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Abstract

Through new improvements in medical imaging, it is possible to
record multiple three dimensional volumes over time, capturing the
organ motion. To be useful for the medical staff these volumes need
to be displayed in some way. This bachelor’s thesis first introduces
the basics of volume rendering, especially the principle of raycasting,
to generate 3-dimensional images from medical data sets. The main
focus lies on visualizations that enhance the viewer’s perception of
movements inside the volume.

Five different visualization techniques are presented which are all
designed for an interactive usage and an optimal interplay with the
volume renderer. In order to reach an interactive performance, all
methods rely on hardware acceleration through a GPU.
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Kurzfassung

Durch neuartige Entwicklungen in bildgebenden Verfahren der
Medizin, ist es möglich mehrere drei dimensionale Volumen über die
Zeit aufzunehmen und damit Organ Bewegungen einzufangen. Um
für medizinisches Personal nützlich zu sein, müssen diese Volumen in
irgendeiner Weise dargestellt werden. Diese Bachelorarbeit gibt zuerst
eine Einführung in die Grundlagen des Volume Rendering, beson-
ders das Prinzip des Raycastings, um damit 3-dimensionale Bilder von
medizinischen Datensätzen zu erzeugen. Der Hauptfokus liegt allerd-
ings auf Visualisierungen, die die Wahrnehmung der Volumen Bewe-
gungen für den Betrachter verbessert.

Es werden fünf verschiedene Visualisierungen vorgestellt, die alle
auf eine interaktive Benutzung und ein optimales Zusammenspiel mit
dem Volume Renderer ausgelegt sind. Um eine interaktive Darbietung
zu erreichen, sind alle Methoden auf eine Hardware Beschleunigung
durch die GPU angewiesen.
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CHAPTER 1. GENERAL INTRODUCTION AND OUTLINE OF THE THESIS

Chapter 1

General introduction and outline of
the thesis

Through the rapid advancement of technology in the medical sector,
clinicians are facing more and more data. Since the perception and
cognition of the human brain is limited, the user of such dataset is
easily overwhelmed with information [6]. So with increasing amount
of data the medical staff may not take advantage of the information
stored in the data. Solutions to this problem can be found in the area of
information visualization. Information visualization can be defined as
"the process of transforming data, information, and knowledge into vi-
sual form making use of humans’ natural visual capabilities" [6]. With
the rapidly growing performance and storage capacity, modern com-
puter can be used for interactive visualization of enormous amounts
of data. But the goal is not to let the computer do the interpretation of
dataset – which is an active field of research by itself. Instead the data
is just refined and reduced by a software to let the viewer explore the
data more intuitive and thus get a deeper understanding of the details
and relations which are not obvious to spot in the raw data.

Medical imaging splits up into the image acquisition, the process-
ing and visualization of the acquired images [6]. Three of the main
sources of medical images are the computed tomography (CT), mag-
netic resonance imaging (MRI) and ultrasound imaging. Each of these
systems is capable of recording a stack of 2D slices of the human body,
which can be interpreted as a 3D volume. In the case of a CT these
images are generated by shooting x-rays through the body and ana-

2



CHAPTER 1. GENERAL INTRODUCTION AND OUTLINE OF THE THESIS

lyzing their absorption. The basic idea is that different tissues have
different absorption rates and therefore can be visualized as different
gray values. A MRI first generates a powerful magnetic field around
the person which causes water protons in the body to align with the
field. An applied electromagnetic field then changes the alignment of
the protons. When the electromagnetic field is turned off, the protons
again align to the magnetic field which creates a signal that can be
detected by a scanner to create the image. The strength of the signal
depends on the strength of the magnetic field and the tissue the pro-
ton is part of. Ultrasound on the other hand uses sonic waves which
are reflected by the tissue. The echoes with their amplitude and spatial
location are recorded and imaged. Each procedure has its own area of
application depending on the patient.

While 3D volume visualization is still an ongoing field of research
[25][7][13], this thesis introduces different visualization techniques for
4D volume datasets. A 4D dataset is thereby only several 3D volumes
taken over time. So additional to the images of the body’s inside, also
the motions of organs come clear. Unfortunately most of these move-
ments are only marginal and therefore hard to spot especially over a
greater period of time. A good visualization should counter this prob-
lem and help a viewer to understand and interpret the motions more
easily. Since most of the motions in the body are caused by breathing,
this thesis will concentrate on the breathing motion, but the presented
methods should also work under different conditions.

Since all visualization should be usable at interactive frame rates,
all procedures make use of the graphics processing unit (GPU). So
the first part of the thesis will give an overview of different GPU pro-
gramming techniques. By name these are OpenGL, an application pro-
gramming interface (API) specialized on producing 3D graphics, and
CUDA, an API for general programming on a (NVIDIA) GPU. The
first part of the second chapter introduces a technique to visualize 3D
and 4D volumes called raycasting. The second part describes a ray-
caster implementation in CUDA with emphasis on cutting planes and
transfer functions. Previous work is also handled in the third chap-
ter, which covers especially flow visualization. Finally the fifth chapter
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CHAPTER 1. GENERAL INTRODUCTION AND OUTLINE OF THE THESIS

presents different visualization approaches for 4D volumes. The visu-
alizations start with some methods for 2D space but the focus lies on
the following 3D techniques. At the end of the chapter the achieved
application is presented and the performance of the visualizations es-
timated. The last chapter gives a short conclusion and proposals for
future work.
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Chapter 2

Introduction to OpenGL and CUDA

The following chapter describes two APIs for programming the graph-
ics hardware. Though both utilize the same architecture, the first pre-
sented OpenGL is specialized in 2D and 3D graphics, while CUDA
pursues a more general programming approach.

2.1 OpenGL - The Open Graphics Library

OpenGL is a 3D Graphics API currently developed by the Khronos
Group, an industry consortium of companies like Apple, AMD, Intel,
NVIDIA and more [3]. As the name suggests it is an open specification
of a graphics library (GL) which is implemented by different (hard-
ware) vendors (the implementation is often not open source). OpenGL
may be hardware accelerated by a graphic card (GPU) but can also run
in software – but properly with a heavy impact on performance. Ad-
ditional functionality is provided with so called extensions. All mem-
bers of the Khronos Group can add custom extension to the standard,
however all methods and objects of the extension are marked by a
vendor’s suffix and are therefore not available in all implementations.
When the extension prevailed and is implemented by different ven-
dors, the members of the Khronos Group can decide to include the
extension to the core specification.

There are basically two different versions and thus programming
paradigm: the Fixed-Function Pipeline (version 1.0-1.5) and the Pro-
grammable Pipeline (since version 2.0). OpenGL 2.0 and 2.1 are a
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CHAPTER 2. INTRODUCTION TO OPENGL AND CUDA

bit special, because they support both pipelines [3]. Since the fixed
functionality is deprecated, this thesis will concentrate on the pro-
grammable pipeline. However, many elements of the Fixed-Function
Pipeline are still used in the programmable parts.

2.1.1 GLSL

The GL Shading Language is a programming language for so called
shader [23]. A shader is a small program that is executed on a stream
of elements - for example vertices or pixels. It is characteristic that ev-
ery shader call is independent from previous or future calls, so that
the processing order of the input stream does not have to be determin-
istic. Because of this the stream can be processed in parallel. I refer to
"shader" in the following as the program that is executed on a single
element of the stream, so for example "the shader modifies the vertex
color" means that the shader changes the color of every single vertex
of the stream. Modern graphic hardware persists of over 100 shader
units thus having an extremely high through-put compared to a clas-
sic single core CPU (Fig. 2.5) – but of course with a more limited field
of use. GLSL is based on the C programming language with some ad-
ditions like build-in vector and matrix structures. Most of the C fea-
tures like loops, branching, functions and preprocessor directives are
supported. However, pointers and recursion are not part of GLSL.

Currently there are three different types of shader, which in order
of execution are: vertex-, geometry- and fragment shader. All have a
specialized function in the pipeline and therefore different in- and out-
puts. Each shader can send variables to the following stage but not the
other way around – so a geometry shader can communicate with the
fragment shader but not with the vertex shader. By the use of so called
"uniform" variables the application can also set special variables in the
shader. However, this has to be done before the shader is executed on a
block of data. The three shader together build a so called "shader pro-
gram" which defines more or less the core functionality of the pipeline.
A shader program can be switched while rendering, so it is possible to
use different shader programs on different scene objects.
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Figure 2.1: OpenGL Programmable Pipeline

GLSL is part of the OpenGL standard but it is also possible to use other
shading languages like Cg (C for Graphics)[8]. These alternatives only
differ in language features but the overall shader structure remains the
same.

2.1.2 Vertex Buffer Objects

OpenGL is designed with a pipeline structure in mind, which can be
seen in figure 2.1. At first the pipeline needs some raw data from
the application describing the desired scene. OpenGL supports dif-
ferent primitives like points, lines, triangles, quadrilaterals or poly-
gons which can be used to build more complex structures. All these
primitives are defined by their corner points, called vertices (sg. ver-
tex). This structures are uploaded in the form of Vertex Buffer Objects
(VBO) [17]. A VBO consists of an array of vertices and a list of indices
which describe the connection between vertices. Once uploaded to the
GPU the VBO can be reused again and again without any interference
of the CPU. However, if the data of the VBO is changed by the CPU
it has to be uploaded again. Beside the position and index, a VBO can
also contain information about the color, normal and texture coordi-
nate for every vertex. A normal OpenGL scene consists of different
objects which are all saved as VBOs and rendered consecutive.
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Figure 2.2: Stages of Vertex Transformation [3]

Until OpenGL 2.1 it was also possible to directly upload single
primitives in each render pass. Since this is rather slow, primitives
could be packed into so called display lists which are also just up-
loaded once. However display lists have a more restricted field of use
than VBOs, so that since OpenGL 3.0 the direct mode and display lists
are deprecated.

2.1.3 Vertex Shader

All VBOs entering the pipeline are first processed by the vertex shader.
The shader gets a single vertex as input and also outputs a single ver-
tex. It has access to all attributes of the vertex like the position, color
or normal and can modify them. However, the shader has no infor-
mation about the topology of the vertices and cannot remove or add a
new vertex to the pipeline. Beside the vertex attributes, the shader has
also read access to textures. A standard use case of the vertex shader
is the ModelView- and Projective Transformation (Fig. 2.2). Before the
vertex shader became programmable, it only applied both transforma-
tions and evaluated the local lighting.

ModelView Transformation

In order to avoid a constant change of the geometry to fit it in the right
position of the scene, most OpenGL applications distinguish between
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different spaces. A VBO starts in the object space where it is located
in its own coordinate systems origin. For modeling a scene with more
than one object, each object has to be transformed from its own ob-
ject space to the global world space which can be done with a matrix
multiplication. Each VBO uses an affine matrix containing rotations,
translations and scalings which describes how to map its own coor-
dinate system to the global system. This matrix used on every vertex
of an object by the vertex shader transforms the complete object to the
scene. While rotations and scalings can be described in one 3x3 matrix,
the translation would be an extra addition with the translation vector.
All three transformations can be put together into a 3x4 matrix. But
since a multiplication of a 3x4 matrix with a 3x1 vector is not defined,
a homogeneous coordinate is added to each vertex. Thus all vertices
are extended from (x,y,z) to (x,y,z,1).

The same matrix can also be used to implement camera movements.
Since OpenGL requires the camera in the origin, looking along the
negative z-axis, the whole scene is moved around the camera instead
of the camera around the scene – this is called the view- or eye space.
So the object-to-scene matrix is simply multiplied by a scene-to-view
matrix which contains the opposite transformations than the camera
should have. Both matrices together are referred to as ModelView-
Matrix.

Projective Transformation

Because the scene should later be displayed on the screen, it has to be
projected from the 3D space to a 2D plane. The later rasterization will
(more or less) just set the z coordinate to 0 – which results in an orthog-
onal projection. This, however, lacks any perspective impression since
an object will retain its size regardless if it is near or far away from the
camera. In order to get a real depth, far away objects should appear
smaller than near ones. Since the vertices are already in homogeneous
coordinates, a 4x4 projective matrix transforms them from (x,y,z,1) to
(x,y,z,w). For simplicity let’s assume to map a 2D scene to a 1D line
with a distance of 1 from the origin like in figure 2.3. The Intercept
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(a) (b)

Figure 2.3: Image (a) before perspective transformation (b) after perspectiv transformation

theorem yields that (x,y,1) is mapped to (x/y,1,1) which is a multiple
of (x,y,y). So transferred to the 3D case when (x,y,z,1) is mapped to
(x,y,z,z) and then divided by z, all vertices will lie on the same hy-
perplane (x/z,y/z,1,1). Consequently a basic projection matrix would
look like this: 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0


In order to support additional parameters like field of view, aspect
ration and different clipping planes, the matrix can be extended with
additional parameters.

2.1.4 Geometry Shader

A geometry shader gets a single primitive as input and can add or
remove vertices from it or create new primitives [5]. The type of the
in and out coming primitives must be known before runtime but can
differ from each other. For example a shader gets points as input and
outputs a triangle. The vertices of one primitive are accessible as an ar-
ray but the shader emits the outgoing vertices one by one. The geome-
try shader stage is optional and can be skipped. Vertices or primitives
which are added by the geometry shader are not processed by the ver-
tex shader. Regardless of the input, the geometry shader can only emit
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(a) (b)

Figure 2.4: Image (a) triangle after projection (b) triangle after rasterization

points, lines or triangles. Even if this shader stage is unused, OpenGL
will break quadrilaterals or polygons into triangles.

2.1.5 Clipping and Rasterization

Before the rasterization, OpenGL automatically clips all primitives
which are outside the viewing volume. Primitives protruding into the
view are split so that only the visible part remains.
Until now the scene consisted only of vertices and connections be-
tween them, the surface of a primitive was insignificant. OpenGL now
projects all vertices onto a plane whose size matches the window size
and rasterizes each primitive at a pixel grid. Since all polygons are
broken up into triangles and triangles are always planar, the color and
other attributes at all points inside the polygon can be linear interpo-
lated from the three corner vertices. This concept is illustrated in figure
2.4. The resulting values for each pixel are called fragments.
Because all primitives are scanned independently and may also over-
lap, there may be more than one fragment per pixel. However, in the
final image each pixel can have only one color, so the following steps
provide methods to merge this values into one.

11



CHAPTER 2. INTRODUCTION TO OPENGL AND CUDA

2.1.6 Fragment Shader

Fragments leaving the rasterzation are processed by the Fragment
Shader. Similar to the Vertex Shader it can only edit one fragment, has
no access to other fragments and cannot add new fragments to the
pipeline, though the shader can remove fragments. Important built-in
attributes are the fragment color, the corresponding 2D pixel position,
a depth value and the texture coordinates. The depth is a floating-
point value between 0.0 to 1.0 and describes the fragments’ position
in relation to the near (0.0) and far (1.0) clipping plane. However, this
depth buffer is not linear so that values at the near plane are more ac-
curate than distant ones.
An important concept of modern 3D graphics are textures. A texture
is usually a 2D image which is mapped onto a polygon. For example
instead of building a stone wall of single bricks, just a picture (the tex-
ture) of a wall is mapped onto a quad. The texture coordinates define
the exact mapping of the 2D texture onto the 3D polygon. They are set
per vertex by the application and are also interpolated in the rasteri-
zation conversion. OpenGL supports 1D, 2D and 3D textures with 1 to
4 color channels and precisions of 4 to 32-bit for each channel.
The Fragment Shader has to output a color and a depth value. Typical
use cases are per-pixel lighting, bump mapping or bloom effects [23]
[9].

2.1.7 Fragment Tests

After the Fragment Shader the remaining fragments can be tested re-
garding to various conditions. Since most of these tests are deprecated
and can be replaced by the previous shader stage, only the depth test
should be mentioned here. As noted before, there may be more than
one fragment per pixel but basically only the foremost is needed. The
depth test checks every incoming fragments’ depth with the depth of
the corresponding pixel in the frame buffer. If the fragments’ depth is
greater than the pixel depth, the fragment lies behind the pixel and is
occluded. Else the fragment is assigned to the blending stage.
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2.1.8 Blending

Fragments which passed the previous tests are merged with the cur-
rent pixels in the frame buffer. It is generally distinguished between
blending with or without alpha. The alpha channel of a color de-
fines its transparency: 0.0 means complete translucent and 1.0 com-
plete solid, values in between are transparent. If no alpha channel is
present or always 1.0, an incoming fragment just replaces the pixel in
the frame buffer. However, if it is transparent, it need to be blended
with the pixel color.

color = alphafragment ∗ colorfragment + (1− alphafragment) ∗ colorpixel

Of course correct result are only achieved if the scene primitives
are rendered from back to front, otherwise fragments will not pass the
depth test even if they are behind a transparent pixel.
When the complete scene has run through the pipeline, the resulting
image can be displayed on the screen.

2.1.9 Frame Buffer Objects

It is sometimes useful to render the scene to an off screen image in-
stead of the frame buffer, because for example the rendering is just an
intermediate step for further rendering and should not displayed to
the viewer yet. For this case OpenGL supports Frame Buffer Objects
(FBO). A FBO encapsulates the normal frame buffer and is a collection
of logical buffers [19]. The FBO for itself has no real use until a texture
or a Render Buffer Object (RBO) is attached to a certain buffer. These
attachment buffers are the depth, stencil and multiple color buffers. If
a buffer should later be accessible by the application or a shader, a nor-
mal texture has to be used as attachment. For buffers which are only
used in one render step but not later on, a RBO is more suitable be-
cause it is faster. When the attachments are complete, the Frame Buffer
Object can be bound to the current context and sort of replaces the ac-
tual frame buffer. All values normally written to the frame buffer are
now written to the associated attached buffer of the FBO.
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Figure 2.5: Comparison of development between CPUs and GPUs estimated in GFLOPs.[10]

For example it is possible to render only the depth buffer and use
this buffer later on as a normal texture. At first a new FBO and a new
2D texture are generated. The texture is then attached to the depth
buffer of the FBO. Before starting the first render pass, the FBO is
bound to the current context. After the rendering, the Frame Buffer
Object is unbound and the texture now contains the depth of the first
render pass. Now a second scene can be rendered with the normal
frame buffer and the shader can make use of the depth texture of the
previous render step.

2.2 CUDA - Compute Unified Device Architecture

Realtime 3D graphics like we can see in modern video games or vi-
sualizations would not be possible without the acceleration of a sep-
arate hardware unit – the Graphics Processing Unit (GPU). This is
achieved by a different architecture than regular Central Processing
Units (CPU). Instead of just a few processing cores, a modern GPU
consists of over 100 so-called shader units. These units work indepen-
dently from each other on a stream of elements – in the case of OpenGL
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vertices or fragments. This design enables an enormous data through-
put compared to an iterative approach (Fig. 2.5). Of course these ad-
vantages are also be useful in non graphic related areas. For Nvidia
GPUs this can be done with CUDA.

Programmers can use either the driver API or CUDA C. While the
driver API is an assembly-like language, CUDA C is oriented on the C
programming language and uses many of its features. A CUDA pro-
gram consists of two parts in general: the host- and the device code.
Since the GPU is usually a separate hardware device, it needs instruc-
tions from the CPU – the host code. It initializes certain parts, uploads
resources and finally starts the device code. An overview of this pro-
cess is displayed in figure 2.6. Since the host code is simply running
on the CPU, it is written in C, C++ or any other language supported
by CUDA and is often only executed once. The device code (kernel)
on the other hand is written in CUDA C or with the driver API and is
executed multiple times in parallel by the GPU. CUDA is design to use
a hierarchical thread model. The kernel is executed by a thread, many
threads together form a block and blocks are part of a grid. In order
to execute the kernel, the host defines how many threads one block
consists of and how many blocks should be used. Blocks are required
to execute in parallel, threads in one block can synchronize their cal-
culations. Each thread has its own local memory and all threads of one
block can access the shared memory of the block which is slower but
bigger than the thread memory. All threads independently of which
block or grid can use the global memory, the biggest but slowest one.

Of course there are also other GPGPU (General-purpose comput-
ing on graphics processing units) architectures which are not limited
to Nvidia cards: OpenCL [16] and DirectCompute. OpenCL is an open
specification and shares many similarities with CUDA. Like OpenGL
it is developed by the Khronos Group and can be implemented on ev-
ery GPU by any vendor. DirectCompute is part of Microsoft’s DirectX
SDK since version 10.0. There is also AMD FireStream [1], but it has an
analogous restriction like CUDA, namely that it only works on GPUs
from AMD.
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Figure 2.6: Serial code executes on the host while parallel code executes on the device.[18]
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Chapter 3

3D - 4D Volume visualization

A fast and easy implemented technique to represent a volume in 3D
is a GPU-based raycaster. It was first used in the 1980s but because
of the high requirements on the graphics hardware the first interac-
tive implementations were published around 2003 [7][13]. Basically
a raycaster shoots rays from the viewpoint through the volume, takes
samples along the way and finally sums these samples up to one value
per ray. Since every ray can be calculated independently from all other
rays, it is a perfect application to run parallel on the GPU. A raycaster
should not be confused with a raytracer which has a complete differ-
ent area of application. The following chapter will first describe the
basic techniques of a raycaster and afterward an implementation with
CUDA. Also an alternative volume rendering method is mentioned
in the following. The end of the chapter gives an introduction to flow
visualization and other previous work.

3.1 Raycasting

The first part of a raycaster is the generation of the rays. Since the
result should be a two dimensional image of the volume, one ray is
casted for each pixel. There are basically two approaches to setup the
starting point and direction of a ray. The first one is straight forward
by computing the intersection of the ray with the bounding box of the
volume. The method described by Kay et al. [11] breaks the box into 3
pairs of parallel planes for the 6 sides of the cube, intersects them with

17
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Figure 3.1: Rendering only the front or back faces of the color-coded bounding box retrieves
starting and ending positions for the rays in volume coordinates for every single screen pixel
[25]

the ray and returns the nearest and farest intersection distances. A ray
is defined by its origin (Ro) and its direction (Rd). To use this method
properly, the bounding box of the volume must be axis aligned. The
algorithm first computes the intersection with all planes

T1 = (
boxmin − ~Ro

~Rd

) T2 = (
boxmax − ~Ro

~Rd

) (3.1)

where boxmin and boxmax are three dimensional vectors containing
the minimal and maximal extents of the box. The division is meant
component-wise. Now for each dimension the smallest and largest
values of T1 and T2 are stored in the 3d vectors Tmin and Tmax. The
intersection points are now the largest value in Tmin and the smallest
value in Tmax. If the largest value is smaller than the smallest, the box
is not hit.

Another approach uses OpenGL features for the ray direction
[25][13]. At first the volume bounding box is drawn as a solid
cube. The colors of the corners encode their position ranging from
(0.0,0.0,0.0) for the front, lower, left corner to (1.0,1.0,1.0) for the back,
upper, right corner. This colored cube is now rendered into a texture
from the desired camera position (Fig. 3.1 left). Remember that val-
ues between the corners are interpolated. The second steps renders
the same cube but instead of the front faces now the back faces (Fig.
3.1 right). In order to receive the ray start and end position a fragment
shader just needs to subtract the back face color from the front face
color saved in the texture. The ray position are then already given in
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Figure 3.2: Schematic functionality of a raycaster [7]

volume coordinates and therefore always inside the volume.

With the definition of the start and end positions of the ray, the ray-
caster must now evaluate the volume-rendering integral [7] (see eq.
3.2), which is done by evaluating each ray at discrete sampling posi-
tion and blending the samples.

I(D) = I0e
−
∫D

s0
κ(t)dt +

∫ D

s0

q(s)e−
∫D

s
κ(t)dtds (3.2)

The ray is initialized with the start position and a transparency (al-
pha) value of 0.0. A normal medical volume data set only contains
values from 0.0 to 1.0 which can be interpreted as transparency. In the
following steps each ray is sampled on discrete points, also displayed
in Fig. 3.2:

• volume access the current position of the ray is used to look-up
the data value from the volume

• blending the value of the previous data access is blended with the
current color of the ray

• advance ray position the sampling position is advanced one step
along the ray

If the ray leaves the volume or reaches a transparency value of 1.0,
the sampling loop is aborted. When all rays are sampled, the image
plane contains a picture of the volume from the desired camera posi-
tion.

19



CHAPTER 3. 3D - 4D VOLUME VISUALIZATION

3.2 CUDA Implementation

As basis for the implementation of the raycaster, an example of the
NVIDIA CUDA SDK was used. Since it is an example, the code is
structured simply and provides a solid foundation for more complex
extensions. So the first part will give a description of the basic imple-
mentation and then of two custom extensions.

At first some basic requirements have to be setup. In order to store
the resulting image, an OpenGL pBuffer is used since later on the dis-
playing is done by OpenGL and it saves two data copies from CUDA
(device) to the application (host) and again from the application to
OpenGL (device). The CUDA block and grid size depends on the
pBuffer size, so that for every pixel in the buffer one CUDA thread
is generated. The volume is uploaded as a 3D floating point texture
with normalized access.

At first the direction of the ray and the intersection points with vol-
ume have to be determined. The direction is simply a vector from the
origin at (0,0,0) to (x,y,z) where x and y are the coordinates of the cur-
rently processed pBuffer pixel and z the distance to the (virtual) image
plane. To determine the intersection points with the volume, I decided
to use the ray-box intersection algorithm, because it does not need any
modifications if the camera is inside the volume. In order to ease the
texture look-up, I assume that the bounding box of the volume begins
at the coordinate systems origin and stretches along the positive axes.

Starting at the near intersection point the ray is now sampled step-
by-step at equidistant points. Since every sampling point is inside the
volume and the volume stretches from (0,0,0) to its borders, the sam-
pling position only needs to be divided by the volume size to get the
normalized look-up position. Values received from the volume are au-
tomatically linear interpolated by CUDA. To sum up all alpha values
along the ray, a front-to-back blending is used. A ray starts with a mag-
nitude of 0.0 and the sampled values are blended by the following
formula

alphadst = alphadst + (1− alphadst) ∗ alphasrc (3.3)
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where alphadst is the current transparency of the ray and alphasrc
the looked up value at the sampling point. If alphadst reaches 1.0 the
traversal of the ray can be stopped, because there will be no more
change. Afterwards the position is advanced to the next sampling
point until the far intersection is reached and the resulting ray color
saved to the pBuffer.

3.2.1 Transfer Function

Because the value of the voxels represent some physical property de-
pendent on the acquisition procedure, they can not be just interpreted
as transparency values like above. The resulting image would not
present a suitable visualization of the volume. A common solution for
this problem is the use of a transfer function. Instead of using the val-
ues directly, a n-dimensional transfer function maps values acquired
from to the volume to a color (composed of red, green and blue) and
transparency (alpha) value.

f(~x) : Rn− > R4 (3.4)

One aspect of a medical volume datasets is that similar tissues have
similar absorption values, for example the air surrounding the patient
has a really low magnitude, bones instead have a high one. The trans-
fer function can now assign zero values to all areas except the range of
the bones, what results in a 3D visualization of the skeleton. It is also
possible to assign a color value to a specific range and thus highlight-
ing different parts of tissue. However, the blending function has do be
adapted in order to handle the color values correctly.

colorsrc = colorsrc ∗ alphasrc (3.5)

colordst = colordst + (1− alphadst) ∗ colorsrc (3.6)

where color is a 3-dimensional vector representing the red, green
and blue color channels (RGB). The calculation of the alpha channel
stays the same as in equation 3.3.
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Unfortunately the design of a meaningful transfer function is not
trivial. The simplest implementation uses a 1D look-up texture which
maps values from 0.0 to 1.0 to a RGBA color value. This 1D function
can than be modified by the user, e.g. through a histogram. Engel et al.
[7] also describes some more complex transfer functions using also the
gradient of the volume to find transitions between tissues and making
it therefore easier for the user to select specific features (organs) from
the volume. However, designing a transfer function may not be intu-
itive for the user. The (semi-) automatic creation of a meaningful trans-
fer function is still an ongoing field of research and Most techniques
only try to simplify the user interaction like described in König et al.
[12]

3.2.2 Cutting Planes

Often the viewer is not interested in the whole volume but rather in
some specific area. Of course a transfer function could be used which
removes all features except the desired area. On the other hand it is
quite uncomfortable to constantly change the TF for every area that
should be examined. Another approach is to just "cut away" parts of
the volume with a cutting plane. These are easy to implement by using
the Hesse normal form (HNF)

~p · ~n0 − d = s (3.7)

where ~p is the location vector of an arbitrary point P , ~n0 the unit nor-
mal vector of the plane, d the distance between the plane and the coor-
dinate systems origin and s the distance of the point P to the plane. If
s is greater than zero, P is on the side of the plane the normal points to
and on the other side if s is smaller than zero respectively. For s=0 the
point is on the plane. For each sampling point the HNF is evaluated
and checked for s>0. If so, the sampling is continued normally. Other-
wise this sampling point is skipped and the next point examined. This
way even more than one cutting plane can be implemented effectively
by just evaluating the HNFs for each plane at the sampling positions.
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Figure 3.3: Schematic functionality of a object-based volume renderer [7]

3.3 Texture Slicing

For completeness another volume rendering technique should be
mentioned. This method makes use of the fact that the 3D volume
can be represented as a stack of 2D slices [7]. These 2D slices are ren-
dered as quadrangles with a transparent 2D texture on it (Fig. 3.3). So
the first step is to setup the proxy geometry with all the 2D slices. Af-
terwards the textures are mapped onto the slices. In the final step the
slices are blended with a back-to-front blending for example.

The advantage of this technique compared to the raycaster is that
it only needs standard Fixed-Function OpenGL commands and has
therefore a high performance [7]. However, in a not optimized imple-
mentation the image quality is reduced because of heavy aliasing ef-
fects which are caused through the fixed distance (sampling rate) of
the texture slices. Of course this object-based approach also supports
advanced techniques like a transfer function, but in this thesis a ray-
caster will be used because it produces a better image quality and is
easier to adapt to different situations.

3.4 Flow Visualization

One important subfield of visualization is the so called flow visual-
ization. It deals with the dynamics of fluids like water and gas and
is used in many different areas of interest including the automotive
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Figure 3.4: (left) direct visualization by the use of arrow glyphs, (middle) texture-based by
the use of LIC, and (right) visualization based on geometric objects, here streamlines. Images
from [14]

industry, aerodynamics, meteorology and medical visualization [14].
Since the motions in the human body are also a kind of flow, it makes
sense to review the important aspects of flow visualization (FlowVis)
for the visualization of breathing motion. FlowVis can be roughly split
up into 4 categories:

1. Direct flow visualization

2. Geometric flow visualization

3. Dense, texture-based flow visualization

4. Feature-based flow visualization

FlowVis always works on a vector field either in a discrete or analytic
representation. The field can be 2- or 3-dimensional, but some visual-
izations are only useful for 2D vector fields. In the following chapter a
short introduction to each of these categories is given.

3.4.1 Direct flow visualization

The most straight forward approach of vector field visualization is the
direct flow visualization. On the one hand arrows are used to visual-
ize the direction and magnitude of the vector field on a certain position
(Fig. 3.4 left). This arrows can be layed out on a regular grid or varied
in density depending on local criteria of the field. The advantages of
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this technique are that they are easy to understand, simple to draw and
usable both in 2D and 3D. Another part of direct FlowVis is the color
coding of the magnitude or velocity of the field. Thereby only scalar
values are visualized by a certain color which is useful when the direc-
tion of the field is not of interest. Color coding is generally unsuitable
in 3D space but can be used on surfaces of 3D objects. Laramee et al.
[14] refers to this as 2.5D.

3.4.2 Geometric flow visualization

Unlike the direct approach, which only shows local features of a vec-
tor field, the geometric visualization first integrates the data set and
displays the results with geometric objects. Namely there are three dif-
ferent types: stream, path and streak lines.

stream lines describe an instantaneous particle path in a steady flow
[4]. A steady flow does not change over time, unlike an unsteady
one. Stream lines are calculated by solving an initial value prob-
lem of an ordinary differential equation [4]. (Fig. 3.4 right)

path lines are similar to stream lines, but are the trajectories of a parti-
cle in an unsteady flow. Path lines are also the solution of an initial
value problem.

streak lines are often compared to dye injected into an unsteady flow
[4]. Particles are released from a fixed position into the flow and
then follow the current flow direction.

In a steady flow all three visualizations yield the same result. These
geometric approaches are especially suited for fluid or gaseous flows.

3.4.3 Dense, texture-based flow visualization

Another important technique in this categories is the Line Integral
Convolution (LIC). The basic primitive here is a noise texture: the tex-
ture is convolved using a kernel filter in the direction of the underly-
ing vector field [14]. It is like smearing the noise spots along the flow.
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(a) (b)

Figure 3.5: Image (a) shows a 3D LIC of a aerodynamic flow. Image (b) shows a 3D LIC of a
flow around a wheel. Both images are courtesy of Rezk-Salama et al. [22]

There are many different types of LICs but all are most suitable for 2D
or 2.5D visualization. 3D is also possible but the perception may not be
intuitive for the user. The visualization in Figure 3.5 (a) is three dimen-
sional but only the flow on a two dimensional plan is really visible.
The example in Figure 3.5 (b) uses a volume renderer with a transfer
function to address the perceptional problems. More about LICs and
other texture-based approaches like Spot Noise can be found in [14].

3.4.4 Feature-based flow visualization

Feature-based flow visualization is actually no real visualization by
itself but an extension to the three previous ones. Before the visualiza-
tion the dataset is scanned for specific flow features – like important
phenomena or topological informations [14]. The visualization only
uses this extracted features, thereby removing unnecessary informa-
tion in the dataset which is often a desirable effect. Unfortunately the
process of extraction is not trivial and dependent on the area of use,
certain features might have different meanings. In general, different
mathematical approaches are applied to find points of interests inside
the data, for example by computing the eigenvalues and -vectors of
the velocity gradient tensor. More on this topic can be found in [21]

26



CHAPTER 3. 3D - 4D VOLUME VISUALIZATION

(a) (b)

Figure 3.6:

3.5 Other previous work

Vill [28] describes different methods for the visualization of motion in
a 3D medical volume. The thesis also uses a raycaster to generate a 3D
image of the volume. However only single 3D volumes are discussed
and not 4-dimensional ones. The visualization is split into four groups:
grid-based-, particle-, plane-based- and 2D view effects. Furthermore
some selective rendering techniques are discussed. While most of the
visualizations convey intuitive understanding of the movements in-
side the body, they lack a direct integration of the volume, which neg-
atively affects the perception (see Fig. 3.6). Thus, one of the goals in
my thesis was to integrate the visualization more into the raycaster
and thereby improve the perception of the relations between the vol-
ume and the occurring motions inside the volume.

27



CHAPTER 4. VISUALIZATION OF 4D BREATHING MOTION

Chapter 4

Visualization of 4D Breathing Motion

Before beginning with the actual implemented features, some basic
setups are necessary. As dataset I am using the POPI-model (Point-
validated Pixel-based Breathing Thorax Model) [26]. It contains a high
resolution 4D CT scan of the thorax at 10 different time steps. Beside
the original images, also preprocessed images are available, which
have a significant smaller size but still contain all patient features. The
ten 3D volumes represent one average breathing cycle, from the begin
of the inspiration to the end of the expiration.

Additionally the POPI-model also provides a vector field estimat-
ing the breathing motion. All vectors represent the displacement of
one voxel in regard to a reference volume – in this case the volume
of the second time step. Since the vector field to the reference volume
would be always zero, it is not part of the dataset. However, to avoid
inconsistencies in the presented methods, a vector field with no dis-
placements is used in this case. Again the vector fields were calculated
with two different methods which are only slightly different. The pre-
cision of both fields was thoroughly evaluated using landmarks iden-
tified by medical experts in each of the 3D volumes [26].

The presented shader need at least GLSL in version 1.40 and there-
fore a OpenGL 3.1 capable graphics card. The CUDA raycaster should
work with CUDA version 1.0 but was only tested with a 1.3 compati-
ble GPU. Though it is not essential that the raycaster is implemented
in CUDA. The rest of the application is written in C++.
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Figure 4.1: slices of the CT volume at different time steps

4.1 2D slice rendering

First I will present a rather simple motion visualization which is based
on a 2D slice (Multi-Planar-Reformatting or MPR). In order to get a 2D
plane from the 3D volume a fragment shader is used which renders
into a texture. The shader gets the volume texture, the physical size
(in millimeter) of the volume and a 4D transformation matrix as input.
The later is an affine matrix describing the rotation and translation
of the slice in physical coordinates. The basic setup is a quad filling
exactly the whole screen and with the 3D texture coordinates (0,0,0),
(1.0, 0.0, 0.0), (1.0, 1.0, 0.0) and (0.0, 1.0, 0.0) for the four corners in
counter clockwise direction starting at the lower left.

The fragment shader now uses the interpolated texture coordinates
and transforms them into physical coordinates by component-wise
multiplication with the physical volume size. Now these coordinates
match a slice from the left-lower-front to the right-upper-front of the
physical volume. By multiplying the transformation matrix, the slice is
translated and rotated to its desired position. In the following this will
be referred to as volume coordinates or volume space (according to
the OpenGL spaces). Positions in volume coordinates can be divided
by the volume size to get normalized look-up coordinates for the 3D
texture the volume is saved as. With these normalized volume coordi-
nates the fragment shader can look up the volume value and return it
as the fragment color.

In order to animate the slice over time, only the texture reference
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Figure 4.2: slices of the volume with color coded vector visualization at different time steps

has to be updated every time step. Just by the animation of a few time
steps the viewer already gets an impression of the occurring move-
ments (see Fig. 4.1). To enhance the perception of motion direction
I decided to add a direct visualization based on vectors which are
placed on a uniform grid. To implement this vector grid with a com-
mon VBO would rather be slowly because at every frame the CPU has
to consult the vector field data, update the vectors accordingly and
then upload it to the GPU.

To save CPU cycles I used a geometry shader to generate
lines which represent the vectors. The shader gets a grid of
points in physical coordinates uniformly distributed from (0,0,0) to
(PhysV olSizex,PhysV olSizey,0) as input. It also needs the physical
volume size, the transformation matrix of the slice and of course the
vector field. Since the vector field exists only of 3 dimensional floating-
point vectors, it can be uploaded as a 32bit floating-point RGB tex-
ture - encoding xyz in rgb. The geometry shader now works similar
to the fragment shader generating the slice: At first every vertex is
transformed to volume space by multiplying the transformation ma-
trix. This position is then emitted as origin of the vector. On the second
step the normalized volume coordinates of the vertex are used to get
the displacement from the vector field. Since the volume and the vec-
tor field have the same physical size, the volume coordinates can also
be used for a vector field look-up. The displacement added to the ori-
gin forms the second emitted vertex. Both vertices together now build
a line from the original position of a voxel in the reference volume
to the current one. Again to display another volume frame only the
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texture IDs of the volume and vector field have to be updated.

4.2 3D vector visualization

The previous 2D vector visualization can be easily extended to a 3D
one. Since the shader works on all kind of points, the plane of dots is
just replaced by a cloud of dots, e.g. a uniform grid. Unfortunately this
does not look very good. If the grid is too dense, it generates aliasing
effects which are visual not appealing like you can see in figure 4.3(a).
The effect can be reduced by adding a jitter value to every dot instead
of distribute them evenly (Fig. 4.3(b)).

But still the visualization is not really meaningful. There are too
many dots and the magnitude of the vectors is not big enough to yield
a good perception of the occurring motion in the field. By just increas-
ing the spacing between the vectors, the information of the values be-
tween two vectors will be lost or if one vector represents the average of
all surrounding vectors, high and therefore significant magnitudes are
smoothed. In order to enhance the perception of important vectors, a
color coding is more suitable than a change of the vector spacing. The
color of a vector is therefore determined by its length. The shader only
needs a look-up table for the color and the maximal and minimal mag-
nitude occurring in the vector fields. The look-up table is a 1D texture
which maps the vector length to a color. The look-up position for each
vector is obtained by normalizing the length depending on the overall
minimum and maximum length, meaning that all magnitudes are in
the range of 0.0 to 1.0, with 0.0 representing the smallest value and 1.0
the biggest. As for the colors, all combinations can be used. A transi-
tion from blue over green to red performs empirically well, because
the blue, unimportant values are dark so that the red, more important
ones stand out. Figure 4.3(b) shows the color coding on a jittered grid.

With only the visualization of the vector field the viewer can iden-
tify areas of major movement but not to which parts of the human
body these motions are connected. Of course the MPR of the 2D ap-
proach can also be shown as a plane in the 3D view. But then the user
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(a) (b)

Figure 4.3: Image (a) a small grid results in aliasing effects (b) same grid with jittered dots
and color coding

always has to move the plane to the area of interest and also would
only get about the same amount of information he gets from the 2D
view.

Consequently the best way to show the volume in 3D is with a ray-
caster. Since the presented raycaster in chapter 3.1 is implemented in
CUDA but the rest of the application in OpenGL, it had to be ensured
that the volume size and the camera angle are both render exactly the
same with both APIs. The first problem that arises is that the OpenGL
camera is always in the origin and the scene is rotated around the cam-
era. In the raycaster on the other hand, the volume is at the center and
the camera is rotating around it. Since one is just the inverse of the
other, the raycaster adjusts its camera with the inverse of the OpenGL
ModelView matrix. But even if the camera positions match, the re-
sulting volume sizes may not. Of course both volumes have the same
physical size but this size is distorted by the perspective transforma-
tion. In OpenGL the perspective transformation depends on the field
of view and the aspect ration. In the CUDA raycaster this parameters
may not seem obvious but are represented by the distance and size of
the virtual image plane (see figure 3.2). Because the raycaster shoots
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one ray per pixel in the pBuffer, the aspect ratio is just determined by
the aspect ratio of the pBuffer. So as long as the pBuffer has always the
same size as the OpenGL window (or at least the same aspect), these
two parameters match. The field of view of the raycaster depends on
the distance of the image plane to the camera. This distance is calcu-
lated in relation to the field of view’s angle

d =
w

tan(α2 )
(4.1)

where d is the distance of the image plane, α the angle describing
the field of view and w the width of the image plane. An empirical
good value for the field of view is between 50 to 60 degree.

At the end of both render steps, two different images of the same
space are acquired, which have to be combined into one image. One
solution uses the image of the volume as background. After the ray-
caster generated the volume image, it is mapped onto a quadrilateral
which fills the complete viewport. An orthogonal projection is the
most suitable way to do this. Afterwards the depth buffer is cleared
with 1.0. Now the OpenGL scene is rendered with the appropriate
perspective projection. Since the depth buffer was cleared, all objects
are always on top of the quadrilateral which displays the volume, but
because both scenes were rendered from the exact same viewpoint it
seems that both occupy the same space. If the OpenGL scene contains
transparent objects, alpha blending needs to be enabled to produce the
correct result.
Of course this also works the other way around: first the OpenGL
scene is drawn into the framebuffer and afterward the depth buffer set
to 1.0. Then the raycaster generates the texture with the volume which
is then again mapped onto a screen size quadrilateral and blended
with the scene.
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Figure 4.4: motion path visualization between the heart and the left lung

4.3 Motion Path Visualization

The organ and tissue motion during a breathing cycle is complex and
shows great variety between regions. For example, the motions in the
lungs are relative consistent, while the movements in the heart are
more chaotic. Since the vector visualization only shows the displace-
ment compared to the beginning frame, it is hard to tell on which way
one voxel reached the current displacement. However this informa-
tion would tell the viewer the overall movement of one voxel. Path
or stream lines (see 3.4) are designed for this use case. Unfortunately
these approaches are more suited for continues flows like liquids and
not periodic flows like the breathing motion. Most of the existing flow
visualizations inject some kind of particle into the flow which then
follows the vector field. Used on the breathing motion vector field, the
particles would not distinguish between different organs and would
flow through the whole body. So instead of a global evaluation of the
flow a local one would be more suitable.

Since the vector field already contains the information of the posi-
tion of one voxel in all time steps, the path can easily be tracked. In
order to draw a path from the starting position in the first frame to the
position in the current frame, a line needs to pass through all position
between those two frames. Therefore only the starting position of the
path must be set by the application, the rest can be drawn in a geome-
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try shader. So like before the vectors, the geometry shader works on a
cloud of points and generates a path from each point. Now instead of
just the vector field texture of the current frame, the shader needs the
vector fields of all frames. Unfortunately GLSL in version 1.4 does not
support arrays of textures so all textures need to be defined explicitly.
The maximal emitted vertices need to be set in the shader layout to the
amount of frames.

The shader works as follows: First the incoming vertex is trans-
formed to volume coordinates, referred to as origin. Now a loop is
started with one iteration for every frame. At every iteration origin is
used to look up the displacement from the vector field of the iterated
frame. The origin and displacement are added, transformed to clip co-
ordinates and emitted. The resulting primitive is a line strip connect-
ing all points one voxel passed through until the current frame.

Of course this rather crude result can be enhanced in different ways.
In order to spot large displacement magnitudes more quickly, the path
can again be color coded. This time there are two different approaches:
On the one hand the color can be dependent on the overall length
of the path by simply summing all displacement lengths up. How-
ever this can lead to delusive results because paths containing only
medium displacements would have the same color as paths with one
extreme displacement and several small ones. Also to calculate the
complete length of the path, the shader first has to look up all dis-
placements from the vector fields, compute the length and then emit
the individual vertices. A simpler approach would be to color code
each point of the line with the associated displacement, so that a ver-
tex can be emitted right after the displacement look-up. The result can
be seen in figure 4.4.

A problem is that the shader currently needs references to all vector
fields at once, which may exceed the maximum supported textures
in a shader. Also especially the breathing motion is a cyclic motion
which is not represented very well by the visualization. The path is
build up step by step with every new frame. When the frames start
over, the path "plobs" back to the beginning length. Both problems can
be countered with some modifications. The basic idea is that the line
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strip representing the path only contains a fixed number of lines which
is smaller than the amount of frames. Instead of adding every frame
one line segment, at every frame only the last e.g. four line segments
are drawn (the predecessors of the very first frame would be the last
frame). Consequently the drawn path moves cyclic like the motion
field and the shader does only need references to a part of the vector
fields.

4.4 Scene Occlusion

Because the OpenGL scene rendering and the CUDA volume render-
ing are two separate procedures, there is no realistic occlusion of ob-
jects. This effects the depths perception of certain items. If for example
geometry is always rendered on top of the volume, the viewer can-
not tell if it is in front, behind or inside the volume. By moving the
camera he can at least determine the rough position of an object. This
can be enhanced by drawing a wire frame cube around the volume,
so that the viewer can spot a more precise object position in relation
to the volume. Unfortunately the occlusion problem remains. Even if
the user can now see that the object is somewhere in the middle of the
volume, he cannot tell for sure that it lies exactly e.g. in the heart.

In order to implement a real occlusion of geometry by the raycasted
volume , rays which would hit an object must terminate earlier. So the
only required information needed is the distance between the camera
and the object. This information determines how long a ray can be at
most. A method using the depth buffer of the scene is described by
Engel et al. [7]. It first renders the scene into a depth texture and then
uses the depth to terminate the ray - object intersection. Unfortunately
it is currently not possible to use a depth texture directly in CUDA.
OpenGL uses one of the GL_DEPTH_COMPONENT* internal formats
which are all not supported in CUDA. It would be possible to copy the
texture back to the CPU and upload it again with a supported CUDA
format but this would heavily impact the performance. A solution to
this problem needs a little modification of the vertex shader. The idea

36



CHAPTER 4. VISUALIZATION OF 4D BREATHING MOTION

is to save the distance of a vertex to the camera in the alpha channel of
the vertex color. These values are then interpolated over all fragments
and saved in the frame buffer. The distance calculation is done in clip
space so that the result will be linear between the near and far clipping
plane in contrary to the normal depth. The algorithm works as follows:

• the scene is rendered into the frame buffer object. After the pro-
jective transformation in the vertex shader, the z coordinate of the
vertex already describes the distance to the near clipping plane.
Since color values in OpenGL have to be normalized between 0.0
and 1.0, the distance also has to be clamped to this range before it
can be saved in the alpha channel. All relevant distances are be-
tween the near and far planes, so the final result can be calculated
with distanceToCam = (gl_Position.z + near)/(far + near)

• after the OpenGL scene is rendered, the resulting texture of the
frame buffer object is shared with the CUDA raycaster. Each ray
now fetches its maximum length by multiplying the alpha value
of the scene texture with (near + far). During the ray traversal,
this value is compared to the distance between the cameras’ origin
and the current sampling position. If the distance is greater than
the maximum length, the traversal is stopped and the ray color
written to the output buffer.

• at last the raycasted image and the scene texture are blended by
OpenGL. Of course the raycasted image has to be on top of the
scene, to get the desired result. It would also be possible to do the
blending inside the raycaster, since the raycaster also has access
to the color values of the scene. However only objects inside the
volume would be visible and it is doubtable that this approach
would be faster.

An example to this technique is shown in figure 4.5. Of course this
does not work correctly with transparent objects. If two transparent
objects overlap, they are blended to one value with one depth infor-
mation. The raycaster on the other hand would need both color and
depth values separately because the samples of a ray passing these
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Figure 4.5: a sphere partially occluded by the volume

two objects can lie in between both objects. So the color information
of the both objects has to be inserted at the current position between
the samples, before all is blended together. A solution allowing trans-
parency of objects can be found in the work of Bavoil et al. [2].

4.5 Volume coloring

The direct vector visualization has still a few drawbacks. Like men-
tioned above the grid needs to be very dense if no significant infor-
mation should be lost. Even with lower density the single vectors are
hard to spot when they are rendered together with the volume. So to
get an overview of the all the motions in the volume the direct vector
visualization is not really suitable. So an idea is to use the volume di-
rectly for the visualization of the movements. Until now I only used
a 1-dimensional transfer function to transfer the magnitude of the CT
volume to a color and a transparency value. But it is also possible to
deploy a higher dimensional function. For example Engel et al.[7] joins
the magnitude and the gradient of the volume to locate transitions be-
tween different tissues.

With a 2-dimensional transfer function both the transparency of
the volume and a color coding of the vector field can be combined.
Since the vector field is already accessible as texture for the CUDA
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(a) (b)

Figure 4.6: (a) the color coding replacing the volume color (b) color coding and the volume
color blended

volume renderer, the motion vector at all sampling points along a ray
can be determined with an additional texture look-up. Instead of pass-
ing only the intensity of the volume, the intensity and the magnitude
(length) of the vector are now passed to the transfer function, which
determines a new color and transparency based on these both param-
eters.

Unfortunately it is even harder to design a good 2D transfer func-
tion than a 1D one. Then again the 2D TF could also be split up into
two 1D TFs: The first one gets the CT intensity as input and calculates
the transparency, the other one gets the vector length and returns the
color. The second one can basically be the same 1D look-up texture
used for the color coding of the vector and the first the 1D transfer
function used previously. Figure 4.6 (a) shows the results on the CT
scan of the thorax. The colors code the magnitude from blue (lowest)
over green and yellow to red (highest). The TF for the transparency
highlights the bones, the heart, the lungs and the liver partially. For
example it is clearly visible that the biggest movement is above the
liver in the left-lower corner of the volume. Apparently there is no
motion in the center of the liver so it can be concluded that the liver is
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compressed.

Unfortunately the former coloring of the volume is completely
overridden by the vector color coding, which is essential to highlight
different parts of the body. Especially in the beginning time frames
where no deformation is occurring, the volume of the previous ex-
ample is mainly blue and it is hard to distinguish between different
features. To counter this the color of the volume and the applied color
coding can be blended. Therefor the look-up texture for the color codes
needs an additional alpha channel. It should describe how important
a color is regarded. The blending is done by following formula

colorsample = colormag ∗ alphamag + colorvol ∗ (1− alphamag) (4.2)

alphasample = alphavol (4.3)

mag is the color and alpha of the magnitude transfer function and
vol the color and alpha of the intensity TF respectively. So the final
color is dominated by the magnitude’s alpha. In contrast the sam-
ple alpha is only controlled by the intensity transfer function. 4.6 (b)
shows the volume with a linear alpha distribution from 0.0 for blue
and 1.0 for red which serves quite well.

Of course special care has to be taken with the color selection. A red
magnitude coding will not be visible on a red colored organ. In figure
4.6 (b) this problem is avoided by using colors with a low saturation
for the volume and colors with full saturation for the coding. Another
way would be to use separated color spaces for the two transfer func-
tion. For example red and white for the volume TF and blue and green
for the coding TF.

It should also be mentioned that the color coding does not really
work on a vector field but rather on a scalar field. So in the above de-
scription the vector field is in fact implicitly transformed into a scalar
field by calculated the scalar length for each vector. But there are also
other features of the flow that could be used for visualization, like the
divergence of the vector field.
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div(F) = O · F =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

(4.4)

The divergence describes the flow in or out of a region by a scalar
value. Source regions, where the field is pointing outwards, have a
positive value, sink regions, where the vector field is pointing inwards,
are negative. The idea was, that tissue is stretched at source regions
and compressed at sink regions. But the visualization did not verify
this assumption and also did not yield a useful visualization at all.

4.6 Geometry Deformation

The above color coding method is good to quickly spot areas of mo-
tion but not to examine them closer. So the viewer can only tell that
something moved but not exactly where to. Of course he can take a
closer look at the area of interest in order to estimate the motion from
the animation of the volume. Alternatively the viewer uses the former
direct vector visualization to examine details. This solutions are sat-
isfying if the area of interest is rather small and the attention is not
paid on the relation of different motions, like the movement of adja-
cent organs. A concept for an extended local visualization is inspired
by the deformable grid described by Vill [28]. Now instead of a grid,
a deformable mesh is used. A polygon mesh is a collection of trian-
gles or other primitives which together form some kind of object. In
OpenGL a mesh is represented by vertices which form the triangles
and is therefore stored as a vertex buffer object. For visualization the
mesh is now placed by the user at the area of interest. At each time
step of the animation, the mesh is deformed according to the underly-
ing vector field, so if the field at the upper part of the mesh is facing to
the top and the lower part to the bottom, the mesh would be stretched
vertically.

The implementation uses only the vertex shader. Besides the
ModelView- and the Projection-Matrix, the shader also needs a ref-
erence to the vector field (as a 3D texture), the transformation and
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Figure 4.7: geometry deformation at different time steps

the physical volume size. At first the vertex is transformed into vol-
ume space and then used to look up the displacement from the vector
field. The displacement is simply added to the vertex which, applied
to the complete mesh, distorts every vertex along the vector field. Af-
ter that the vertex shader can execute some standard calculations, like
the ModelView and Projective transformation or the evaluation of a
local illumination model.

Figure 4.7 shows the deformation on a sphere at three different time
steps. The mesh consists of about 5000 triangles and is positioned at
the transition between the right lung and the liver. Beside the defor-
mation, the vertex shader in this example also evaluates the Phong
illumination [20] with a light source that is always emitting from the
camera origin. Beside a sphere all other kinds of meshes are possible,
even with lower amounts of triangles. For test purposes I also tried
the mesh of a monkey head which performed surprisingly well. I sup-
pose that this effect is similar to Chernoff faces and the psychology of
facial recognition [15]. An examination of this assumption would be
interesting for future work.

4.7 Performance evaluation

The graphical user interface (GUI), designed with the Qt framework,
is displayed in appendix ??. It contains two OpenGL context which
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shared resources at the left and right of the center and various inter-
active parameters for the visualization in the lower tab bar. The menu
provides functions to load volumes and vector fields, changing the
transfer function, the look-up table used for the color coding and an
option to enable or disable animations. The context on the left displays
a raycasted image of the volume. The raycaster supports a 1D trans-
fer function, two clipping planes and the camera can be moved freely
around and even inside the volume. The right context shows a MPR
of the first clipping plane used in the raycaster. Both context are us-
ing the same volumes and vector fields and are synchronized so that
they always display the same timestep. Through the lower tab bar the
user can enable the different kinds of visualization and also mix them
together.

The transfer function can be modified by the user in a simple GUI
you can see in appendix ??. The x-axis corresponds to the values of the
volume and the y-axis to the alpha the values should be transferred
to. By placing colored dots the user can now modify the output of the
function. Values between the dots are interpolated. The effect on the
volume renderer is displayed in real time so that the user can easily
try different values to identify parts of the body. It would certainly be
possible to preassign the transfer function to the volume data which
would save one texture look up at each sampling point but would also
mean to lose the interactivity and if colored would take up to 4 times
more memory (4 color channels per voxel instead of 1).

The whole setup was tested on a Intel Core 2 Quad CPU with 4 cores
running at 2.50 Ghz, 4.00 GB of RAM and a NVIDIA GeForce GTX260
with 896 MB VRAM. The first test case investigates the performance
of the raycaster with three different resolutions for the pBuffer. The
results are displayed in figure 4.8 (a). Since a ray is casted for each
pixel, the resolution indicates the total number of rays. The axis of
abscissas represents four different ray sampling distances while axis of
the ordinate shows the average achieved frames per second. Smaller
sampling distances improve the image quality of the raycaster and
reduces aliasing effects. However the sampling rate has a significant
impact on the performance since the texture look-ups for the volume
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(a) (b)

Figure 4.8: (a) test results for the raycaster (b) test results volume coloring visualization

and the transfer function performed at each sampling position are the
most costly operations in the whole raycasting process.

When the raycaster also checks for scene occlusion the total frame
rate drops around 1-2 fps depending on the resolution. Since the tex-
ture look-up to get the scene depth is only performed once per ray, the
occlusion method is independent from the sampling rate. Big objects
can even enhance the frames per second because rays may be termi-
nated earlier.

The volume coloring visualization was tested with a fixed resolu-
tion of 800x600 (see Fig. 4.8 (b)). Since the vector field has to be con-
sulted for every sample, the performance depends primarily on the
sampling rate. There are totally two additional texture look-ups per
sample, because beside the vector field also the color codes needs to
be accessed at every sample. This explains why the performance is
halved.

Rendered together with the raycaster, the vector- and path visual-
ization on a grid with 49.000 points have no measurable impact on
performance. The grid size relates to a spacing of 20 mm between two
points, an empirical well performing size, where still enough infor-
mation is displayed but the viewer is not overwhelmed by the sheer
amount of vectors/paths. On a uniform gird of 482x360x242 mm (the
physical size of the used volume) the performance drops rapidly un-
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der 60 fps when the spacing is smaller than 8mm for the direct vector
visualization respectively around 14mm for the motion path depend-
ing on the length of the path.
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Chapter 5

Conclusion and future work

All presented visualizations by them self have some kind of limitation,
be it a limited perception of details or the absence of certain infor-
mations. However combined, the different visualizations compensate
their individual lacks. E.g. the volume coloring gives a good overview
of all occurring motion but lacks informations about the direction of
single movements. On the other hand the motion path visualization
shows the exact movement in detail but can be confusing in a large
scale especially when partially occluded by the volume. Together the
viewer can first identify interesting regions through the volume color-
ing and examine them closely with the path motion visualization.

Especially the geometry deformation visualization is designed to be
used in an animated framework. But also all other methods gain ad-
vantages through animations. The differences between two time steps
are then much easier to spot than when the steps are displayed static
like side by side in figure 4.4. Also the visualization should be inter-
active for the user. Like mentioned above the combination of differ-
ent methods works best when the viewer can activate or deactivate
them on demand because more than two active visualizations would
be more confusing than helpful.

Of course these are only concepts of possible visualizations and
there is still some future work before using them in a productive envi-
ronment. On the one hand there is the raycaster performance. The pre-
sented raycaster uses nearly no optimization and therefore the image
quality must be reduced to achieve interactive frame rates. However

46



CHAPTER 5. CONCLUSION AND FUTURE WORK

realtime volume rendering is still an active field of research and there
are already many different optimizations. For example the current im-
plementation also samples rays in empty regions of the volume (e.g.
regions of air), which produce no real information. A common solu-
tion to this and other problems is called bricking, which divides the
volume into smaller chunks called bricks [24]. Empty bricks are re-
moved and are not passed by rays.

Another current problem is the memory usage. Since beside the vol-
umes also the vector fields must be uploaded to the GPUs’ VRAM,
large volumes are problematic. The POPI model for example consists
of 10 volumes with a size of 482x360x141 voxels and a resolution of
16-bit. These alone already consume around 470 MB of the available
VRAM. Because one volume is used as reference, there are only 9 vec-
tor fields with a size of 235x176x141 vectors. Each vector contains three
32-bit floating point numbers, which sums up to about 600 MB. So to-
gether the graphic hardware should at least contain 1280 MB of VRAM
to also hold other, minor variables and textures. Of course the volumes
and vector fields can be down sampled but only with a loss of informa-
tion. Also the POPI model only contains the thorax and not the whole
body. Complexer volumes would need a more sophisticated memory
management. Basically only the currently displayed volume and vec-
tor field needs to be hold in VRAM. So while the current volume is
displayed by the GPU, the data for the next frame can be uploaded to
VRAM by the CPU, which is called asynchronous streaming [27]. This
technique would reduce memory consumption but should not affect
the overall performance of the application.

All visualizations are designed to be used interactively, however a
special graphical user interface is missing. A GUI should be intuitive
to use and help the user by his examination of the volume. For exam-
ple it would be nice if the user just can click on an area of interest in
the volume to display the geometry deformation visualization instead
of moving the mesh to this position by entering coordinates. Also the
visual presentation could be improved. The path generated in the path
motion visualization is currently quite angled and would properly
look more appealing when displayed as a curve. The depth percep-
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tion could of course also be enhanced with stereoscopic 3D. Since the
visualizations were not tested by any members of a medical staff, a
usability study would also be interesting for future work.
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Chapter 6

Appendix

Ich hab alles geschaft
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