Selection and Zooming using Android Phone in a 3D Virtual Reality

Yanko Sabev Director: Prof. Gudrun Klinker (Ph.D.) Supervisors: Amal Benzina Technische Universität München

Introduction

Human-Computer Interaction through time

The Cubic SpaceMouse the YoYo and from Froehlichs "The Quest for Intuitive 3D-Input Devices"

Kiliks et al. "two-4-six"

Buffalos GyroMouse

5DT Data Glove Ultra

Apple iPhone 4

Most Relevant Works

- "Phone Based Motion Control Travel Technique in VR" – FAR 2010
 - Android phone for traveling in a VR
 - Uses orientation sensor and touch screen
- "two 4 six" -Kilik, Blach, Fröhlich, 2006
 - Handheld device for 3D-Presentations
 - Uses Gyroscope and Touch pad

Selection and Zooming with Mobile Phone

- Input Device:
 - Android phone to control a 3D cursor
- Used integrated sensors:
 - Orientation sensor
 - Gyroscope
 - Touch screen

Android Sensors

- Orientation sensor
 - Software implementation; uses Accelerometer data
 - rotation angles around the 3 axes in degrees
 - Used value Pitch, positive values when the z-axis moves toward the y-axis
- Gyroscope
 - rate of rotation around the 3 axes in radians/second
 - Used value angular speed around the zaxis, positive in the counter-clockwise direction

[&]quot;Benzina et al. 2011"

Metaphors

- Mapping Phone -> VE
 - Orientation Metaphor:
 - Heading -> Horizontal
 - Pitch -> Vertical
 - Touch along Y -> Depth
 - Touch Metaphor:
 - Touch along X -> Horizontal
 - Touch along Y -> Vertical
 - Pitch -> Depth

Android data - Pitch

- Filters:
 - Average filters to smooth the data
 - Pitch: last three values
 - Heading: last five values
- Pitch (Vertical coordinate):
 - Calculate the difference between the current and the previous value and subtract it from the current vertical coordinate

Android data – Heading

- Heading (Horizontal coordinate):
 - Calculate the time difference between value changes and turn it from nanoseconds to seconds
 - Multiply the sensor value with the time difference
 - Substract the averaged new value from the current horizontal coordinate
- Sending data:
 - At every sensor change
 - At every finger move on the touch screen

Android data – Touch screen

- Precondition for sensor listening and data sending: finger touch
- Finger displacement:
 - On finger down set the start point and assign the current horizontal, vertical and depth values to the touch values
 - On finger move calculate the displacement from the start point and add it to the start values assigned at finger down

Virtual World Camera coordinate system (CS)

- Mapping Android CS to Camera CS:
 - 1:1 mapping:
 - X -> viewRight
 - Y -> viewUp
 - Z ->viewDirection

Cursors coordinates in the Virtual World

- Initial position:
 - 500m in front of the camera
- Coordinates calculation:
 - Add to the start position the product of the android coordinates and the accordant camera view vectors

```
cursorPosition.x() = cursorStartPosition.x() +
    cursorX*m_vViewRight.x() + cursorY*m_vViewUp.x() + cursorZ*m_vViewDirection.x();
cursorPosition.y() = cursorStartPosition.y() +
    cursorX*m_vViewRight.y() + cursorY*m_vViewUp.y() + cursorZ*m_vViewDirection.y();
cursorPosition.z() = cursorStartPosition.z() +
    cursorX*m_vViewRight.z() + cursorY*m_vViewUp.z() + cursorZ*m_vViewDirection.z();
```

Position and Rate Control

- Position control:
 - Below a threshold
 - Android sensors/touch values are mapped to cursor coordinates
- Rate control:
 - Switch above a threshold
 - Android sensors/touch values rate change are mapped to the cursor velocity

Selection mode

- Select/Deselect:
 - double tab on the touch screen
 - Color change of the cursor as visual feedback
- Bring Point:
 - Ray direction calculation: Camera to Cursor
 - Move using the Pitch of the Android device to change the camera position
- Zoom using the Touch Screen of the Android device:
 - Finger slide on the touch screen is mapped to a scale factor for the frustums clipping planes

UI and Cursor Design

Evaluation

- Hardware:
 - 50" 3D Monitor, 3D Glasses, LG Optimus 2X P990
- Virtual Environment:
 - Terrain3D
- Test scenario:
 - Use only one metaphor
 - 10 spheres with randomized appereance and constant position
 - color change for intersection feedback
 - score points depending on the distance to the sphere center
 - Time counter
 - 3 rounds
- Test Users :
 - 5 for each metaphor (=10), Age: 18-30, different gender

Test results

Touch: Rounds Mean Time

SUS

- System Usability Scale:
 - Orientation (70,5)

• Touch (78,5)

Comments

- Overall comments:
 - Occasional lack of smoothnes in the O-Metaphor
 - Unintuitive depth movement towards the center
 - Cursors depth not clear enough
- "I think it's easy to use. But I can imagine for those people who don't have a lot [...]knowledge about 3D can be difficult. (But I guess that's not the target group)..." (Touch metaphor user)

Conclusion

- People liked the Touch metaphor better and found it more easy to use and learn
- With the time as quality measure I was not able to find a relevant difference
- Both metaphor have a good learning effect

Issues

- Sensors
 - Value jumps
- Cursor
 - form sphere is maybe not the best choice for accurate selection
 - Better depth perception of the cursor
 - it appears as a circle not as a sphere
 - Depth movement of the cursor unintuitive toward the center

Future Work

- Better filtering of the sensor data for more smoothnes in the Orientation metaphor
- Finding more suitible form for the cursor (e.g. 3D arrow)
- Adding of shades to the cursor for better depth appereance
- Making the depth movement more intuitive (e.g. use the Camera-Cursor vector instead of the viewDirection vector)

