### Context-Aware Mobile Computing: Learning Context-Dependent Personal Preferences from a Wearable Sensor Array

#### **Andreas Krause**

#### <u>Advisors</u>

Prof. Bernd Brügge, Ph.D.

Prof. Daniel P. Siewiorek, Ph.D.

Prof. Asim Smailagic, Ph.D.

Dipl. Inf. Martin Wagner



- Context-Aware Mobile Phone
- Four states: Meeting, High-Energy, Idle, Normal
- Thresholds from accelerometers and microphones trigger state transitions

- Problems
  - Threshold values do not generalize well
  - Preferences vary widely among people

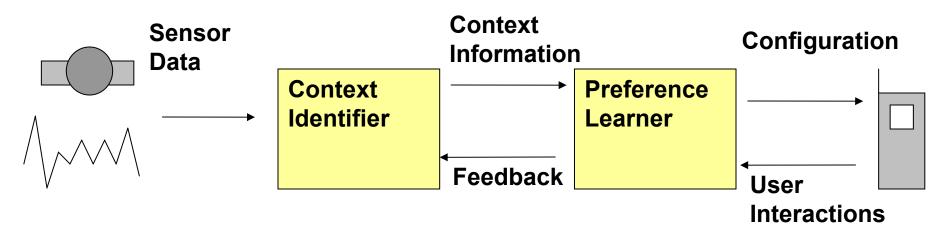
### Goals

- Enable a wearable computer to learn about individual user states using sensors
- This process should not require supervision by the user
- Let the computer learn to associate user states with user preferences

#### → ARIUS

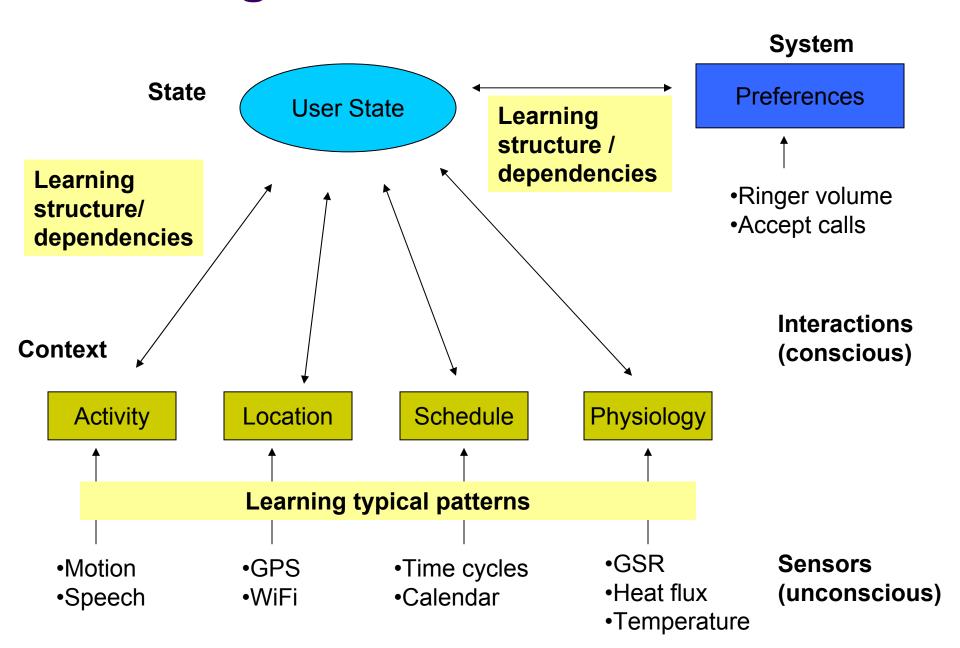
**Adaptive Reflection of Individual User States** 

# **ARIUS Two Step Approach**



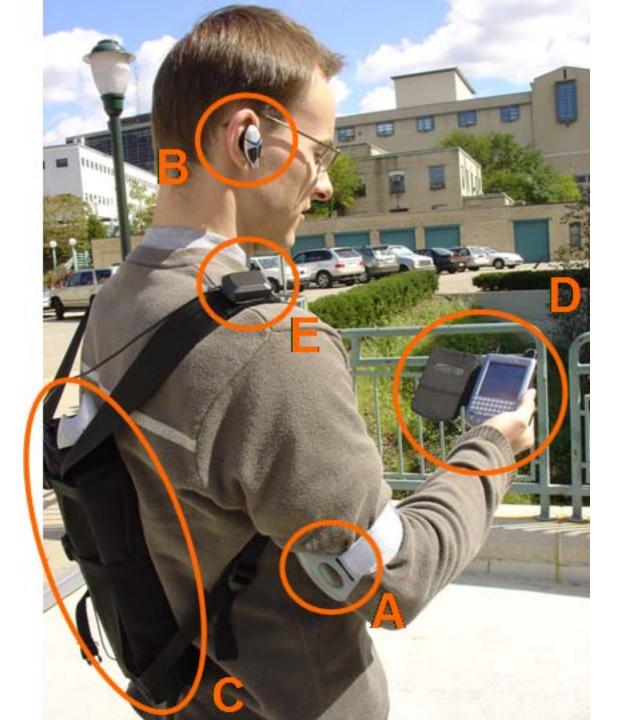
|                  | Sensors      | Interactions   |
|------------------|--------------|----------------|
| User's attention | Not required | Required       |
| Availability     | Abundant     | Scarce         |
| Values           | Continuous   | Discrete       |
| Dynamics         | Time series  | Protocol based |

### Learning User's Preferences



# Accomplishments

- Development of methods for
  - Context Identification
  - Preference Learning
- Design and implementation of a wearable study platform realizing these methods
- Evaluation in several experiments



# **Wearable Sensors**



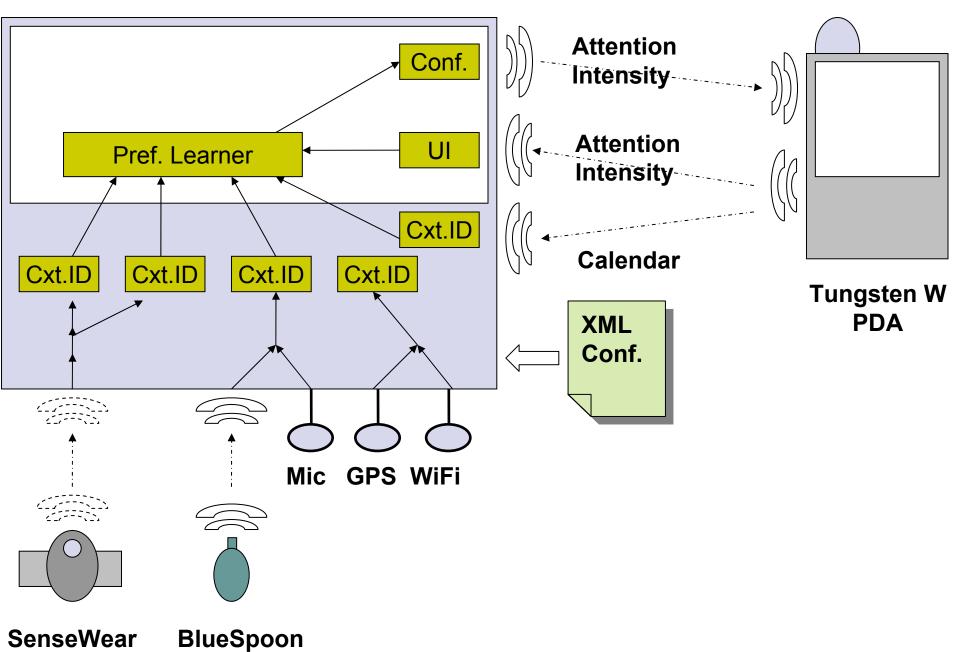




Fujitsu P1120 LifeBook

armband

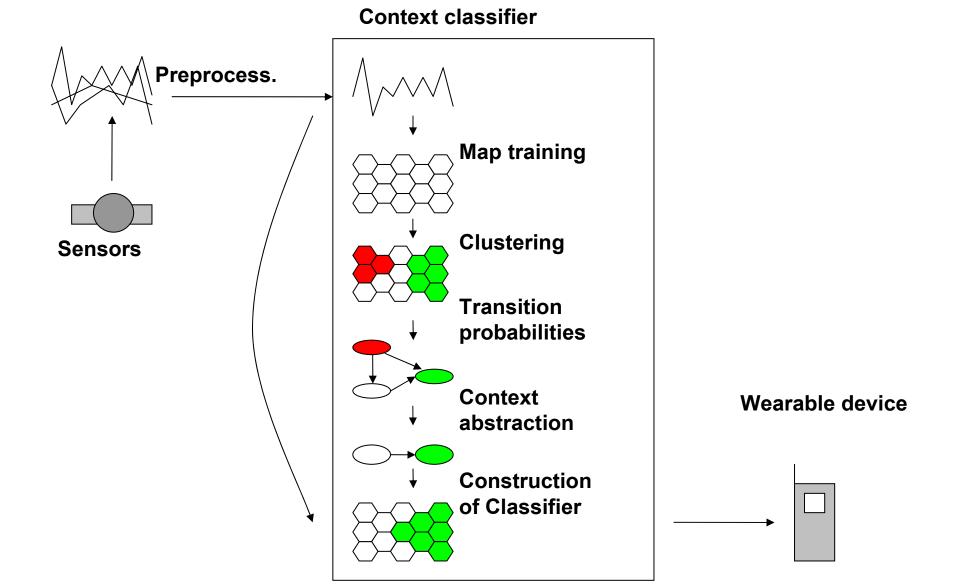
headset



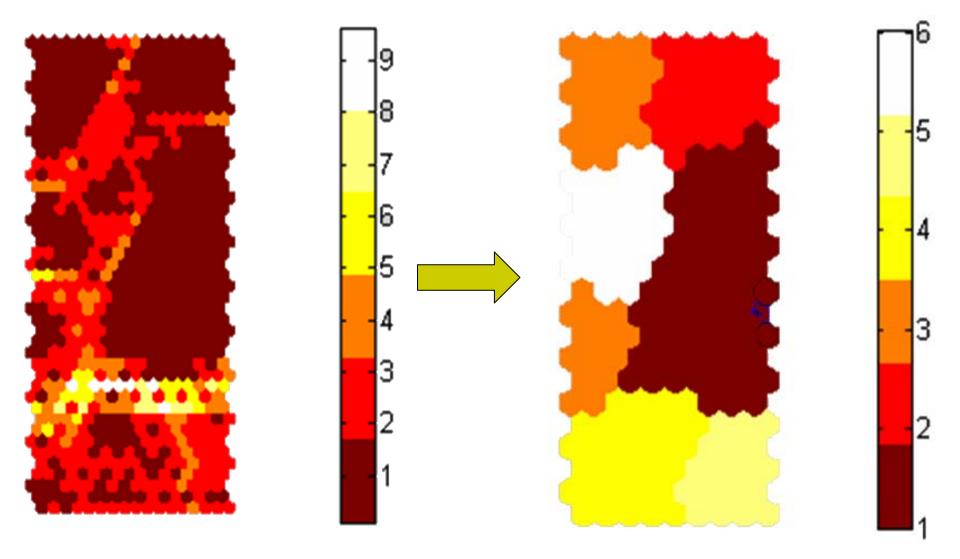
### **Context Identification**

- Unsupervised, dynamic identification of locally-constant contexts
- Issues:
  - Preprocessing / Feature Extraction (RA, SAD, FFT, PCA, Normalization, ...)
  - Clustering (KSOM, k-Means)
  - Identifying the number of classes (context abstraction)

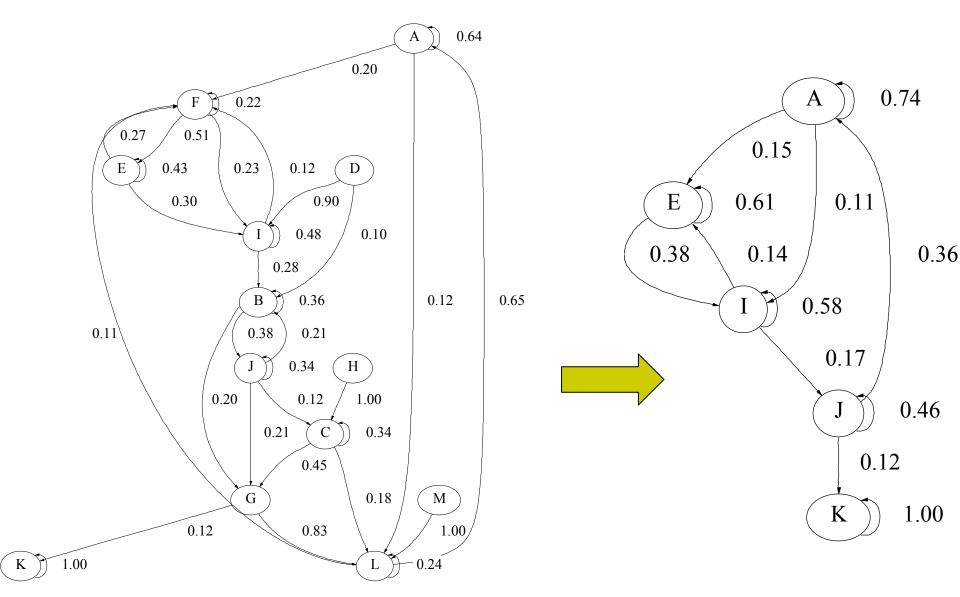
### **Offline Data Classifier**



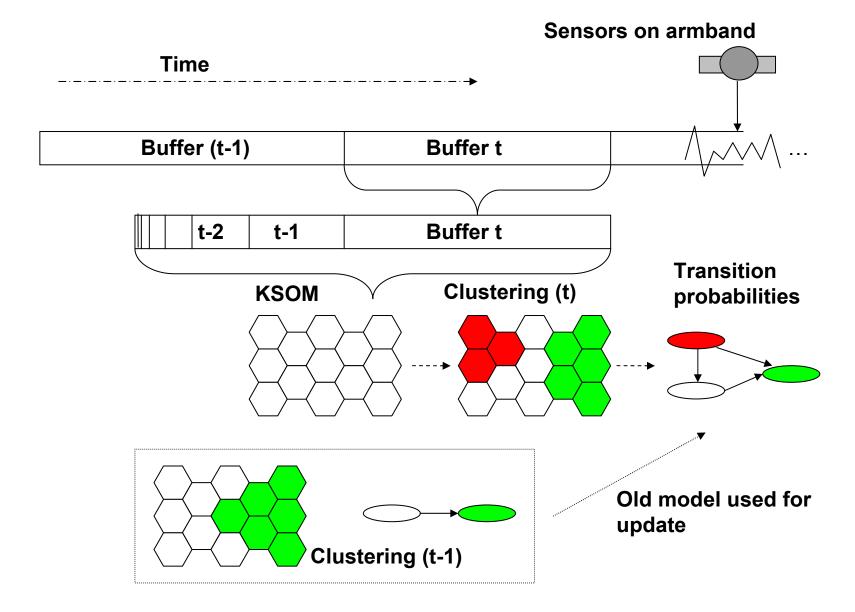
# **Example Clustering Results**



### **Context Abstraction**



### **Online Data Classifier**



### **Location-Awareness**

- Combination of two complementary sensors
  - Outdoors: Global Positioning System
  - Indoors: 802.11b signal strength triangulation
- Clustering Approach to identify
  - indoor locations
  - outdoor locations
  - entrances
- Scaling problems!

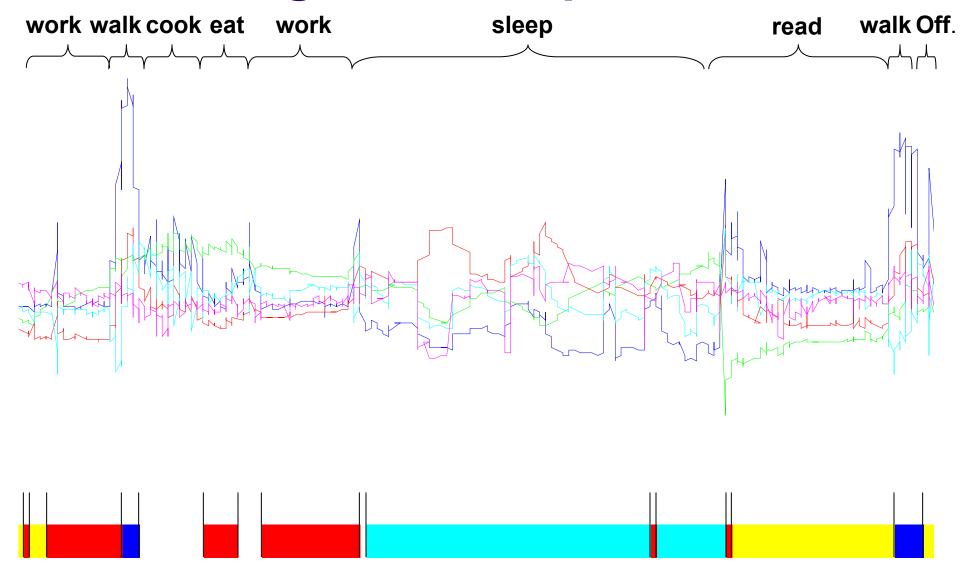
# **Preference Learning**

- Creating a generative model relating the context- and system variables
- Technique: Bayesian Networks
  - Efficient method to compute joint PDF
  - Can handle incomplete data
  - Can incorporate dynamics
- Issues
  - Algorithms for parameter- / structure learning
  - Hidden variables
  - Priors

### **Experimental Design**

- Motivation of machine learning approach
  - Survey among college phone users (preliminary)
  - Threshold analysis
- Evaluation of Context Identification method
  - Self-report study
  - Real-time movement identification / classification
- Evaluation of Preference Learning method
  - SenSay training
  - Self-report study

# Clustering ⇔ Self-reports



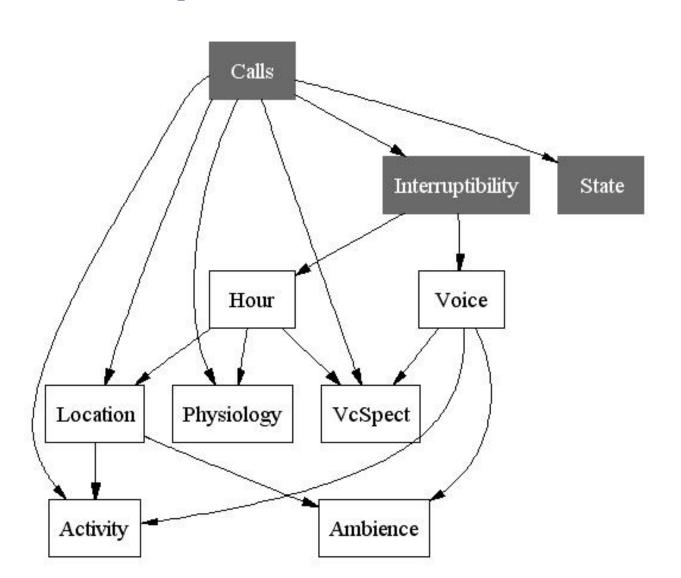
# **Self-report Study Results**

| Sample | Size     | Annotated<br>Contexts | Clusters | Time-<br>stamps | Transitions |
|--------|----------|-----------------------|----------|-----------------|-------------|
| A-1    | 20h / 2d | C,E,H,O,S             | 6        | 9               | 11          |
| A-2    | 25h / 2d | C,E,F,H,O,R,S         | 6        | 9               | 14          |
| A-3    | 29h / 2d | C,E,H,O,S             | 5        | 8               | 17          |
| B-1    | 57h / 6d | B,C,H,M,O,S           | 4        | 26              | 35          |
| B-2    | 17h / 3d | M,O                   | 2        | 20              | 25          |
| B-3    | 26h / 4d | C,M,N,O,S             | 4        | 18              | 24          |
| B-4    | 22h / 3d | C,D,E,L,O,M           | 4        | 25              | 27          |
| B-5    | 46h / 5d | C,E,L,M,O             | 3        | 37              | 35          |

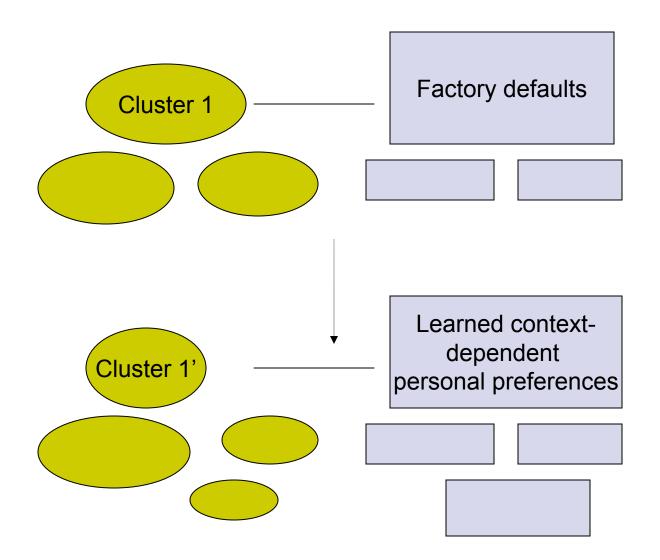
# **SenSay Training**

| Activity  | Audio       | Phone action | Time (s) |
|-----------|-------------|--------------|----------|
| Working   | Talking     | Silent       | 9.2      |
| Working   | Whistling   | High         | 9.0      |
| Working   | Silence     | Medium       | 14.0     |
| No motion | Talking     | Silent       | 6.5      |
| No motion | Not talking | Medium       | 8.5      |
| Walking   | Talking     | Low          | 10.2     |
| Walking   | Not talking | Maximum      | 11.0     |
| Driving   | Talking     | Vibrate      | 8.2      |
| Driving   | Not talking | Low          | 9.0      |

# **Self-Report Network Structure**



# **System Initialization**



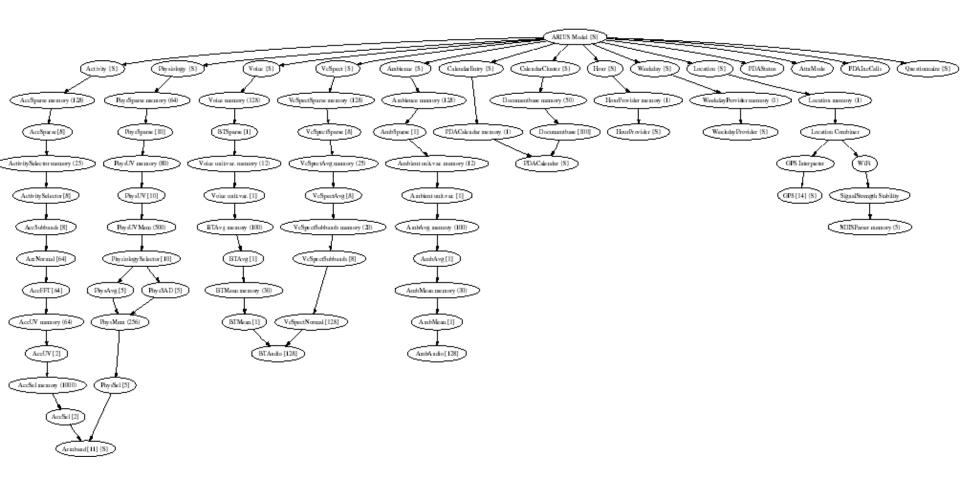
### **ARIUS Software Architecture I**

- Sensor fusion process modeled as a directed acyclic graph
  - Sensors and User Interactions are sources
  - Preprocessing steps are internal nodes
  - Clustering / Learning algorithms are sinks
  - Configurable using XML
  - Object oriented implementation (Java)
  - Extendable with new sensors / preprocessing steps

### **ARIUS Software Architecture II**

- Event based communication
  - Distribution of events over the network or streaming into a database (different speeds)
  - Infrastructural sensors can connect upon availability
  - High level of concurrency
- Maintenance / Reliability
  - Acoustic feedback in case of error
  - Tap into sensor fusion graph
  - Runs 10+ hours without recharging

# **ARIUS running...**



### **Results & Future Work**

- Learning context-dependent personal preferences possible, at least for
  - Limited number of study participants
  - Locally-constant contexts from low-level sensors
  - Mobile phone application
- Method can be realized on wearable hardware

- Other applications of the presented method
- Extended studies
- Further hardware integration