + c = 0.
Suppose, l1 = (0.01, 0, 1) and l2 = (0, 0.01, 1). These two vectors are algebraically very
similar, since ‖l1 − l2‖ is small. Geometrically these two vectors represent two completely
different lines, particularly l1 represents the vertical line x = 1, the line l2 represents the
horizontal line y = 1. Thus, an appropriate scaling for line vector is necessary. If the lines
are normalised such that ‖(a, b)>‖ = 1 then the lines l1, l2 become l1 = (1, 0, 100) and
l2 = (0, 1, 100). Those two line vectors, that geometrically represent the same lines as be-
fore the scaling, now algebraically are very different. Thus, when dealing with lines it is
recommended to be careful in the representation.
If a line-line-line correspondence l ↔ l′ ↔ l′′ is given, one can substitute the line l by two
points x1, x2 lying on the line l. This is shown in figure 2.4. Thus, the correspondences
x1 ↔ l′ ↔ l′′ and x2 ↔ l′ ↔ l′′ arise.

Table 2.1 provides an equation for such a point-line-line correspondence. From each for
those two point-line-line correspondences one linearly independent equation can be ob-
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Figure 2.4: Line correspondence across three views: The line in the first image is substituted by
the two points along the line, that intersect the image border.

tained. The obtained equation has the form

l′> (x1(1)T1 + x1(2)T2 + x1(3)T3) l′′ = 0

l′> (x2(1)T1 + x2(2)T2 + x2(3)T3) l′′ = 0 (2.10)

where xi(j) is the jth element of the homogeneous 3 vector xi.
Since the lines are considered as infinite lines without endpoints, one must make an appro-
priate choice of the points x1, x2 on the line l in the first image. For the present application,
the intersection points of line l with the image borders where selected.
In this manner, the use of lines in the first image can be avoided. In the second and third
image, the lines must still be used, because no corresponding points along the lines through
the images are known.

Data normalisation: Before solving the linear system of equations At = 0 to obtain the
trifocal tensor T , the input data of points and lines must be normalised. Thus, a transfor-
mation is applied to the points and lines. The transformation, that is applied to each image,
consists of a translation and a scaling of the data. The translation transforms the image
such that the centroid of the points lies at the origin. The scaling transforms the entities in
the image such that the average distance of the points to the centroid is

√
2. For the nor-

malisation, lines are represented by two points. Here the intersection points with the image
borders are considered.
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Therefore three 3× 3 transformation matrices H,H′,H′′ of the form

H =

264s 0 txs
0 s tys
0 0 1

375 (2.11)

are obtained, one for each image. s stands for the scaling factor, tx,ty represent the transla-
tions in x and y direction. These matrices are applied to the points and lines according to
x̂ = Hx and l̂ = H−>l for each image. x̂ and l̂ stands for the normalised points and lines
respectively.
In a final step, after the normalised trifocal tensor T̂ has been computed, the trifocal tensor
T can be obtained by denormalisation according to

Ti = H′−1
�X
j=1

H>(i, j)T̂j

�
H′′−>. (2.12)

Ti is the ith submatrix of the tensor T , T̂j is the jth submatrix of the tensor T̂ .

Solving for the tensor: From equation 2.9 for point correspondences and equation 2.10
for lines correspondences one can obtain a set of equations of the form At = 0. Since it
is recommended to consider a great number of correspondences, the system ordinarily is
overdetermined. The simple solution t = 0 does not suffice. A non-zero solution of t for
the set of equations is required. In general there is no exact solution. Thus, a least squares
solution of t is wanted that minimises ‖At‖ subject to the constraint ‖t‖ = 1. A solution can
be found by the Singular Value Decomposition (SVD). The matrix A can be decomposed
into A = UDV>. Then t is the last column of V. This method is described in the appendix
A5.3 of [25], page 593.
Up to here a not necessarily geometrical valid tensor is computed. In the next steps a tensor
will be found that satisfies the internal constraints.

Retrieving the epipoles: As illustrated in figure 2.2, e′ and e′′ are the epipoles in the sec-
ond and third image of the first camera centre. The epipoles e′ and e′′ respectively are the
common perpendicular of the left and right null space of the matrices T1,T2 and T3, as in-
dicated in equation 2.4.
With noisy data, no exact solution can be obtained. Thus, the epipoles can be computed
from the trifocal tensor using the SVD. Algorithm 2.1 explains the procedure to determine
the epipoles e′′ and e′ .

Algebraic minimisation: After having computed the epipoles e′,e′′, the remaining ele-
ments of the camera matrices P′ and P′′ must be determined. From the camera matrices the
geometrically valid tensor can be computed according to equation 2.2. From the equations
2.7 and 2.8 it can be seen that e′ = p′4 and e′′ = p′′4 . With the known epipoles computed in
the previous steps, the trifocal tensor can be expressed with respect to the remaining entries
of the camera matrices P′ and P′′, denoted by M′ and M′′ according to the equations 2.1 and
2.2. This coherence can be reformulated as the linear system of equations t = Ea where
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Algorithm summary:
The algorithm describes the computation of the epipole e′′ from from the trifocal tensor T , com-
posed of the matrices T1, T2, T3. In the same way the epipole e′ can be obtained using T>i instead
of Ti. Thus, in the first step the epipolar lines l′i are computed. In the second step the epipole e′ is
obtained.

Algorithm:

1. Minimise the equation
Til

′′
i

 for i = 1, 2, 3. Let Ti = UDV> be the SVD of Ti. Then l′′i is the
last column of the matrix V.

2. Determine e′′ by minimising the equation ‖We′′‖ where W = [l′′1 , l
′′
2 , l
′′
3 ]. Let W = UDV> be

the SVD of W. The epipole e′′ is then the last column of V.

Algorithm 2.1: Computation of the epipoles: Algorithm to compute the epipoles from the
trifocal tensor. This algorithm is a repeated utilisation of algorithm A5.4, described in [25], appendix
A5.3.

t is the vector of elements of the trifocal tensor, a is a vector that contains the remaining
elements of the matrices M′ and M′′. The matrix E contains the entries of e′ and e′′.
The set of equations that is said to be minimised is the algebraic error ‖At‖, subject to the
constraint ‖t‖ = 1. Since t = Ea the problem can be reformulated as ‖At‖ = ‖AEa‖with the
constraint ‖Ea‖ = 1. This minimisation problem can be solved according to algorithm 2.2.
Thus, a geometrically valid tensor is obtained.

Iterative optimisation For computing the geometrically valid tensor, the epipoles e′ and
e′′ where used. Those epipoles where determined from the estimation of the tensor, that
does not satisfy the internal constraints. Thus, the epipoles may be inaccurate. Since the
geometrically valid tensor T is computed based on inaccurate epipoles, T does not de-
scribe exactly the relations of the camera triplet {P,P′,P′′}. Finding the optimal epipoles, T
can be improved. For the optimisation one can use the Levenberg-Marquardt algorithm to
optimise the estimated trifocal tensor T . The procedure is outlined in algorithm 2.3.
The mapping (e′, e′′) 7→ AEa is a mapping R6 7→ R27. In the iteration procedure 6 parame-
ters, that are the homogeneous coordinates of the epipoles, are involved. This is a relatively
small number compared to the gold standard algorithm, where the camera parameters of
all three cameras as well as the coordinates of all the points and lines must be estimated.

The steps for computing the trifocal tensor are summarised in algorithm 2.4.

2.1.3 Extracting Camera Matrices from the Trifocal Tensor

From the trifocal tensor T , the three camera matrices P,P′ and P′′ can be obtained. Without
any knowledge about the camera calibration or the scene, the camera matrices can be recov-
ered only up to a projective ambiguity. In the present case, the intrinsic camera parameters
of the cameras are known. Thus, an euclidean reconstruction of the three cameras can be
obtained. A true reconstruction can be obtained only with any knowledge about the scene
or the motion of the camera. This however is not relevant for the present application.
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Algorithm summary:
The algorithm finds the vector t that minimises ‖At‖ subject to the constraint ‖t‖ = 1. t = Ea, where
E has rank r. t is a vector that contains the 27 elements of the trifocal tensor T , the matrix A is
obtained from the equations in table 2.2 that form the linear system of equations At = 0, the matrix
E is composed of the epipoles e′ and e′′ and the vector a contains the remaining elements of the
camera matrices P′ and P′′ according to equation 2.1.

Algorithm:

1. Compute the SVD of E = UDV>, where the non-zero values of D appear first down the
diagonal.

2. Let U′ be the matrix comprising the first r columns of U.

3. Find the unit vector t′ that minimises
AU′t′

. Let AU′ = XYZ> be the SVD of AU′, then t′ is
the last column of Z.

4. The required solution is t = U′t′. Thus, the trifocal tensor T can be composed of the elements
of vector t.

5. For the iterative refinement of the trifocal tensor the vector a is required. It can be computed a
as V′D′−1t′, where V′ consists of the first r columns of V and D′ is the upper r× r block of D.

Algorithm 2.2: Computation of the trifocal tensor: Algorithm to compute the trifocal tensor
from three images. This algorithm is borrowed from [25], appendix 5.4.1, algorithm A5.6.

Determining Essential Matrices: From the trifocal tensor, the fundamental matrices F21

and F31 can be recovered according to equation 2.5 and 2.6. From those fundamental ma-
trices, the essential matrices can be obtained. Suppose, K = K1 = K2 = K3 is the camera
calibration matrix equal for all three camera matrices, that contains the intrinsic camera
parameter. Then the essential matrices can be computed according to

E21 = K>F21K (2.13)

E31 = K>F31K. (2.14)

H.C. Longuet-Higgins [36] was the first who presented the essential matrix in the context
of computer vision. Hatley and Zissermann in [25] and J.Philip in [45] provide a good in-
troduction in the essential matrix. Huang and Faugeras in [29] give a deeper look in the
role of the fundamental matrix in determining 3D structure from two views. The following
explanations and equations are mostly obtained form [25], chapter 9.6, page 257 ff.
The essential matrix is a special case of the fundamental matrix for the case of known cam-
era calibration. Compared to the fundamental matrix it has some additional properties.
Suppose, x = PX is the projection of a point X from the three-dimensional space to the
image space of the camera P. Let P = K[R | t] be the decomposed camera matrix. If the
calibration matrix K is known, it can be removed from the camera matrix to obtain the nor-
malised camera matrix according to K−1P = [R | t]. Thus, x̂ = [R | t]X is the image point
expressed in normalised coordinates.
Assume now two normalised camera frames P = [I | 0] and P′ = [R | t] are given. Then the
essential matrix for the two camera frames is

E = [t]×R. (2.15)
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Algorithm summary:
Iterative optimisation of the trifocal tensor finding the optimal epipoles e′ and e′′ with the
Levenberg-Marquardt algorithm.

Algorithm:

1. Compute the error vector ε0 = At = AEa.

2. Compute the Jacobian J = A ∂t
∂(e′,e′′) = A ∂E

∂(e′,e′′)a.

3. Compute the 6 × 1 delta vector δ = −(J>J + λI)−1J>ε that contains the correction factors
for the epipoles. λ is initialised at the beginning with 10−3 times the average of the diagonal
elements of J>J.

4. Compute the corrected epipoles: (e′1, e′′1)> = (e′0, e′′0)> + δ.

5. Construct the new matrix E from the epipoles.

6. Compute the new error vector ε1 = AEa.

7. If the new error vector is greater than the old one, increase λ by the factor 10 and go to the
step 3. Else decrease λ by the factor 10, update the error vector and the epipoles and go to the
step 2. Repeat until the algorithm converges.

Algorithm 2.3: Iterative optimisation of the trifocal tensor Levenberg-Marquardt implemen-
tation to improve the trifocal tensor. The Levenberg-Marquardt algorithm is borrowed from [25],
appendix A6.2, page 600.

The essential matrix has 5 degrees of freedom. The roation R as well as the translation t
has 3 degrees of freedom, but since the essential matrix is a homogeneous quantity, there
is an overall scale ambiguity. In contrast the fundamental matrix has 7 degrees of freedom.
Because of the reduced number of degrees of freedom of the essential matrix, additional
internal constraints has to be satisfied related to the fundamental matrix. The fundamental
matrix is a homogenous matrix that satisfies the singularity constraint. Thus, its determi-
nant has to be equal to zero. A way of ensuring this is to use the SVD and setting the
smallest singualr value equal to zero. The essential matrix however satisfies the constraint
that two singular values are equal and the third is zero. Suppose E = UDV> is the singular
value decomposition of the essential matrix. The diagonal matrix D contains the singular
values of E. Thus, the constraint can be satisfied according to

E = U

26664
d1 + d2

2
0 0

0
d1 + d2

2
0

0 0 0

37775V (2.16)

where d1 and d2 are the first and second element of the diagonal matrix D that contains the
singular values of the essential matrix. In this way, the essential matrices E1 and E2 may be
obtained.

Recovering a Camera Pair from the Essential Matrix: Once the essential matrices E21

and E31 that satisfy the internal constraints are computed, two pairs of normalised camera
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Algorithm summary:
Computation of a geometrically valid Trifocal tensor T from point and line correspondences across
three images.

Algorithm:

1. normalise the image entities finding the matrices H,H′ and H′′ and applying them to all the
points and lines in the three images according to x̂ = Hx and l̂ = H−>l. Transform points and
lines in the second and third image in the same way.

2. Form the set of equations At = 0 from point and line correspondences.

3. Solve the linear system of equations for the tensor T̂ by minimising ‖At‖ subject to the con-
straint ‖t = 1‖. This tensor is not necessarily geometrically valid.

4. Find the epipoles e′ and e′′ as the common intersection of the left respectively right null-space
of the matrices T1,T2,T3.

5. construct the matrix E such that t = Ea. t is the vector containing the elements of T , a is
the vector containing the remaining elements of the camera matrices P′ and P′′ according to
equation 2.1. E, that is composed of the epipoles e′ and e′′ respectively expresses the linear
relationship of equation 2.2.

6. Minimise the expression ‖AEa‖ subject to the constraint ‖Ea‖ = 1 using algorithm 2.2.

7. Perform the iterative optimisation of the trifocal tensor T according to algorithm 2.3.

8. Since the data where normalised at the beginning, the tensor must be denormalised
such that it corresponds to the original data. Thus, T is computed according to Ti =

H′−1
�P

j=1 H>(i, j)T̂j

�
H′′−> for i = 1, 2, 3. The set of the three matrices {Ti} forms the

tensor T .

Algorithm 2.4: algebraic minimisation algorithm The Algorithm finds a geometrically valid
tensor that minimises the algebraic error. The last iteration step can be dropped to provide a non
iterative algorithm that finds a geometrically valid tensor T . The algorithm is composed of two
algorithms borrowed from [25], namely algorithm 16.1, page 394 and algorithm 16.2, page 396.

matrices {P,P′} and {P,P′′} can be obtained. The following procedure describes the com-
putation of the camera pair {P,P′}. The camera pair {P,P′′} can be obtained in a similar
way.
The first camera is defined as P = [I | 0]. The second camera P′ can be expressed as
P′ = [R | t]. The same holds also for the second camera pair {P,P′′}. The retrieving of
the camera matrices from the essential matrix follows the advices from [25], chapter 9.6.2
and 9.6.3 on pages 258 ff.
The camera matrices can be recovered from the essential matrix up to a scale factor. Four
solution will be found. In a further step the correct solution can be selected.
Suppose, E = [t]×R = SR where S is a skew symmetric matrix and the matrix R is orthonor-
mal. Consider the two matrices

W =

2640 −1 0
1 0 0
0 0 1

375 and Z =

264 0 1 0
−1 0 0
0 0 0

375 . (2.17)

26



2 Pose Estimation and Reconstruction

The matrix W is orthonormal and the matrix Z is skew symmetric. According to the block
decomposition of a skew symmetric matrix in [25], appendix A4.2, page 580, the matrix S
may be written as S = UZU>, where U is orthogonal. Since Z = d · diag(1, 1, 0)W with d as
arbitrary scale factor, S = U diag(1, 1, 0)WU>. Thus, E = SR = U diag(1, 1, 0)

�
WU>R

�
is

a SVD of E with two singular values equal and one equal to zero.
Let E = U diag(1, 1, 0)V> be the SVD of the essential matrix. Ignoring the signs, there are
two possible factorisations for E = SR.

S = UZU> (2.18)

R = UWV> or R = UW>V> (2.19)

From these factorisations, the vector t of camera matrix P′ can be determined from S, be-
cause S = [t]×. Thus, St = 0. Since U is an orthonormal matrix, UU> = I gives the identity
matrix. Thus, t = U(0, 0, 1)> = u3, where u3 is the third column of matrix U. Since the
essential matrix is defined up to an arbitrary scale, the sign of t is unknown. From equation
2.19 also two possibilities for the rotational part R had been determined. This leads to four
possible choices of P′.

P′ = [UWV> | + u3] or

P′ = [UWV> | − u3] or

P′ = [UW>V> | + u3] or

P′ = [UW>V> | − u3] (2.20)

Figure 2.5 illustrates the geometrical meaning of the four possible solutions.
The correct solution is those, in which the points lie in front of both cameras. It is sufficient
to perform the test for one single point correspondence for all four solutions. In one of the
four configurations the point would lie in front of both cameras P and P′, this solution will
be selected. Thus, it is necessary to reconstruct the selected point X from a point correspon-
dence x⇔ x′ for each configuration as stated in chapter 2.2.1. This leas to four points Xi for
i = 1...4, one for each configuration. Now a depth test must be performed for each system
to test whether the point lies in front of or behind the camera.
The depth test is performed according to result 6.1 of [25] on page 162.

d(X,P) =
σ(det(R))w

T ‖r3‖
(2.21)

d(X,P) is the depth of point X in frame P = [R | t], the expression σ(det(R)) is the sign of the
argument det(R), that is +1 for a positive determinant and −1 for a negative one. w is the
3rd element of vector of x that is determined according to x = PX, T is the fourth element of
the homogeneous space point vector X. Finally, r3 is the 3rd row of the matrix R. For right
hand frames, that are present here, the depth test leads to a positive result if the point X
lies in front of the camera and to a negative result if the point lies behind the camera. Thus,
the correct solution for the camera pair can be obtained.
By this means an euclidean reconstruction of the camera pairs {P = [I | 0],P′} and {P =
[I | 0],P′′} can be obtained. Since each reconstruction is obtained up to a scale factor, this is
not a geometrically valid camera triplet {P = [I | 0],P′,P′′}.
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Figure 2.5: The four possible solutions for the camera pair obtained from the essential ma-
trix: In (a) the point X lies in front of both images. In (b) and (d) the camera P′ lies
in the opposite direction relative to the configuration in (a). In (c) and (d) the camera
P′ rotates by 180° around the baseline. Thus, in (b),(c) and (d) the point X lies at least
behind on the cameras.

Projective reconstruction of a Camera Triplet from the Trifocal Tensor: As already
noted in chapter 2.1.1, a consistent triplet of camera matrices {P,P′,P′′} can be obtained
directly from the trifocal tensor T up to a perspective ambiguity. The first camera is de-
fined at P = [I | 0], the second camera P′ and the third camera P′′ can be obtained according
to equation 2.7 and equation 2.8. In a next step, this perspective reconstruction of the cam-
era triplet may be updated to a euclidean one.

Euclidean Reconstruction of Camera Triple: Csurka and Horaud in [14] provide a method
of finding the collineation between two projective reconstructions. A homography matrix
can be found that maps the 3D projective space onto the 3D euclidean space. Let X̂ be a set
of points in the projective space where X̂i is the ith column of X̂ and represents the 4-vector
of a homogeneous point coordinate. X is the same set of points in the euclidean space. Thus,
the 4× 4 homography matrix H maps the points X̂i onto Xi according to Xi = HX̂i

Thus, a set of points reconstructed from the perspective system X̂ obtained from the trifocal
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tensor as well as the same set of points reconstructed from the euclidean system X obtained
by the fundamental matrix is required. The reconstruction is done according to chapter
2.2.1. In the present application the complete set of correspondence points was used.
Since two euclidean systems with camera pairs {P,P’} and {P,P”} are available, one has to
decide which one is considered as euclidean reference system for the upgrade of the per-
spective reconstruction. A reasonable decision would be to choose the system with the
greater baseline between the two camera centres. The influence of the baseline for the qual-
ity of the reconstruction is illustrated in figure 2.6.

Figure 2.6: Influence of the baseline in the reconstruction: In (a) the baseline is long and the
angle between the two rays going through the corresponding points x and x′ in the image
is large. In (b) the baseline is short and the angle between the rays is small. The dark
shaded area indicates the region of insecurity of the point X. The more parallel the rays
are, the bigger is the region of insecurity. With a longer baseline, the angle between the
rays becomes bigger and the reconstruction of the point is more precise.

In a linear algorithm the the euclidean distance d between X̂i and HX̂i will be minimised in
H, as illustrated in figure 2.7

Figure 2.7: Minimising the euclidean distance: di is an approximation of the euclidean distance
between the vectors Xi and HX̂i
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The euclidean distance is defined in 4D space associated with the euclidean space as a
subspace of the projective space. This distance is computed by the theorem of Pythagoras
according to

d2i =
�
HX̂i

�> �
HX̂i

�
−

�
X>i HX̂i

�2�
X>i Xi

� . (2.22)

The scale factor of d is associated with the homogeneous vector HX̂i and is computed as
the distance of the vector HX̂i to its projection onto the vector Xi. Equation 2.22 can be
converted according to

d2i = X̂
>
i H>I4×4HX̂i −

�
1

X>i Xi

�
X̂
>
i H>XiX>i HX̂i

= X̂
>
i H>

�
I4×4 −

XiX>i
X>i Xi

�
HX̂i

= X̂
>
i H>AiHX̂i (2.23)

where the matrix Ai =
�

I4×4 − XiX>
i

X>
i Xi

�
.

The expression HX̂i can be written as linear system of equations according to

HX̂i =

2666664
X̂
>
i 01×4 01×4 01×4

01×4 X̂
>
i 01×4 01×4

01×4 01×4 X̂
>
i 01×4

01×4 01×4 01×4 X̂
>
i

3777775
264 h1...
h16

375 = Eih (2.24)

where h contains the 16 elements hi of the 4 × 4 matrix H. The equation for the euclidean
distance can now be written as

d2i = h>E>i AiEih. (2.25)

Thus, the error function d can be obtained according to

d2 =
X
i

d2i = h>
X
i

(EiAiEi)h = h>Ah (2.26)

where A =
P
i (EiAiEi). This function is minimised performing the singular value decom-

position on A = UDV>. The solution that minimises this function in the elements of H is
the vector corresponding to the smallest singular vale of A. Thus, h is the last column of V.
The received homography matrix is applied to the camera matrices of the triplet {P̂, P̂′, P̂′′}
obtained by the trifocal tensor in the example of the first camera according to

P = P̂H (2.27)

The same is done for the other camera matrices P′ and P′′. In a next step it is necessary to en-
force the constraints of the camera matrices to obtain valid cameras. This is done according
to chapter 1.3.3. Thus, the camera matrix P can be decomposed as P = K̃R[I | − C] where
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R is the orthogonal rotation matrix, C is the camera centrer and K̃ the camera calibration
matrix. The matrix K̃ is substituted by the intrinsic camera matrix K obtained by the cali-
brations of the camera. The camera matrix is computed again according to P = KR[I | −C]
Thus, a valid camera matrix is obtained. The same also holds for camera matrix P′ and P′′.

The steps for retrieving the camera matrices are summarised in algorithm 2.5.

Algorithm summary:
The algorithm computes a projective reconstruction of the camera triplet {P,P′,P′′} and updates
this system to an euclidean reconstruction using the knowledge of the camera calibration.

Algorithm:

1. Compute the fundamental matrices F21 and F31 from the trifocal tensor T according to equa-
tion 2.5 and equation 2.6.

2. Compute the essential matrices E21 and E31 according to equation 2.13 and equation 2.14. The
internal constraints of the essential matrices can be satisfied according to equation 2.16.

3. Recover the camera pair {P,P′} from E21 and the camera pair P,P′′ from E31 retrieving four
possible solutions for the camera pair from the essential matrix. Select the solution where the
points lie in front of the camera pair.

4. Recover a consistent camera triplet {P,P′,P′′} from the trifocal tensor. Define P = [I | 0], the
second and third camera matrix P′ and P′′ can be obtained according to equation 2.7 and 2.8.

5. Upgrade the projective camera triplet to an euclidean system computing the 4×4 homography
matrix that maps the projective points X̂ onto the euclidean points X according to Xi = HX̂i.
Apply this homography to the camera matrices P = P̂H, P′ = P̂

′
H, P′′ = P̂

′′
H. Enforce

the internal constraint of the camera matrix substituting the matrix K̃ of the decomposition
P = K̃R[I | − C] by the intrinsic camera matrix K obtained by the calibration. Recompute the
camera matrix P = KR[I | − C]. This has to be done also for the camera matrices P′ and P′′.

Algorithm 2.5: Retrieving camera matrices from the trifocal tensor

2.2 Structure Computation

From the point correspondences x and the line correspondences l across the images and the
camera matrices P points and lines in 3-space can be reconstructed. The camera matrices of
the camera triplet {P,P′,P′′} are known up to a scaling factor. Thus, the points X and lines
L in the euclidean 3D space can be recovered.

2.2.1 Point Reconstruction

Let x, x′ and x′′ be the homogeneous image points in the first, second and third image. Thus,
the projection of the homogeneous 3D points X satisfies the equations x = PX, x′ = P′X
and x′′ = PX. If the data are perfect without any noise, a reconstruction can be obtained
by simply back projecting the rays from the image points x, x′ and x′′. The point X in 3-
space lies exactly in the intersection point of the rays. This holds for perfect data without
any noise. Since in practice image data are noisy, this triangulation does not work. It is
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assumed that the noise in the image is Gaussian. Hartley and Zisserman in [25], chapter 12,
provide several linear and non linear methods for computing three dimensional points X
from image correspondences. For the present algorithm the linear triangulation method is
applied to reconstruct the points. This linear method can be used to reconstruct points in 3
space from image correspondences from an arbitrary number of images. This is important
because other methods allow the reconstruction from correspondences in an image pair
only. In the present case three images are present.
The equation for the points in the first image can be written as

PX =

264P1X
P2X
P3X

375 (2.28)

where Pi denotes the ith row of the camera matrix. From the cross product x × PX = 0 a
solution for the equation AiX = 0 can be obtained. Let x = (x, y, 1), then

x× PX =

264 y
�
P3X

�
−
�
P2X

�
x
�
P3X

�
−
�
P1X

�
x
�
P2X

�
− y

�
P1X

�
375 = 0 (2.29)

This expression can be reformulated in terms of AiX = 0 according to264 yP3 − P2

xP3 − P1

xP2 − yP1

375X = 0. (2.30)

Only two of this equations are linearly independent, thus only two equations must be con-
sidered. Thus, the matrix linear system of equations can be rewritten as

AiX =

�
yP3 − P2

xP3 − P1

�
X = 0. (2.31)

Doing this for the other two images, the matrix A of the system of equations AX = 0 can be
obtained stacking the single matrices Ai according to

AX =

266666664

yP3 − P2

xP3 − P1

y′P′3 − P′2

x′P′3 − P′1

y′′P′′3 − P′′2

x′′P′′3 − P′′1

377777775X = 0. (2.32)

Thus, the vector X, that minimises this equation, can by obtained performing the singular
value decomposition on A according to A = UDV>. Then the vector X, that minimises the
equation AX = 0 is the last column of the matrix V. The steps for reconstructing a point
from three views are summarised in algorithm 2.6.

32



2 Pose Estimation and Reconstruction

Algorithm summary:
Computes the point X in 3-space from the correspondence x↔ x′ ↔ x′′ over three images provided
the camera matrices P,P′,P′′ are known.

Algorithm:

1. Make the cross product x× PX = 0 for each of the three images.

2. Form the system of equations AiX = 0 from the cross product of each of the images i = 1 . . . 3.

3. Concatenate the matrices Ai for i = 1...3 such that the system of equations AX = 0 arises.

4. Perform the SVD on A = UDV>. The homogeneous vector X is the last column of the matrix
V.

Algorithm 2.6: Point reconstruction: Linear algorithm to compute points in 3-space from image
correspondences across three images.

2.2.2 Line Reconstruction

From a line correspondence across three images and the known camera matrices, the line
in 3 space can be computed. In [25], chapter 12.7, page 312 ff. a linear method is provided.
Suppose two images are given with line correspondences. Then the line in 3 space can be
computed simply by computing the intersection of the planes that goes trough the image
centrer and the image line. This is also possible when noise is present in the images, be-
cause the planes always intersect in a specified line. Compared to a point correspondence
x ↔ x′, where the correlation is overdetermined because of 4 measurements in x and x′ on
three degrees of freedom in the space point X, the line correspondence l ↔ l′ is exactly de-
termined. The two image lines provides two measurements a time, the line in 3 space has 4
degrees of freedom. With three images however, in the presence of noise, the line in 3 space
cannot be determined uniquely, because from the three image lines in total 6 measurements
are provided for the 4 degrees of freedom of the line in 3 space. Thus a minimisation is
required.
With a linear minimisation algorithm the line L can be recovered. Thus, the 4 vector of the
plane π that goes trough the camera centrer C and the line l must be computed accord-
ing to π = P>l. The same has to be done in the other images to obtain π′ and π′′. From

those planes, the matrix A can be formed according to A =
�
π>,π′>,π′′>

�>
. From A the

singular value decomposition A = UDV> is computed. The first two columns of V, that
correspond to the largest singular values, define the line L as intersection of two planes.
The Plücker matrix can be obtained as described in chapter 1.3.8. In algorithm 2.7 the steps
for reconstructing lines from three images are summarised.

2.3 Connection of Single Reconstructions

Suppose, two reconstructions of the same scene from in total 4 views are provided. The first
reconstruction was made from the views 1, 2, 3, the second reconstruction is provided from
the views 2, 3, 4. Let the reconstructed points from the first system be denoted by X1 and
the reconstructed points from the second system be denoted by X2. The cameras in the first
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Algorithm summary:
Computes the reconstruction of a line L in 3 space from the correspondence l ↔ l′ ↔ l′′ over three
images, provided that the camera matrices P,P′,P′′ are known.

Algorithm:

1. compute the plane π = P>l of the first image. Do the same in the other images to obtain π′

and π′′.

2. Form the matrix A =
�
π>,π′>,π′′>

�>
from the three planes.

3. Perform the SVD on A = UDV>. The line L corresponds to the first two columns of V. Thus
L is defined as the intersection of two planes.

4. compute the Plücker matrix of the line L according to chapter 1.3.8.

Algorithm 2.7: Line reconstruction: Linear algorithm to compute lines in 3-space from image
correspondences.

system are denoted as P1,P′1,P
′′
1 , the cameras of the second system as P2,P′2,P

′′
2 . Since the

first camera Pi of any reconstruction i is defined as Pi = [I | 0] and the other two cameras
P′i and P′′i are computed relative to Pi, no information about the position and orientation
relative to a common world frame is provided. Thus, the frame of the first reconstruction is
defined as the world frame, with the camera P1 positioned in the origin. The other recon-
structions will be aligned relative to this frame.
The concatenation of two reconstructions is illustrated in figure 2.8 and is explained next.

In a first step the scaling factor between the two reconstructions will be computed. Since
the reconstructions are euclidean and defined up to an arbitrary scale factor, a similarity
transformation must be applied. Determine the centroid S1 of all points X1. Then compute
the average distance d1 of the camera centrers C′1 and C′′1 relative to S1. Do the same for the
second reconstructions and obtain S2 and d2. The scaling factor s is computed according to
s = d1/d2. In the next step the rotation of the second system relative to the base system will
be computed. For this process the rotation matrices R′′1 and R′2 of the cameras P′′1 and P′2
are required. They can be obtained from the decomposition P = KR [I | − C] according to
chapter 1.3.3. The relative orientation of the second reconstruction system to the first system
is computed according to R = R′′>1 R′2. Thus, the transformation matrix Ĥ is computed.

Ĥ =
�
I | C′2

�
SR

�
I | − C′2

�
(2.33)

S is the homogeneous scaling matrix composed of S = sI where I is the identity matrix. C′2
is the camera centrer of the camera P′2, obtained form the decomposition in chapter 1.3.3.
The Homography Ĥ performs a translation from the camera centrer C′2 to the origin of base
frame, applies the rotation and the scaling and retranslates to the starting point C′2.
This homography is applied to the centroid S2 of the points of the second system according
to Ŝ2 = ĤS2. Thus, the translation can be obtained from the distance between S1 and Ŝ2

according to t̂ = S1 − Ŝ2. From the inhomogeneous translation vector t̂ the homogeneous
translation matrix T is constructed according to
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2 Pose Estimation and Reconstruction

Figure 2.8: Connection of single reconstructions (a) shows two euclidean reconstructions of the
same scene, each consisting of three cameras. The first two cameras P2,P′2 of the sec-
ond reconstruction correspond to the last two cameras P′1,P

′′
1 of the first reconstruction.

Thus, the two reconstructions will be concatenated to a system consisting of four cam-
eras as illustrated in the left image of (b). In (b) a third euclidean reconstruction will be
attached to the existing system. This is done in the same way as in (a).

T =

�
I t̂
0 1

�
. (2.34)

The transformation matrix H that is used to concatenate the single reconstructions is ob-
tained from H = TĤ. Applying this matrix to cameras, points and lines of the second
reconstruction translates the system into the base frame of the first reconstruction and con-
catenates the two systems. Selecting all three cameras from the first system and the last
camera from the second system an augmented system consisting of 4 cameras is obtained.
The best reconstruction of points and lines determining the reprojection error over all four
cameras is selected.
Suppose now many reconstruction systems are provided, each consisting of three frames
Pi,P′i,P

′′
i where the cameras P′i,P

′′
i of the system i overlap with the cameras Pi+1,P′i+1 of the

35
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system i + 1. Then the base frame of the first system is considered as global world frame.
The system i + 1 is concatenated to the system i as described previously. Doing this for
i = 1...n with n systems, a coherent system consisting of n+ 2 cameras is obtained.

The process of connecting the single reconstructions is summarised in algorithm 2.8.

Algorithm summary:
Given two similarity reconstructions of a scene, they may be concatenated to receive a connected
scene that contains the elements of both the first and the second scene. Each reconstruction must
consist of a triplet of cameras P1,P′1,P

′′
1 and P2,P′2,P

′′
2 respectively. The points and lines of the scene

must be present in both reconstructions as X1,L1 in the first system and X2,L2 in the second system
respectively. The first two cameras P2,P′2 of the second reconstruction system must overlap with the
last two cameras P′1,P

′′
1 of the first reconstruction system.

Algorithm:

1. Determine the scale factor s between the two reconstructions. It is computed as the ratio
s = d1/d2 where d1 is the average distance of the centroid S1 of the points X1 to the camera
centrer C′1 and C′′1 respectively. The distance d2 is the average distance of the centroid S2 of
the points X2 to the camera centrer C2 and C′2 respectively.

2. Determine the rotation of the second reconstruction relative to the first one. This is done
according to R = R′′>1 R′2. The rotation matrix R′′1 is received from the decomposition P′′1 =
KR′′1

�
I | − C′′1

�
, R′2 from the decomposition P′2 = KR′2

�
I | − C′2

�
.

3. Compute the transformation matrix Ĥ =
�
I | C′2

�
SR
�
I | − C′2

�
. S is the similarity Matrix

obtained from s.

4. Determine the translation t from the distance between S1 and Ŝ2. Ŝ2 is the centroid of the
points X2, transformed by the homography Ĥ according to Ŝ2 = HS2. From the translation
vector t, form the homogeneous translation matrix T.

5. Compute the homography H = TĤ.

6. Apply this homography matrix to points X2, lines L2 and cameras P2,P′2,P
′′
2 of the second

reconstruction.

Algorithm 2.8: Concatenation of reconstructions

In this chapter the reconstruction of a scene from image correspondences, consisting of
points, lines and cameras, was described. An important criterion in choosing the methods
for computing the structure of the scene was the real time capability. For the minimisation
problems, that are solved here with linear least square methods, also iterative non-linear
least square methods are provided. Hartley and Zisserman in [25], where most of the re-
construction algorithms are obtained, compare the linear algorithms with the iterative one.
In all cases the linear algorithms used here where recommended as a good choice, when
optimality is not required, but good results lying close to the optimal solution, compared
with a relatively low computation cost are desired.
In the present problem, optimal results in the reconstruction are not required. The recon-
structed entities are used only as initialisation for the optimisation process, that will be
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described in the next chapter. In this process, the reconstruction will be refined iteratively.
Since this refinement is thought to be executed in a separate process that does not influence
the tracking procedure, no real time behaviour is expected. Thus, the initialisation has to
be computed fast but as accurate as possible, the optimisation process however performs
iteratively and is not real time capable.

In algorithm 2.9 the complete reconstruction process, starting with the computations of the
trifocal tensor up to the concatenation of the single reconstructions will be summarised.

Algorithm summary:
Given point and line correspondences across multiple images of an image stream, recorded by a
calibrated camera, the algorithm computes a similarity reconstruction of the scene consisting of
points, lines and an arbitrary number of camera poses.

Algorithm:

1. From the first three images of the stream a geometrically valid tensor T can be obtained
according to algorithm 2.4.

2. Determine the camera triplet P,P′,P′′ according to algorithm 2.5.

3. Compute the euclidean reconstruction of the points X from algorithm 2.6.

4. Compute the euclidean reconstruction of the lines L from algorithm 2.7.

5. repeat the steps for the camera triplet P′,P′′,P′′′. Thus, two reconstructions are available
where the first two cameras of the second reconstruction correspond to the second and third
camera of the first reconstruction.

6. according to algorithm 2.8 concatenate the two reconstructions.

7. repeat the last two steps for the complete stream of a subset of views from the stream.

Algorithm 2.9: Reconstruction process of an image stream
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In chapter 2 the reconstruction of points and lines from images was described. Since the
data in the images are noisy, the reconstructions are not perfectly determined, however each
reconstruction has a certain error in the pose of cameras, points and lines. When the single
reconstructions, that consist of the scene composed of points and lines and a camera triplet,
are concatenated, points and lines of one reconstruction will be projected into the images of
the other cameras. This causes in an increased error, because the error of the single recon-
structions accumulate. After a certain number of reconstructions are merged together, A
minimisation of the error of the complete set of points, lines and cameras is executed. This
technique is called Bundle Adjustment. The idea behind the Bundle Adjustment concept
is summarised in chapter 1.4. For this process a suitable representation of cameras, points
and lines is essential. The following chapter provides convenient parametrisations of this
entities and gives an appropriate algorithm to perform the minimisation process using an
implementation of the Levenberg-Marquardt algorithm.

3.1 Parametrisation Camera Parameter

A camera matrix P̂ is composed of

P̂ = KR
�
I | − C̃

�
(3.1)

where K is a upper triangular 3× 3 calibration matrix, R is a 3× 3 rotation Matrix and C̃ is
the inhomogeneous vector of the camera-centre in the world frame.
For the bundle adjustment process normalised camera matrices are used. The concept of
normalised cameras and normalise coordinates is explained in [25], chapter 9.6, page257.
With known calibration matrix, the normalised camera is computed according to

P = K−1P̂ = R
�
I | − C̃

�
. (3.2)

Thus P is a 3 × 4 projective camera-matrix that can be used to map features from the eu-
clidean 3-space R3 to the projective 2-space P2. The matrix P has 12 elements, but only 6
degrees of freedom. The three translational parameters are present in the three elements
of the vector C̃, that represents the camera centre in the world frame. The three rotational
parameters forms the 3× 3 rotation matrix R.
There are several ways to represent a rotation in the three-dimensional space, such as the
rotation-matrix, Euler-angles or the unit Quaternions. A detailed overview about the most
important mathematical concepts to represent rotations in the three-dimensional space is
given by Diebel in [16]. In [55] Slabaugh discusses a technique to find all possible Euler-
angles from a rotation matrix. A suitable representation is required that represents the cam-
era matrices with the minimum number of parameters. From the rotation matrices, that are
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described in chapter 1.3.2, the axis-angle representation can be obtained. This method, that
is described by Hartley and Zisserman in [25], appendix A4.3.2 is used here with some
modifications.

A rotation in 3-space, given as rotation Matrix R, can be represented as an axis of rotation
v and the corresponding angle θ, that is the magnitude of the 3-vector v. This is called the
axis angle representation.

θ = arccos

�
trace(R)− 1

2

�
(3.3)

w =
1

2sin(θ)

264r32 − r23r13 − r31
r21 − r12

375 (3.4)

w is the unity vector in direction of v with ‖w‖ = 1. Thus, the 3-vector v is obtained
according to

v = θw. (3.5)

Additionally, the Rotation matrix R can be obtained from the rotation axis v and the rotation
angle θ according to

R = I + [w]×sin(θ) + [w]2× (1− cos(θ)) . (3.6)

[w]× is the skew-symmetric matrix corresponding to the vector w.

[w]× =

264 0 −w(z) w(y)
w(z) 0 −w(x)
−w(y) w(x) 0

375 (3.7)

Thus, the six degrees of freedom of a camera-pose can be expressed as a 6-vector com-
posed of the translation vector t and the rotation axis v. This Parameter Vector is defined as
sp = (tx, ty, tz, vx, vy, vz)

>.

Imagine now a pose update of a camera. Let P̃ be a normalised 3 × 4 camera pose matrix
of the last time step and E the homogeneous 4 × 4 Pose matrix that represents the update.
Then the pose matrix of the new camera is P = P̃E. Taking the Jacobian of P with respect to
the parameter vector sp leads to

JP =
∂P
∂sp

= P̃
∂E
∂sp

. (3.8)

The update matrix E is composed of the incremental rotation Rm, the incremental transla-
tion tm and the last row for homogenisation.

E =

�
Pm
0 0 0 1

�
=

�
Rm tm
0 0 0 1

�
(3.9)
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Taking the derivative of E with respect to the translation parameters evaluated at the point
tm = (0, 0, 0)> leads to the matrices

∂E
∂tx

����
tx=0

=

26664
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

37775 ; ∂E
∂ty

�����
ty=0

=

26664
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

37775 ; ∂E
∂tz

����
tz=0

=

26664
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

37775 .
(3.10)

Thus, the derivative of the camera pose matrix P with respect to the translational parame-
ters is

∂P
∂tx

����
tx=0

=
�
03×1 03×1 03×1 P̃1

�
(3.11)

∂P
∂ty

�����
ty=0

=
�
03×1 03×1 03×1 P̃2

�
(3.12)

∂P
∂tz

����
tz=0

=
�
03×1 03×1 03×1 P̃3

�
. (3.13)

The derivative of E with respect to the rotation axis v evaluated at θ = 0 results in

∂E
∂vx

����
θ=0

=

26664
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

37775 ; ∂E
∂vy

�����
θ=0

=

26664
0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

37775 ; ∂E
∂vz

����
θ=0

=

26664
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

37775 .
(3.14)

Thus, the derivative of the camera pose matrix P with respect to the rotational parameters
is

∂P
∂vx

����
θ=0

=
�
03×1 P̃3 −P̃2 03×1

�
(3.15)

∂P
∂vy

�����
θ=0

=
�
−P̃3 03×1 P̃1 03×1

�
(3.16)

∂P
∂vz

����
θ=0

=
�
P̃2 −P̃1 03×1 03×1

�
(3.17)

(3.18)

where P̃i is the ith column of the matrix P̃. This results are used later to determine the Jaco-
bian of the reprojection error.

3.2 Parametrisation Point features

Suppose, the scene consists of a set of points X = {X1,X2, ...,Xn} and a set of Cameras
P = {P1,P2, ...,Pm}. The point xij in the image plane of the camera Pj is a homogeneous
vector xij = (xij , yij , 1)

> in the projective 2-space P2 and correspond to the scene point Xi,
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that is a homogeneous vector Xi = (Xi, Yi, Zi, 1)
> in the euclidean 3-space R3.

Projecting the estimated Point Xi back to the image plane using the camera matrix Pj leads
to the reprojected Point x̂ij according to

x̂ij = PjXi. (3.19)

A point Xi in 3-space can be represented by the homogeneous vector Xi = (Xi, Yi, Zi, 1).
Since the homogeneous 4-vector is defined up to scale, it has 3 degrees of freedom. Thus,
the point depends on three euclidean coordinates {Xi, Yi, Zi, }. Let the vector sx be the pa-
rameter vector of the point Xx. Thus, it is composed according to sx = (Xi, Yi, Zi). The 6
parameters of the camera can be obtained from chapter 3.1. Thus, the parameter vector for
the camera parameter sp is composed according to sp = (tx, ty, tz, vx, vy, vz).
The reprojected point xij depends on the parameters in sx as well as on the parameters sp.

Since the homogeneous vector of the reprojected point is x̂ij = PjXi, the inhomogeneous
vector of x̂ij is �

x̂ij
ŷij

�
=

�P1
jXi

P3
jXi

P1
jXi

P3
jXi

�
. (3.20)

Pkj denotes the kth row of the camera matrix Pj .

For the minimisation process, the derivative of the point x̂ij with respect to the parameter
in sx and the parameters in sp are required. This derivatives are the Jacobians, denoted here
as Jx and Jp.
The Jacobian Jx with respect to the point parameters is computed according to

Jx =

∂

�
x̂(s)
ŷ(s)

�
∂sx

=

2664
∂x̂(s)
∂Xi

∂x̂(s)
∂Yi

∂x̂(s)
∂Zi

∂ŷ(s)
∂Xi

∂ŷ(s)
∂Yi

∂ŷ(s)
∂Zi

3775 (3.21)

Deriving the inhomogeneous point vector with respect to the parameter vector sp, the Ja-
cobian Jp is obtained. To compute the Jacobian, the equations 3.11 to 3.17 are required for
the derivative with respect to the translational parameter and the equation 3.15 to 3.15 are
needed for the derivative with respect to the rotational parameter. This equations provide
the derivative of the camera matrix P with respect to the 6 extrinsic parameters. Thus, the
Jacobian

Jp =
∂

�
x̂(s)
ŷ(s)

�
∂sp

=

2664
∂x̂(s)
∂tx

∂x̂(s)
∂ty

∂x̂(s)
∂tz

∂x̂(s)
∂vx

∂x̂(s)
∂vy

∂x̂(s)
∂vz

∂ŷ(s)
∂tx

∂ŷ(s)
∂ty

∂ŷ(s)
∂tz

∂ŷ(s)
∂vx

∂ŷ(s)
∂vy

∂ŷ(s)
∂vz

3775 . (3.22)

is obtained. The derivations can be computed using the results from chapter 3.1.
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3.3 Parametrisation Line features

In contrast to the representation of points in 3D, the representation of lines is more complex.
An suitable description of lines in 3D is required to handle the projection of lines from the
euclidean 3-space R3 to the projective 2-space P2. Furthermore a parametrisation is needed
that represents the lines with the minimal number of parameters for the Bundle Adjustment
process.

3.3.1 Line Representation in 3D

Suppose, only line features are considered. Thus the scene consists of a set of lines L =
{L1,L2, ...,Ln} and a set of Cameras P = {P1,P2, ...,Pm}. In chapter 1.3.8 the Plücker Lines
L where introduced. The matrix L is a 4×4 skew symmetric matrix as described in equation
1.12. It can be computed as the join of two points in 3-space according to equation 1.13. This
representation of a line in 3D has 6 parameters, but only 4 degrees of freedom, as visualised
in figure 1.2.
Another way of representing the Plücker lines are the Plücker Line coordinates. Suppose,
again, A and B are points in 3-space, then the two 3-vectors a, b can be computed according
to

a = A× B b = B−A. (3.23)

The 6-Vector L is composed of the 3-vectors a and b.

L =

�
a
b

�
=

266666664

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1
b1 − a1
b2 − a2
b3 − a3

377777775 (3.24)

The 6 elements of the vector L correspond to the 6 elements of the Plücker matrix L from
equation 1.12 according to

L =

266666664

l23
− l13
l12

− l14
− l24
− l34

377777775 =

266666664

l4
− l2
l1

− l3
− l5
− l6

377777775 . (3.25)

Thus, the Plücker line coordinate representation L can be converted easily into the Plücker
matrix L and vice versa.
To project the Plücker line coordinates L to the image plane, an adapted 3 × 6 projection
matrix P can be formed according to

P =
�
det (M)M−> | [p4]×M

�
(3.26)

where the camera matrix P = [M | p4] and [p4]× is the skew-symmetric matrix of the vector
p4. Thus the projected line l in the image is determined according to

l = PL. (3.27)
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As well as the camera matrix P the projection matrix P has six parameters, three for transla-
tion and three for rotation. Taking the derivative of P with respect to the parameter vector
sp = (tx, ty, tz, vx, vy, vz)

> leads to the Jacobian

JP =
∂P
∂sp

. (3.28)

The pose update takes place in a similar way as for the camera matrix P, described in chap-
ter 3.1. The 3 × 4 matrix P̃ is the camera matrix of the last time step. E is of size 4 × 4 and
represents the pose update. Thus, P = P̃E. Now P is computed according to equation 3.26.
The derivative of P with respect to the translational and rotational parameters is

∂P
∂tx

����
tx=0

=
�
03×1 03×1 03×1 03×1 P3 −P2

�
∂P
∂ty

�����
ty=0

=
�
03×1 03×1 03×1 −P3 03×1 P1

�
∂P
∂tz

����
tz=0

=
�
03×1 03×1 03×1 P2 −P1 03×1

�
∂P
∂vx

����
vx=0

=
�
03×1 P3 −P2 03×1 P6 −P5

�
∂P
∂vx

����
vx=0

=
�
−P3 03×1 P1 −P6 03×1 P4

�
∂P
∂vx

����
vx=0

=
�
P2 −P1 03×1 P5 −P4 03×1

�
(3.29)

P i denotes the ith column of the matrix P .

3.3.2 Orthonormal Representation Lines

The Orthonormal Representation makes it possible to describe a line in 3D with 4 parame-
ters, equal to the number of degrees of freedom. This is important for the Bundle Adjust-
ment procedure. This approach follows Bartoli and Sturm in [4] and [57]. They propose a
method of representing a line in 3D as the combination of a rotation in 3-space and a rota-
tion in 2-space is proposed. Since a rotation in 3-space has 3 parameters and a rotation in
2-space has 1 parameter,the line can be represented with 4 parameters, that is a representa-
tion with the minimal number of parameters for a line in the three dimensional space.
In Lie algebra a rotation is represented by the SO(3) group, a rotation in 2D is represented
by the SO(2) group. Thus, the line can represented as combination of Lie groups according
to (U,W) ∈ SO(3)× SO(2).

Rotation in 2-space

The orthonormal representation for the SO(2) Group represents a rotation in 2D and de-
pends on one single parameter θ. Thus, a matrix that corresponds to the SO(2) Group is an
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orthogonal matrix of dimensions 2× 2. Let the homogeneous 2-vector σ be defined up to a
scale factor, thus it has one degree of freedom. Suppose W is a matrix corresponding to the
SO(2) group, then

W =
1

‖σ‖

�
σ1 −σ2
σ2 σ1

�
(3.30)

where σ ∈ P1 is the first column of the matrix W, normalised such that ‖σ‖ = 1.
A local update step of the parameter θ is W = W0R(θ) where W0 is the rotation matrix of
the last time step and the update matrix R(θ) is a rotation of θ in the 2D space. The Jacobi
Matrix of σ with respect to the parameter θ evaluated at θ0 = 0 is

∂σ

∂θ

����
θ0=0

=
∂w1

∂θ

����
θ0=0

=

�
−σ2
σ1

�
= w2. (3.31)

wi is the ith column of the matrix W. This result is needed later for the representation of a
line in 3-space.

Rotation in 3-space

The orthonormal representation for the SO(3) Group represents a rotation in 3D and de-
pends on the parameter vector v that is composed of three parameters vx, vy, vz . The vector
v denotes the rotation axis, the norm ‖v‖ of the vector is the rotation angle. This axis angle
representation of a rotation in 3-space is described in chapter 3.1. Suppose U ∈ SO(3), that
is a 3 × 3 Matrix and denotes a rotation in the 3D space, then U = U0R(v) where U0 is the
rotation matrix that describes the orientation of the previous step and the rotation matrix
R is the rotation update. The rotation matrix R introduced in equation 3.6 is determined
according to R = I + [w]×sin(θ) + [w]2× (1− cos(θ)) where w is the unit vector of v with
‖w‖ = 1. The 3 × 3 matrix [w]× is the skew symmetric matrix of w. θ is the norm of the
vector v and represents the rotation angle around the axis w.
The Jacobi Matrix of U with respect to the parameter vector v, evaluated at v0 = 03×1 is
given by

∂U
∂v

����
v0=0

=

�
∂U
∂vx

����
vx0=0

∂U
∂vy

�����
vy0=0

∂U
∂vz

����
vz0=0

�
(3.32)

where

∂U
∂vx

����
vx0=0

=
∂U0R(v)

∂vx

����
vx0=0

= U0
∂R(v)

∂vx

����
vx0=0

= U0

2640 0 0
0 0 −1
0 1 0

375 . (3.33)

Thus,
∂U
∂vx

����
vx0=0

=
�
03×1 u3 −u2

�
. (3.34)

the vector ui denotes the ith column of the matrix U. Thus, the derivative of U with respect
to the other parameters is

∂U
∂vy

�����
vy0=0

=
�
−u3 03×1 u1

�
. (3.35)
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∂U
∂vz

����
vz0=0

=
�
u2 −u1 03×1

�
. (3.36)

Minimal representation lines

As noted previously, the orthonormal representation of a line L is (U,W) ∈ SO(3)×SO(2).

Referring to equation 3.24, L =
�
a> b>

�>
is the 6 × 1 vector that contains the Plücker

coordinates. Then the matrix C3×2 = [a b] can be decomposed into

C = U3×3Σ3×2 =

�
a
‖a‖

b
‖b‖

a× a
‖a× a‖

� 264‖a‖ ‖b‖
375 = U

264σ1 σ2

375 (3.37)

applying the QR decomposition. U ∈ SO(3) is a orthogonal matrix and Σ is an upper tri-
angular matrix. The matrix W ∈ SO(2) from equation 3.30 can be composed by the two
non-zero elements of the matrix Σ, where the vector σ = [‖a‖ ‖b‖]>. Thus, the 4 parame-
ters of the line L are defined by the 3 parameters of the matrix U and the one parameter of
matrix W.
The conversion of the orthonormal represented line (U,W) back to the Plücker coordinates
L can be done by

L =

�
w11u1

w21u2

�
(3.38)

where ui is the ith column of the matrix U.
According to the updates of W ∈ SO(2) and U ∈ SO(3), the line can be updated by the
parameter vector p = [v θ]. The Jacobian J of the line L with respect to the parameter
vector p evaluated at p0 = 0 is a 6× 4 matrix and can be determined according to

J =

24 ∂L
∂vx

����
p0

∂L
∂vy

�����
p0

∂L
∂vz

����
p0

∂L
∂θ

����
p0

35
=

�
0 −σ1u3 σ1u2 −σ2u1

σ2u3 0 −σ2u1 σ1u2

�
(3.39)

3.4 Parameter Optimisation

In the process of bundle adjustment, the approaches derived in the previous chapters will
be applied to improve the estimation of the points and lines as well as the camera poses of
the reconstructed scene. The parameter vector s with the parameters that has to be refined
consists of the 3 inhomogeneous coordinates of each scene point Xi, the 4 parameters of
each line Lk in the scene and the 6 parameters of each camera Pj involved in the scene.
Thus, the parameter vector is of the size 3nx + 4nl + 6m where nx is the number or points,
nl is the number of lines and m stands for the number of cameras.
From algorithm 2.8 in chapter 2 an initial estimation of the points, lines and cameras is
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obtained. Thus, the parameter vector s can be composed according to

s =

264sx
sl
sp

375 (3.40)

where sx stands for the parameter vector of the points, sy is the parameter vector of the lines
and in sp the parameters of the cameras are present. The vector sx contains the euclidean
coordinates {X,Y, Z} of all the points Xi according to

sx =
�
X1, Y1, Z1, ..., Xnx , Ynx , Znx

�>
. (3.41)

The vector sl is composed of the 4 parameters of each line Lk. These 4 parameters {a, b, c, d}
can be obtained from equation 3.37 as described in chapter 3.3.2. Thus, the vector sl is build
according to

sl =
�
a1, b1, c1, d1, ..., anl

, bnl
, cnl

, dnl

�>
. (3.42)

The vector for the camera parameters sp is made up of the six parameters {tx, ty, tz, vx, vy, vz}
for each camera. These parameters are obtained from the camera matrix R applying the
equation 3.3, 3.4 and 3.5 in chapter 3.1. Thus, sp has the form

sp =
�
tx1 , ty1 , tz1 , vx1 , vy1 , vz1 , ..., txm , tym , tzm , vxm , vym , vzm

�>
. (3.43)

The error vector ε, that has to be minimised is composed of the reprojection error or points
and lines in the images.

Reprojection error points: Let xij = (xij , yij , 1)
> be a homogeneous vector of a point

measured in the image and x̂ij = PjXi = (x̂ij , ŷij , 1)
> the corresponding reprojected point of

the reconstruction. The reprojection error dij , that is visualised in figure 3.1 is the euclidean
distance between x̂ij and xij and is computed according to

dij(x̂ij , xij) =
q
(x̂ij − xij)2 + (ŷij − yij)2. (3.44)

Figure 3.1: Reprojection error points: The point x is the measured point in the image, x̂ is the
reprojected point. The reprojection error d is the euclidean distance between x and x̂.
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Thus, the error vector εxij for this point is composed of the two euclidean coordinates of xij
and x̂ij according to

εxij =

�
x̂ij − xij
ŷij − yij

�
(3.45)

where the norm of the vector εij is the reprojection error dij(x̂ij , xij). Thus, the euclidean
distence can be rewritten as

dij(x̂ij , xij) = ‖εij‖ . (3.46)

The total reprojection error ex is computed as the sum of squares of the single reprojection
errors of all correspondences over all images according to

ex =
nxX
i=1

mX
j=1

dij (x̂ij , xij)2 . (3.47)

Let x be the vector that contains the inhomogeneous coordinates of the measured points xij
according to

x = (x1,1, y1,1, ..., xn,m, yn,m)
> (3.48)

Since the homogeneous point vector x̂ij of the reprojected points is obtained according to

x̂ij = PjXi =
�
P1
jXi,P

2
jXi,P

3
jXi
�>

, the inhomogeneous coordinates of the reprojected points

are of the form (x̂1,1, ŷ1,1)
> =

�
P1
jXi/P3

jXi, P2
jXi/P3

jXi

�>
where Pkj denotes the kth row of the jth

camera matrix. Thus, the vector that contains the reprojected point coordinates is

x̂(s) = (x̂1,1, ŷ1,1, ..., x̂n,m, ŷn,m)
> . (3.49)

The error vector εx can be assembled by the vectors x̂(s) and x according to

εx =
�
x̂(s)− x

�
. (3.50)

Thus, the total reprojection error ex from equation 3.47 can be reformulated as

ex = ‖εx‖2 = ‖x̂(s)− x‖2 . (3.51)

Reprojection error lines: Let lkj be a line vector of a line measured in the image and
l̂kj the corresponding reprojected line of the scene line Lk in the camera Pj according to
l = PjLk. The vector Lk is the kth line containing the 6 Plücker parameter according to
equation 3.25 and Pj , that is obtained from equation 3.26 is the jth projection matrix that
projects the Plücker parameter vector into the image plane. To compute the reprojection
error between lkj and l̂kj the intersection points of line lkj with the image borders must

be obtained. This homogeneous point vectors are denoted as akj =
�
xakj , yakj , 1

�>
and

bkj =
�
xbkj , ybkj , 1

�>
. The perpendicular distances takj and tbkj of the points akj and bkj

respectively to the line l̂kj can be computed according to the scalar products

takj = a>kj l̂kj (3.52)

tbkj = b>kj l̂kj (3.53)
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for the line l̂kj normalised such that the norm of the first two elements of the line is equal to
1, as noted in chapter 1.3.7. Thus, the error vector for the line is represented by the 2-vector

εlkj =

�
takj
tbkj

�
=

"
a>kj l̂kj
b>kj l̂kj

#
. (3.54)

The reprojection error ekj (̂lkj , lkj) for a line lkj in image j is defined in a similar way as the
reprojection error for points as the norm of the vector εlkj according to

ekj (̂lkj , lkj) =
εlkj . (3.55)

The reprojection error for lines is illustrated in figure 3.2.

Figure 3.2: Reprojection error lines The line l is the line measured in the image. The points a and
b are the points where the line intersects the image border. l̂ is the reprojected line. The
distance ta is the perpendicular distance of the point a to line l̂, the distance tb is the
perpendicular distance between the point b and the line l̂. The reprojection error of the
lines is determined from the distances ta and tb.

The error vector εl for all lines is assembled accumulating the error vectors εlkj of the single
lines according to

εl =
�
εl11 , ..., εlnlm

�>
. (3.56)

Thus, the total reprojection error el is computed as the sum of squares of the single repro-
jection errors of the lines over all images according to

el =
nlX
k=1

mX
j=1

tkj
�̂
lkj , lkj

�2
= ‖εl‖2 . (3.57)

Combined reprojection error: The two error vectors εx and εl for the reprojection error
of points and lines can be combined to a single error vector ε.

ε =

�
εx
εl

�
(3.58)

Thus, the total reprojection error e is computed as

e = ‖ε‖2 . (3.59)
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Levenberg-Marquardt Algorithm: The error vector ε from equation 3.58 and the param-
eter vector s from equation 3.40 are required to optimise the parameters of s minimising the
error e. The minimisation is a non linear least squares problem and can be solved with a
non linear minimisation method such as the Levenberg-Marquardt algorithm. Tordable in
[61] describes how a Gauss-Newton algorithm is applied to a bundle adjustment problem.
The concept for the algorithm is obtained from there. In a similar way Hartley and Zisser-
man in [25] describe a Bundle-Adjustment problem and propose the Levenberg-Marquardt
algorithm, that is a slight variation on the Gauss-Newton method. From there the augmen-
tation to a Levenberg-Marquardt algorithm is borrowed.
From the reconstruction process an initial estimation for the parameter vector s is obtained
and represented by s0. Consider the function of the error e = ‖ε‖2 Since the square of the
norm of a vector is equal to the square of a vector e = ε2. This function has a minimum in
the elements of the parameter vector s. Thus

∂e(s)
∂s

= 2ε(s)
∂ε(s)
∂s

= 0. (3.60)

The derivation ∂ε(s)/∂s is different for points and lines and must be considered separately.

Minimisation of the point error: Deriving the error function ex of the point error εx =
x̂(s)− x with respect to the point parameters sx leads to

∂ex
∂sx

= (x̂(sx)− x)>
∂x̂(sx)
∂sx

= 0. (3.61)

To solve the equation, an approximation can be taken into consideration expressing x̂(s) as
a Taylor expansion

x̂(sx) ' x̂(sx0) +
∂x̂(sx)
∂sx

δx. (3.62)

sx0 is the parameter vector at the last step, ∂x̂(sx0)/∂sx is the Jacobian Jx. Thus, the equation
can be expressed in the form

x̂(sx) = x̂(sx0) + Jxδx. (3.63)

The vector δx is the update-vector for the parameter vector sx such that sx = sx0 + δx.
Applying equation 3.63 into equation 3.61 leads to

(x̂(sx0) + Jxδx − x) Jx = 0

J>x (x̂(sx0) + Jxδx − x) = 0

J>x x̂(sx0) + J>x Jxδx − J>x x = 0

J>x (x̂(sx0)− x) + J>x Jxδx = 0. (3.64)

Thus, the update vector δx can be determined according to

δx = −
�
J>x Jx

�−1 �
J>x (x̂(sx0)− x)

�
δx = −

�
J>x Jx

�−1
J>x εx0. (3.65)
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Minimisation of the line error: The derivation of the error function of the line error el
with respect to the line parameters sl is done in a similar way. From equation 3.57 the error
vector εl is obtained. Let the error vector consist of 2n elements of the form a>i li and b>i li
respectively, thus εl is of the form

εl =

2666666666666664

a>1 l1
b>1 l1

...
a>i li
b>i li

...
a>n ln
b>n ln

3777777777777775
. (3.66)

The error, that has to be minimised is

el = ‖ε‖2l =
nX
i=1

(a>i li)2 + (b>i li)2 =
2nX
j=1

(x>j lj)2 =
2nX
j=1

e2j . (3.67)

The point xj denotes a point ai or bi of the ith element of vector. Thus, the derivative of el
with respect to sl is

∂el
∂sl

= 2
2nX
j=1

ej
∂ej
∂sl

= 0. (3.68)

The expression ej may be replaced by the Taylor expansion

ej = e0j +
∂ej
∂sl

δl (3.69)

where ∂ej/∂sl is the Jacobian Jjl , that is the jth row of the Jacobian Jl. Thus, the equation can
be rewritten as

ej = e0j + Jilδl. (3.70)

Substituting this equation into equation 3.68 lead to

2nX
j=1

�
e0j + Jjl δl

�
Jjl = 0

2nX
j=1

Jjl e0j +
2nX
j=1

Jjl J
j
l δl = 0

J>l εl0 + J>l Jlδl = 0 (3.71)

The update vector δl can be determined according to

δl = −
�
J>l Jl

�−1
J>l εl0 (3.72)
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The Jacobian Jl is the derivative of the error vector εl with respect to the line parameter sl.
Lets consider the Jacobian Jil , the derivative of the error vector of one line li with respect to
sl.

εi =

�
a>i li
b>i li

�
. (3.73)

Thus, the Jacobian Jil , that represents the row i to i + 1 of the Jacobian Jl can be computed
according to

Jil =
∂εi
∂sl

=

�
a>i li
b>i li

�
∂li
∂sl

=

�
a>i li
b>i li

�
Ĵ
i
l. (3.74)

The derivative of the line li is denoted as Ĵ
i
l . Thus, the Jacobian Ĵl is the derivative of all lines

l = (l1, ..., ln)> with respect to the line parameter sl and is composed of the single Jacobians
Ĵ
i
l .

Minimisation of the total error: The equations 3.65 and 3.73 that represents the update
vectors δx, δl for the point and line parameters are quite similar and differ only in the index
of the expressions such as error vector, Jacobian and update vector. Combining the error
vectors εx,εl and the update vectors δx,δl for points and lines according to

ε =

�
εx
εl

�
, δ =

�
δx
δl

�
(3.75)

leads to the total update equation

δ = −
�
J>J
�−1

J>ε0. (3.76)

The parameter vector s0 with the initial estimation can be updated to obtain the new esti-
mation s according to

s = s0 + δ. (3.77)

The Jacobian J, that is composed of the Jacobians Jx and Jl is obtained using the expres-
sions of the equations 3.21 and 3.22 for the Jacobian Jx and equations 3.39 and 3.29 for
the Jacobian Jl. As a reminder from equation 3.40 the parameter vector s is composed of

s =
�
s>x , s>l , s

>
p

�>
. Thus, the error function ε is derived with respect to the point, line and

camera parameter. Deriving the point error with respect to the line parameters gives zero.
Likewise the derivation of the line error with respect to the point parameters is zero as well.
Thus, the Jacobian J that is used to determine the total update vector δ according equation
3.76 is composed according to

J =
�

Jxx 0 Jxp
0 Jll Jlp

�
. (3.78)

Jxx is the Jacobian that corresponds to the derivative of the error vector of the point features
εx with respect to the vector of the point parameters sx. It is determined using the equation
3.21. Jxp corresponds to the derivative of the error vector of the point features εx with re-
spect to the camera parameters sp. Jxp is obtained applying the equation 3.22.
Jll is the Jacobian that corresponds to the derivative of the error vector of the lines εl with
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respect to the line parameters sl. It can be computed according to equation 3.39. The Ja-
cobian Jlp is the Jacobian that corresponds to the derivative of the line parameters εl with
respect to the camera parameters sp and can be obtained from equation 3.29.

Up to here the update follows the Gauss-Newton algorithm. To augment the update to a
Levenberg-Marquardt iteration, the total update equation δ = −

�
J>J
�−1

J>ε0 is replaced
by the augmented equation

δ = −
�
J>J + λI

�−1
J>ε0. (3.79)

The value of λ varies from iteration to iteration. As a typical initial value of λ the value 10−3

times the average of the diagonal elements of the matrix J>J is proposed in [25]. Suppose,
the value of λ is very small. Then the method works basically in the same way as the Gauss
newton Algorithm. If λ is large, the equation 3.79 can be approximated by δ = −λ−1J>ε0.
Thus, the algorithm behaves like the gradient-descent method, where the update is in the
direction of the most rapid local decrease of the function with a fixed step size. One can
conclude that the Levenberg-Marquardt algorithm moves smoothly between the Gauss-
Newton method that converges very quickly near the minimum and the gradient-descent
algorithm that ensures a slow decreasing in difficult environments.
As the initial estimation of the parameters of points X, lines L and cameras P the results of
algorithm 2.8 are used. These parameters are collected in the parameter vector s according
to equation 3.40. Furthermore a first estimation of the error vector ε0 is computed accord-
ing to equation 3.58, determining the reprojection errors of points and lines. Thus, the total
reprojection error e0 can be computed according to equation 3.59 as the sum of squares of
the single reprojection errors. The Jacobian J can be obtained from equation 3.78. Thus,
the update vector δ can be obtained according to equation 3.79. Using equation 3.77, the
estimation of the parameters s0 is updated to obtain the new estimation s. This parameter
vector contains new estimations of the points, lines and cameras. Thus, computing the re-
projections of points and lines, a new error vector ε can be obtained that contains the new
reprojection errors.
If the total reprojection error e, that is obtained from the error vector ε according to equation
3.59, is smaller than e0, the update is accepted. The parameter vector s0 and the error vector
ε0 are updated according to s0 ← s and ε0 ← ε, the step size for the next iteration step is
increased dividing λ by the factor 10.
If e is bigger than e0, the update is not accepted. λ is multiplied by the factor 10 to reduce
the step size and the update vector δ is computed again. This is repeated until the update
leads to a reduced error e compared to the error e0.
Repeating this process the error e will decrease and the estimation of points, lines and cam-
eras will be optimised. In algorithm 3.1 the process of Bundle adjustment is summarised.

Convergence of the algorithm: As convergence criterion several features can be consid-
ered. It is recommended to use a combination of various conditions. A possible condition
is the absolute error e. If e falls below a threshold, the algorithm terminates. Another termi-
nation condition may be the maximum number of iterations. One can consider the absolute
change of the error, that can be computed as the difference between the initial error e0 and
the error after the iteration step e according to e0 − e as a criterion. The relative change
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Algorithm summary:
If the initial estimations of the points X, lines L and cameras P are available, the algorithm optimises
this scene minimising the reprojection error of points and lines in the image.

Algorithm:

1. Take the initial estimations of the points X, lines L and cameras P to form the parameter vector
s0 according to equation 3.40.

2. Compute the reprojected points x̂ and lines l̂ according equation 3.19 and 3.27. Thus, the
error vector ε0 can be obtained from equation 3.50 and equation 3.66. These two vectors are
assembled according to equation 3.58. The total reprojection error e0 is then computed as the
sum of squares of the single reprojection errors according to equation 3.59.

3. Determine the Jacobian J according to equation 3.78.

4. Compute the update vector δ = −
�

J>J + λI
�−1

J>ε0 as denoted in equation 3.79.

5. From equation 3.77, the estimation of the parameters s0 can be updated to the new estimation
s according to s = s0 + δ. From this new parameter vector the new estimations of the points
X, lines L and cameras P can be obtained.

6. Computing again the reprojections of the points and lines, the new reprojection error e can be
obtained.
If the new reprojection error e increased referring to the initial error e0, the update is not
accepted. λ is multiplied by the factor 10. Going back to step 4 the update vector is evaluated
again, until the new error e is smaller than e0.
If the new reprojection error e is smaller than the initial error e0, the update will be accepted.
Thus, the parameter vector and the error vector are updated according to s0 ← s and ε0 ← ε.
The step size for the next iteration step is increased dividing λ by the factor 10. Then on can
go back to step 3 for a new iteration. This is done until the algorithm converges.

Algorithm 3.1: Bundle adjustment: The bundle adjustment algorithm uses the Levenberg-
Marquardt algorithm to improve the points, lines and cameras of the scene.

of the update δ, that may also be a good criterion to quit the iterations, can be computed
according to ‖δ‖ / ‖s0‖. In the present algorithm, a combination of the different criteria is
applied. The maximum number of iterations is limited, a threshold for the absolute error e
is used and the relative change of the update δ is evaluated. It has shown that in most cases
the relative change of the update leads to a reasonable termination of the algorithm. The
other conditions are used as support criterion.
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In this chapter the behaviour of the algorithm in different scenarios is evaluated. The out-
comes are compared among themselves such that conclusions can be drawn. The Algorithm
is evaluated using synthetic data as well as on real images.
The algorithm was implemented and tested in a Matlab environment, version 7.10.0.499
(R2010a) for 32 bit Windows systems. From points and lines, obtained from either real im-
age data or generated data, a reconstruction is generated that is used as initialisation for the
bundle adjustment procedure.
For testing with synthetic data a framework was implemented that generates the desired
configuration of the scene. It provides the projections of the points and lines onto virtual
image planes. The reconstruction process relies solely on these projections to estimate the
scene.
The real images where made with the web cam that was already specified in chapter 1.3.4.
Point and line correspondences where selected by hand. Points where first determined with
sub-pixel precision using the Harris corner detector, borrowed from [33]. Afterwards, cor-
respondences across the images where chosen by hand. Lines where selected by defining
the endpoints in the image by hand. Subsequently, robust line fitting was performed. This
way, line correspondences across the views where selected.

4.1 Evaluation with Synthetic Generated Data

Four different scenarios are examined. In the first configuration the scene does not change,
but the noise on the points and lines in the image is changed in a controlled way. Thus, the
influence of the image noise is validated. In the second scenario the influence of the base-
line of the cameras is investigated. The third scenario provides a test on the influence of the
number of the cameras involved in the scene. In the fourth test the algorithm is executed
with different features. First only point features are considered, then only line features and
in a last step both point and line features are used to check the influence of the feature type
on the behaviour of the algorithm.
Evaluation with synthetic data has various advantages. Each desired configuration can be
generated, the level of noise in the images can be controlled and the influence of single pa-
rameters can be surveyed by modifying only a single parameter while the rest of the scene
remains unchanged. On the other hand, synthetic data is always only an approximation
of the real world. The assumptions used, such as the camera model, may prove to be in-
accurate or even wrong. Thus, the results of the evaluation with synthetic data should be
interpreted with caution.
For the evaluation with synthetic data a camera model is used. The intrinsic parameters of
the camera are an approximation of the parameters of the real camera used in the evaluation
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with real data. The camera parameters are specified in chapter 1.3.4.

4.1.1 Influence of the Image Error

A scene consisting of 30 points, 30 lines and 6 cameras is generated. Since at least 7 point
or 13 line correspondences are necessary in a minimal configuration, 30 lines and 30 points
are a suitable number of correspondences. The points and lines are generated randomly in
a specified area around the origin of the world frame. The cameras are arranged around
the scene such that each of the point and line features is visible in each camera. In figure 4.1
the scene is visualised.

Figure 4.1: Schematic illustration of the scene used to examine the influence of the image
error: Six cameras are positioned around a scene. The scene consists of randomly
generated entities, 30 points and 30 lines. These entities are positioned in an area around
the origin of the world frame. The cameras are positioned such that each point and line
is visible in each camera.

Now the points and lines are projected into the camera images. Since the scene is generated
synthetically, the data is exact which means o noise is present. Thus, a reconstruction of
the whole scene from the image points and lines, called features, can be obtained perfectly,
up to a common scale factor, as described in chapter 2. The bundle adjustment process,
described in section 3, terminates after the first iteration because the data can not be im-
proved.
The behaviour of the algorithm can be explored for different levels of noise by adding
noise to the features of the image. For the specified configuration only the level of noise
is adapted. The residual parameters such as the number and the position of the features
and cameras in the scene remain unchanged. Starting from perfect data with a pixel error
of 0 pixel, Gaussian noise will be added to the points and lines in the images. The noise
is incremented in steps of σ = 1 up to a pixel error of σ = 10. This range covers a wide
span of a possible image error. In real images a standard deviation of σ = 10 for the re-
projection error (defined in chapter 3.4 for points and lines) would be a big distortion that
should not crop up. For each examined error configuration 100 runs are executed. In each
run new noise with the specified standard deviation σ is generated. For each iteration of
the bundle adjustment process, the minimisation error e = ‖ε‖ on the normalised images
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σ σa σb
Image Noise error before BA error after BA

0 0 0
1 1,916 0,412
2 3,673 0,787
3 6,108 1,215
4 8,284 1,645
5 9,718 1,992
6 12,122 2,649
7 13,906 3,345
8 16,673 3,580
9 17,831 4,515

10 20,127 4,722

Table 4.1: Standard deviation of the error for different noise levels: In the left column the
standard deviation σ of the synthetic generated error in the images before the reconstruc-
tion process is shown. The second column contains the standard deviation σa of the repro-
jection error after the reconstruction process. The bundle adjustment process is initialised
with this data. The last column indicates the standard deviation σb after the bundle ad-
justment process.

Figure 4.2: Different noise levels: The chart contains 10 curves. Each curve stands for a noise
level. The noise is specified with the standard deviation σ. The error e for each noise level,
averaged over 100 runs, is plotted against the iteration step of the bundle adjustment
algorithm. It is determined as the sum of squares of the reprojection error in normalised
images.
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is averaged over the total number of runs. Thus, the convergence behaviour of the bundle
adjustment algorithm can be compared for different noise levels. The standard deviations
of the reprojection error before and after the bundle adjustment are compared in table 4.1.
The standard deviation of the reprojection error before the bundle adjustment σa is obvi-
ously different to the generated image noise σ, because each reconstruction process causes
in an error of the reconstructed features. When the reconstructions are concatenated and
the reprojection error of the concatenated system is computed, points and lines will be pro-
jected in all images. This also includes images that where not involved in the reconstruction
of this specific feature. In the bundle adjustment process the total reprojection error will be
reduced. It can be observed that the error is significantly reduced after the optimisation
procedure when compared to the initial generated image noise.
The behaviour of the algorithm with changing noise conditions is visualised in the chart in
figure 4.2.
It is obvious that the convergence of the algorithm depends on the magnitude of the noise
in the images. In the presence of large image noise, the error converges very fast in the first
iterations steps. As expected, the curve corresponding to the largest noise level of σ = 10
pixel provides the largest image error over the total minimisation process. Although it de-
clines very quickly in the first steps compared to the other curves, the minimum to which it
converges is larger than the minimum of the other curves. On the other hand, the curve cor-
responding to the smallest image noise level of σ = 1 is flat even in the first iterations steps,
but converges to the smallest value. The curves in between for the image noise σ = 2 to
σ = 9 behave in a similar way. The bigger the initial noise σ, the higher the initial error and
the steeper the descent of the curve in the first steps of the minimisation. Furthermore, the
smaller the image noise, the smaller the bottom limit to which the minimisation algorithm
converges.
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4.1.2 Influence of the Baseline

A scene consisting of 30 random points, 30 random lines and 6 cameras is generated. Since
at least 7 point or 13 line correspondences are necessary in a minimal configuration, 30
lines and 30 points are a suitable number of correspondences. The points and lines lie in
a specified area around the origin of the world frame. The six cameras are positioned on
a circle around the Z-axis of the world frame, the circle lies in the X-Y plane of the world
frame. Their principal axis points towards the origin. The angle α on the circle between
each two contiguous cameras is equal for each neighbouring camera pair. The noise of
points and lines in the images is specified with σ = 4 pixels. For real images this noise level
would be very high but still realistic. However it is important to note that the algorithm
performs well even in the presence of poor image data. In figure 4.3 the configuration of
the scene is illustrated schematically.

Figure 4.3: Schematic illustration of the scene for analysing the influence of the baseline
between cameras: The scene consists of 30 points and 30 lines, both generated ran-
domly in an area around the origin of the world frame. Six cameras are positioned on a
circle around the scene. The principal axis points towards the origin of the world frame.
The angle α between two adjacent cameras is equal for each neighbouring camera pair.
Starting from an angle α = 9◦ leads to a total angle of 45◦ between the first and the last
camera as illustrated in (a). In each step the angle α is increased by 4.5◦. In the last
step, the angle α between two adjacent cameras is 36◦. Thus, the total angle is 180◦.
This case is illustrated in (b).

In the first configuration the angle α between each two contiguous cameras, measured
around the Z-axis of the world frame, is specified with 9◦. Thus, the 6 cameras lie on
the circle within 45◦. The algorithm is executed 100 times for this configuration, in each run
new Gaussian noise with the same standard deviation σ = 4 is generated on the point and
line features. Next, the angle α is decreased by 4.5◦ such that α = 13.5◦. Again 100 runs are
executed. As in the first step new Gaussian noise with σ = 2 is generated. This procedure
is repeated five times, increasing the angle α between two neighbouring cameras by 4.5◦

each time. In the last step the angle between two neighbouring cameras is α = 36◦. The
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γ α σa σb
total angle angle error before BA error after BA

45◦ 9◦ 4,925 1,820
67.5◦ 13.5◦ 5,121 1,904
90◦ 18◦ 6,295 2,190

112.5◦ 22.5◦ 6,221 2,106
135◦ 27◦ 9,510 3,399
157.5◦ 31.5◦ 6,029 3,008
180◦ 36◦ 6,204 3,383

Table 4.2: Standard deviation of the error for different baselines: In the left column the total
angle, meaning the angle between the first and the last camera, is shown. The second col-
umn contains the incremental angle that is the angle between two neighbouring cameras.
In the last two columns the standard deviation of the reprojection error before the bundle
adjustment σa as well as the standard deviation of the error after the bundle adjustment
procedure σb is presented.

Figure 4.4: Varying baseline: The chart contains 7 curves. Each curve stands for a different
baseline between the cameras. The incremental angle between the cameras as well as the
total angle of the cameras for each configuration is stated in the key on the right side
of the chart. The noise in the images is assumed to be Gaussian and is equal for each
image. It is specified with a standard deviation of σ = 4 pixel. The error e for each
configuration, averaged over 100 runs, is plotted against the iteration step of the bundle
adjustment. It is determined as the sum of squares of the reprojection error in normalised
images.
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total angle between the first and last camera is 180◦.
For each iteration of a run the minimisation error e = ‖ε‖ on normalised images is stored.
Thus, the behaviour of the algorithm for different baselines is compared. The standard de-
viation of the reprojection error before and after the bundle adjustment are compared in
table 4.2.
The algorithm behaves in a different manner than expected. The expectation was that with
increasing angle and thus increasing baseline between two neighbouring cameras the ini-
tial error would decrease. In other words, the case with the smallest neighbouring angle of
α = 9◦ was supposed to deliver the poorest results for the reprojection error of the recon-
struction before the bundle adjustment. This is because the quality of the reconstruction
depends on the baseline as explained in chapter 2.1.3 and illustrated in figure 2.6. The sce-
nario where the neighbouring angle is maximal with α = 36◦ was expected to deliver the
best results of the reconstruction because the baseline is largest.
However the algorithm behaves in a different way. The best results are achieved for the
smallest baselines with an angle of α = 9◦ and α = 13.5◦ between two neighbouring cam-
eras. The configuration with α = 18◦ and α = 22.5◦ performs slightly worse. In the case
with α = 27◦ the reprojection error of the reconstruction, that is used as initialisation for the
bundle adjustment process, is extremely high. The bundle adjustment procedure however
performs well. In the last two configurations for α = 31.5◦ and α = 36◦ the reprojection
error for the reconstructions before the bundle adjustment becomes better again. The min-
imisation algorithm however performs in a slightly bizarre way. After the error decreases
in the first steps, it increases marginally. The curve for the configuration of α = 36◦ how-
ever seems to be the upper limit of the error e. Once the error level of this curve is reached,
the error decreases again with exactly the same values for each iteration step.
Although the application was implemented carefully, it is not altogether impossible that
an implementation error might be the reason for the behaviour of the algorithm. Another
explanation for this behaviour might be the special configuration of the scene.
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4.1.3 Influence of the Number of Cameras

A scene is generated synthetically that consists of 30 points and 30 cameras. Since at least
7 point or 13 line correspondences are necessary in a minimal configuration, 30 lines and
30 points are a suitable number of correspondences. The points and lines are generated
randomly around the origin of the base frame. Furthermore cameras are positioned on
a circle around the origin of the world frame. The principal axis of the cameras points
toward the origin. The cameras are positioned such that the angle between the first and the
last camera is 90◦. In figure 4.5 the scenario is illustrated schematically.

Figure 4.5: Schematic illustration of the scene to analyse the influence of the number of
cameras on the minimisation process: The scene consists of 30 points and 30 lines
randomly generated in an area around the origin of the world frame. In the first step three
cameras are positioned on a circle around the scene, the principal axis points towards the
origin of the world frame as illustrated in (a). The angle between the first and last camera
is 90◦. In each step an additional camera is added to the scene. The angle between the
first and last camera remains unchanged and all cameras are arranged equidistantly.
Thus, in number of cameras is increased to 8 in the last step. This is illustrated in (b).

In a first step, three cameras are positioned in the scene. The angle between the first and
second camera and between the second and third camera is 45◦. Camera images are created
by projecting the points and lines onto the image planes of the cameras. In 100 runs, where
each time a new generated noise level with σ = 2 is added to the images the convergence,
the behaviour of the algorithm is surveyed. Afterwards, the same is done with four cam-
eras, again with an angle of 90◦ between the first and the last camera. This causes in an
angle of 30◦ between two neighbouring cameras. Repeating this two more times, the num-
ber of cameras is increased to six within an angle of 90◦. Thus, in the third step five cameras
are positioned, the angle between two neighbouring cameras is 22.5◦. In the last step the
angle between two collateral cameras is 18◦. The goal is to examine the influence of the
number of cameras to the convergence behaviour in the bundle adjustment process. Thus,
the image noise is equal for all images and the largest baseline in the bundle adjustment
remains unchanged over the different scenarios. The standard deviation of the reprojec-
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α σa σb
number of angle between error before BA error after BA
cameras neighbouring cameras

3 45◦ 1,270 0,574
4 30◦ 1,833 0,674
5 22.5◦ 2,230 0,757
6 18◦ 2,672 0,869
7 15◦ 2,968 0,925
8 12.86◦ 3,250 0,972

Table 4.3: Standard deviation of the error for different numbers of cameras: In the left column
the number of cameras is shown. Since the total angle between the first and last camera
is specified with 90◦ for each configuration, the angle between two neighbouring cameras
decreases with increasing number of cameras. This angle is shown in the second column.
The standard deviation of the reprojection error σa before the bundle adjustment procedure
and the standard deviation of the reprojection error σb after the minimisation are outlined
in the last two columns.

Figure 4.6: Different numbers of cameras: The chart contains 6 curves. Each curve describes the
convergence behaviour of the bundle adjustment algorithm with a specified number of
cameras, as stated in the key on the right sight of the chart. The noise in the images is
equal for each configuration and specified with the standard deviation σ = 2 pixel. The
error e for each curve is computed according to the sum of squares of the reprojection
error for points and lines in each image divided by the number of cameras involved in
the reconstruction and improvement procedure. The values of the error are averaged over
100 runs and plotted against the iteration steps of the bundle adjustment algorithm.
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tion error before and after the bundle adjustment for the different numbers of cameras are
compared in table 4.3.
The Standard deviation σa of the reprojection error in the images before the bundle adjust-
ment procedure increases with increasing number of cameras involved in the reconstruc-
tion process. Each reconstruction has a separate error. This may be influenced by the noise
in the image, the number of features and the baseline of the cameras involved in the re-
construction. The standard deviation of the reprojection error σa before the minimisation
in the first two steps, where 3 cameras are involved, lies below the initial image noise of
σ = 2 pixel. When the trifocal tensor is determined, a minimisation over all image features
is performed to find the best trifocal tensor for the image triplet. Thus, the result of the re-
projected error of the reconstructed points and lines might be an improvement to the initial
image noise. The bundle adjustment procedure then computes an improved result of the
entities. Concatenating single reconstructions from each three images, the error increases.
When reconstructions are concatenated and the reprojection error is computed, then points
and lines will be projected to images that where computed in a different reconstruction pro-
cedure. This leads to an increased reprojection error. Thus, the reprojection error increases
with each new camera involved in the process. In the chart of figure 4.6 the convergence
behaviour of the bundle adjustment process on different numbers of cameras is illustrated.
The curve corresponding to the set consisting of 3 cameras starts with the smallest error
and converges to the smallest image error. The curve related to the set of 8 cameras starts
with the largest error and converges to an error with the largest value compared to the sets
consisting of fewer cameras. Large errors decrease very quickly in the first iteration steps.
The shape of the curves is very similar. Besides the worse initialisation of the minimisation
algorithm in the case of multiple cameras, no influence of the number of cameras to the
quality of the minimisation procedure is recognisable.
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4.1.4 Influence of the Feature Type

Three different scenarios are compared. In in the first scenario, the bundle adjustment is
performed only for point features, in the second scenario only line features are present. In
the last case both points and lines are present in the bundle adjustment process. In each
case the scene consists of 6 cameras, positioned equidistantly on a circle around the centre
of the world frame. The circle lies in the X-Y plane of the base frame. The circle has a
radius of 2 units. Let one unit be defined as one meter. Thus, the centres of the cameras
have a distance of 2m to the origin of the base frame. The total angle between the first and
the last camera is 90◦, measured around the Z axis of the base frame. The three scenarios
are illustrated in figure 4.7.

Figure 4.7: Schematic illustration of the three different scenes that are analysed and com-
pared: For all three cases the reconstruction is made from point and line features. The
bundle adjustment process is executed only for point features, as illustrated in (a), only
for line features as illustrated in (b) and for both point and line features as illustrated in
(c). The three results are compared to investigate the influence of the kind of the features
on the minimisation process.

The reconstruction that is used as initialisation for the minimisation process is computed
from points and lines in each of the three cases. This is because the number of features
has an influence on the quality of the reconstruction. In this test only the the behaviour of
the bundle adjustment is examined. Thus, the initialisation must be the same in all three
cases. In each scenario 500 runs are performed. The quality of the reconstruction is mea-
sured in the 3D data. The camera poses of the reconstructions before and after the bundle
adjustment procedure are compared with the poses of the synthetically generated cameras
that where used to generate the synthetic images. Since the reconstructions are obtained
without any information about their location in the world frame and up to a common scale
factor, a transformation must be applied to the reconstruction to make them comparable to
the original data. The frame of the original data is considered as base frame. The recon-
structions of the scene are transformed such that the pose of the first camera of the system
coincides with the pose of the camera in the original system. Furthermore a scale factor
is computed as the average distance between the camera centre of the first cameras to the
camera centres of the other cameras involved to the scene. Thus, the reconstructions are
scaled such that their scale factor is equal to the scale factor of the original system. This
alignment is illustrated in figure 4.8.

64



4 Evaluation

Figure 4.8: Alignment of a reconstructed scene to the original scene: Schematic illustration of
the alignment of two scenes. The cameras are illustrated with their principal axes. The
synthetically generated reference scene is presented with thick lines, the reconstructed
frame, containing errors, is presented with thin lines. The principal axes of the reference
frames intersect in the origin of the world frame. The principal axes of the reconstructed
frames however do not necessarily intersect in the same point because of a certain trans-
lational and rotational error of the cameras. In (a) the two corresponding systems are
incoherently lying in the space. The dashed line between the first cameras suggests the
link between the two systems. In (b) the reconstructed system is aligned to the reference
system via the pose of the first camera. The reconstructed system will be scaled to coin-
cide with the reference system. This is illustrated in (c). Thus, the translational and the
rotational error can be determined.

The pose of the first camera in the reconstructed scene corresponds perfectly with the pose
of the first camera in the original scene. The other corresponding cameras may differ in
their pose. This error can be determined as a translational and a rotational error. The trans-
lational error is simply the euclidean distance between the camera centres. The rotational
error can be computed as a 3 × 3 rotation matrix that describes the rotational difference in
3-space. This rotation matrix can be expressed as a rotation axis and a corresponding angle.
This angle is the rotational error between the two cameras.
Computing these errors for each camera in each run of each of the three configurations
leads to table 4.4, where the translational error is displayed and table 4.5, where the rota-
tional error is displayed. In both tables the error for each camera is averaged over the 500
runs.

The entire scene consists of 60 randomly generated points, 60 randomly generated lines
and the six cameras. Compared to the other evaluations on synthetic data the number of
points and lines was increased, because the minimisation algorithm is applied on config-
urations consisting only of points and lines. The points and lines are reprojected into the
images of the cameras and Gaussian noise with a σ = 3 pixel is added. From those two
dimensional correspondences the three dimensional points and lines as well as the cam-
eras are reconstructed. After the reconstruction process the bundle adjustment procedure
is performed based on the results of the reconstruction. In the first step, only the 60 points
are considered as features. The sum of squares of the reprojection error of the points is the
error function that has to be minimised. The rotational and translational error between the
cameras is computed before and after the bundle adjustment procedure. In the second step,
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points lines points + lines
translation translation translation translation translation translation

error error error error error error
before BA after BA before BA after BA before BA after BA

/m /m /m /m /m /m
camera 2 0.00759 0.00438 0.00756 0.00585 0.00753 0.00273
camera 3 0.01300 0.00424 0.01271 0.00684 0.01248 0.00282
camera 4 0.01122 0.00443 0.01134 0.00645 0.01124 0.00265
camera 5 0.01478 0.00501 0.01448 0.00728 0.01454 0.00507
camera 6 0.01860 0.00574 0.01872 0.00963 0.01812 0.00835
mean /m 0.01304 0.00476 0.01296 0.00721 0.01278 0.00432
mean /cm 1.304 0.476 1.296 0.721 1.278 0.432

Table 4.4: Translational error: Deviation between the synthetically generated cameras and the
reconstructed cameras before and after the bundle adjustment, averaged over 500 runs. It
is compared for the case considering only point features, line features and for both point
and line features.

points lines points + lines
rotation rotation rotation rotation rotation rotation

error error error error error error
before BA after BA before BA after BA before BA after BA

/rad /rad /rad /rad /rad /rad
camera 2 0.00581 0.00240 0.00581 0.00175 0.00592 0.00170
camera 3 0.00918 0.00261 0.00955 0.00275 0.00954 0.00277
camera 4 0.00946 0.00294 0.00991 0.00374 0.00984 0.00374
camera 5 0.00965 0.00322 0.01007 0.00489 0.01001 0.00490
camera 6 0.00991 0.00330 0.01008 0.00581 0.01021 0.00583

mean /rad 0,00880 0,00289 0,00909 0,00379 0,00910 0,00379
mean /deg 0,504 0,166 0,521 0,217 0,522 0,217

Table 4.5: Rotational error: Deviation between the synthetically generated cameras and the recon-
structed cameras before and after the bundle adjustment, averaged over 500 runs. It is
compared for the case considering only point features, line features and for both point and
line features.

(a) Translational error (b) Rotational error

Figure 4.9: Comparison of Bundle adjustment on points, lines and both points and lines:
In (a) the translational error is compared, in (b) the rotational error is compared.
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only the 60 lines are considered. Again, the error between the cameras is computed before
and after the optimisation. In the last step both points and lines are considered and the
error between the cameras before and after the bundle adjustment is computed. In table 4.4
and 4.5 as well as in figure 4.9 the error before and after the minimisation procedure for the
different scenarios is compared.
Since in each run over each scenario a new error in the images was generated, the trans-
lational and rotational errors before the bundle adjustment procedure are similar, but not
absolutely identical. Comparing the error for bundle adjustment on points and lines only,
the algorithm performs better on points, as well for the translational as for the rotational
error. The translational error for the bundle adjustment on points and lines leads to the best
results and lies in the region of the error for the bundle adjustment only on points. The ro-
tational error for the bundle adjustment on both points and lines however lies in the region
of the error only for lines. For this behaviour no obvious reason could be identified. Thus,
this behaviour may be subject to further research.
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4.2 Evaluation with Real Image Data

In addition to the evaluation with synthetic data the algorithm is also applied on real im-
ages. The scene is reconstructed from feature correspondences across the images. With the
camera specified in chapter 1.3.2 a stream of a scene was recorded. By hand seven views
that display the scene from different points of view where selected. In figure 4.10 the images
involved in the bundle adjustment process are shown.

Figure 4.10: Image sequence The sequence consists of 7 images, obtained from an image stream of
a scene. The grayscale images are recorded with a wide angle lens and have a resolution
of 640× 480 pixels.

For this set of images, point and line correspondences are required. To find points in the
images, an implementation of the Harris corner detector, borrowed from [33], was applied
to each of the images to find significant sub-pixel precise corners in the image. Point cor-
respondences across the images where selected by hand. Lines where obtained by defining
two points on an edge in the image by hand. On the line connecting the specified points
profiles perpendicular to the line where created. On these profiles the sub-pixel precise po-
sition of the edge was determined. Fitting a line trough the points defined by this means
resulted in a sub-pixel precise line representing an image edge. In this manner line corre-
spondences across the images where found. The selected point and line features are shown
in figure 4.11(a). In total 34 point correspondences and 17 line correspondences are used in
the reconstruction process. From these entities 19 point correspondences and 13 line corre-
spondences are visible in all images. These features where refined in the bundle adjustment
process.
As described in chapter 2 the reconstruction process is performed based on these features.
Thus, a scene is obtained consisting of the reconstructed points, lines and seven cameras.
Reprojecting these points and lines into the image planes of the cameras yields a reprojec-
tion error regarding the measured features. This is illustrated in figure 4.11(b).
The bundle adjustment process is applied to this scene in order to minimise the reprojec-
tion error over the complete scene. The result after the minimisation process is illustrated
in figure 4.11(c).
The reprojection error after the reconstruction process has a standard deviation of σa =
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(a) Measured point and line features in the first and last image of the sequence. The measured point features are marked as
red crosses, the measured line features are marked as green lines.

(b) Measured and reprojected features in the first and last image of the sequence after the reconstruction process, before
performing bundle adjustment.

(c) Measured and reprojected features in the first and last image of the sequence after performing bundle adjustment.
Comparing the images with (b) a decreasing deviation can be observed.

Figure 4.11: Reprojection error images: The green lines and red points represent the measured
features in the image, the yellow lines and the blue points represent the reprojected
features.
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18.818 pixel. The standard deviation of the reprojection error after the minimisation process
is reduced to σb = 2.983 pixel. The reasons for such a big error may lie in the calibration
of the camera. As already noted a web-cam with a fisheye lens was used to record the
image stream. The calibration of the camera with wide angle lens is much more inaccurate
than the calibration of a traditional camera. Especially in the image border the distortion
could not be removed entirely. This can be seen in the images in figure 4.10 and in figure
4.11. A greater number of correspondences may also reduce the initialisation error. The
convergence behaviour of the bundle adjustment is illustrated in the chart in figure 4.12.

Figure 4.12: Image Sequence: The error e is plotted against the number of iterations. The curve
shows the convergence behaviour of the bundle adjustment procedure applied on real
image data.

The error e is determined in each step of the bundle adjustment process as the sum of
squares of the reprojection errors of points and lines over all images. One can compare
these results with the results in 4.1.1, where the behaviour of the minimisation procedure
for different image noise is compared. The curve lies in between the curves corresponding
to σ = 6 and σ = 7 in the chart in figure 4.2. Comparing the results of the standard
deviations σa = 18.818 and σb = 2.983 with the results of the first test outlined in table
4.1, one can observe that σb, corresponding to the standard deviation before the bundle
adjustment, is worse compared to the σb corresponding to σ = 6 and σ = 7 in table 4.1. The
standard deviation σa, corresponding to the error after the bundle adjustment, however lies
again between the values of σa in table 4.1 corresponding to σ = 6 and σ = 7.
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In this last chapter a perspective is given how the application presented in this thesis can be
developed further and which tasks may be improved. Furthermore this chapter includes a
résumé that concludes the thesis.

5.1 Future Work

While working on the thesis and especially while evaluating the results of chapter 4 it has
shown that the concept can be improved and further developed in several ways.
Thus, it might be an interesting task to augment the set consisting of features from points
and lines considering other types of geometric primitives. Conics, that are described briefly
in [25], chapter 2.8, have similar geometric properties than lines. It might be interesting to
examine if conics can provide further informations in a tracking process and thus if they
can be incorporated in the tracking and bundle adjustment procedure in a similar way as
points and lines. Another interesting task might be to consider square angles as relevant
features in the scene. In human made environments also square angles are abundant. Fur-
thermore the consideration of CAD models that might be recognised in the scene may be a
task for further research.
But even the representation of lines in 3-space might be improved. As already stated, lines
have 4 degrees of freedom in the three-dimensional space. A line represented in Plücker
coordinates (described in chapter 1.3.8) has 6 parameters. This representation was used for
the reconstruction process. For the bundle adjustment procedure however the orthonormal
representation (described in chapter 3.3.1) was selected. This representation allows the rep-
resentation a line in 3D by the minimal set of 4 parameters. Although this representation
is applicable in the bundle adjustment procedure, it cannot be used in the reconstruction of
lines, because it has no geometrical meaning such that projective transformations or pro-
jections can be applied to it. On the other hand, the representation in Plücker coordinates
is not appropriate in the bundle adjustment procedures because a minimal representation
in the number of parameters is required. This is because correcting the parameters after an
iteration step the internal constraints of the Plücker line will not be satisfied. This might
lead to an invalid parameter vector that does not correspond to a valid line in the three-
dimensional space.
For evaluating on real data points and lines where selected by hand. It is obvious that a
solution is required that find points and lines automatically in the images and finds cor-
respondences across images. While point matching algorithms, such as the FAST corner
detector used in PTAM (proposed by Klein in [32]) are well known to perform fast and ac-
curate, an appropriate line matching algorithm is required that finds line correspondences
across the images.
The evaluation in chapter 4 showed that the behaviour of the algorithm can not be ex-
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plained in each case. The second test case on synthetic data, where the influence of the
baseline is examined, leads to an unexpected result (see chapter 4.1.2). To understand why
this results occurred, the reconstruction and minimisation procedure might be observed
more in detail, evaluating not only the end results, but also interim results of the different
steps of the algorithm.
The fourth test scenario (see chapter 4.1.4) where the algorithm was tested and compared
for points only, lines only and points and lines together, returned also results that might be
subject to further research. It is obvious to see that the feature type has an influence on the
performance of the bundle adjustment algorithm. For specifying exactly which configura-
tion leads to the best results, an automatic line matching for real images must be provided.
Then the results can be compared in an objective way.
This thesis provides a concept for the three-dimensional reconstruction of points and lines
from image features. In a next step this approach might be implemented in a real-time
tracking environment. One possibility for doing this might be the augmentation of PTAM
[32]. Actually PTAM works on point features only. The concept developed throughout this
thesis might be used considering point and line features in the images to incorporate these
informations in the reconstruction and the bundle adjustment procedure of PTAM or a com-
parable tracking environment. Not until then a clear statement can be made if the use of
line features in the image might lead to an improvement of the tracking and minimisation
procedure and what kind of improvement can be achieved.

5.2 Résumé

In this thesis a method was developed to reconstruct a scene, consisting of points, lines and
camera poses from images and perform an optimisation procedure over the complete scene
minimising the reprojection error of points and lines in the images. The novelty to other
approaches is to consider not only points, but also lines as features in the images. This
new approach might be interesting for tracking applications in human environments such
as in buildings, since various straight edges are present there. These straight edges can be
treated as lines.
The concept described in this thesis might be incorporated in a tracking and mapping algo-
rithm that uses points only as image features. Considering points and lines simultaneously
might increase the information content in the images. Thus, informative results may be
archived, especially in environments consisting mainly of straight lines.
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