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Abstract

An important protective feature of the cerebral circulation is its ability to maintain suf-
ficient cerebral blood flow and oxygen supply in accordance with the energy demands of
the brain despite variations in a number of external factors such as arterial blood pres-
sure, heart rate and respiration rate. If cerebral autoregulation is impaired, abnormally
low or high CBF can lead to cerebral ischemia, intracranial hypertension or even capillary
damage, thus contributing to the onset of cerebrovascular events.

The control and regulation of cerebral blood flow is a dynamic, multivariate phenomenon.
Sensitive techniques are required to monitor and process experimental data concerning
cerebral blood flow and metabolic rate in a clinical setting. This thesis presents a model
simulation study and 4 related signal processing studies concerned with CBF regulation.

The first study models the regulation of the cerebral vasculature to systemic changes in
blood pressure, dissolved blood gas concentration and neural activation in a integrated
haemodynamic system. The model simulations show that the three pathways which are
generally thought to be independent (pressure, CO2 and activation) greatly influence each
other, it is vital to consider parallel changes of unmeasured variability when performing
a single pathway study. The second study shows how simultaneously measured blood gas
concentration fluctuations can improve the accuracy of an existing frequency domain tech-
nique for recovering cerebral autoregulation dynamics from spontaneous fluctuations in
blood pressure and cerebral blood flow velocity. The third study shows how the contin-
uous wavelet transform can recover both time and frequency information about dynamic
autoregulation, including the contribution of blood gas concentration. The fourth study
shows how the discrete wavelet transform can be used to investigate frequency-dependent
coupling between cerebral and systemic cardiovascular dynamics. The final study then
uses these techniques to investigate the systemic effects on resting BOLD variability.

The general approach taken in this thesis is a combined analysis of both modelling and data
analysis. Physiologically-based models encapsulate hypotheses about features of CBF reg-
ulation, particularly those features that may be difficult to recover using existing analysis
methods, and thus provide the motivation for developing both new analysis methods and
criteria to evaluate these methods. On the other hand, the statistical features extracted
directly from experimental data can be used to validate and improve the model.
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1
Introduction

The brain is a complex and heterogeneous organ that is critically dependent on its blood

supply. A human brain typically comprises about 2% of the body mass yet receives 12-

15% of cardiac output and consumes around 20% of the oxygen entering the body (Siesjo

(1978)). Insufficient blood flow and oxygen supply will result in cerebral ischemia, in which

the neurons and other blood cells are damaged and lose their function. On the other hand,

since the skull is a rigid container, excessive blood perfusion can lead to intracranial hy-

pertension or even capillary damage. As a result, numerous regulatory mechanisms act

to maintain an adequate blood and oxygen supply to the brain in accordance with its un-

derlying functional or metabolic needs, despite considerable external changes. Cerebral

autoregulation, in particular, refers to the capacity of cerebral blood flow (CBF) to remain

relatively constant despite variations in perfusion pressure (CPP) (the difference between

mean arterial blood pressure (ABP) and intracranial pressure (ICP, the pressure exerted

by the skull on brain tissue)) (Lassen (1980)).

Cerebral autoregulation is known to be impaired after severe head injury. This can in-

crease the risk of secondary neuronal injury in patients. Ischaemic stroke can damage nu-

merous homeostatic control mechanisms, which can result in hypertension (high arterial

blood pressure). Impaired cerebral autoregulation in these circumstances can thus lead to

excessive blood flow, severely increasing the risk of haemorrhage. Understanding the un-

derlying physiological processes of this autoregulation mechanism is key to investigating
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the various factors that leads to a pathological autoregulation status.

Besides pressure regulation, neural activation and blood gas reactivity are also known to

be mechanisms responsible for controlling blood flow. The development of sensitive tech-

niques for monitoring cerebral blood flow and metabolic rate has the potential to contribute

significantly to their clinical use in both health and disease. This thesis, therefore, reports

developments in analysis of clinical measurements of cerebral circulation and metabolism,

paritcularly focusing on cerebral autoregulation and its interaction with the other two

mechanisms. This chapter provides an outline of the physiological background, the key

measurement techniques and a description of the approach taken.

1.1 Physiological Basis

1.1.1 Brain Structure

The human brain is surrounded and protected by the skull, the meninges (three layers of

connective tissue called the dura mater, the arachnoid mater and the pia mater) and the

cerebrospinal fluid (CSF), a watery cushion that flows in the subarachnoid space.

The brain consists of two cerebral hemispheres, the brain stem and the cerebellum. The

cerebral hemispheres consist of a core of grey matter, surounded by white matter and an

outer cortex of grey matter, the cerebral cortex, which is around 5 mm in thickness covering

the cerebral hemispheres. The cerebral cortex is highly folded into ridges and dips (known

as gyri and sulci) which greatly increases its surface area (Nolte (2002)).

1.1.2 Brain Function

How the brain works has been the subject of much debate. Since the brain has a relatively

uniform appearance, many scientists believe in the theory of mass action, i.e. that areas

of the brain work together for every task without much regional specialization (Finger

(1999)). In constrast, another hypothesis has been proposed to argue that the specific
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types of brain function are associated with particular regions of the brain, forming the

foundation of the concept of cortical functional localization.

The second idea was supported by the observation that damage to different areas of the

brain produced relatively specific deficits in patients. Most recently, with the development

of functional neuroimaging techniques as explained below, it is possible to detect the small,

local variations in a particular brain region that relate to different types of behaviour, thus

further improving our understanding of the brain’s functional structure. Figure 1.1 is an

anatomical structure of the brain, illustrating where the different brain functions occur, as

a function map.

Figure 1.1 Functional organization of the human brain. The occipital lobe in the right
hemisphere is devoted to vision and the partietal lobe above deals with movement, position,
orientation and calculation. The frontal and prefrontal lobes in the left hemisphere are
often considered to be the most highly developed regions, dealing with the most complex
thought, such as decision making, planning, conceptualising, attention control and working
memory. The temporal lobes below deal with sound and speech comprehension and some
aspects of memory. (Taken from www.newscientist.com)



1.1 Physiological Basis 5

1.1.3 Cerebral circulation

Compared to other organs, the brain is unusual in that it is supplied by four major arteries

that eventually coalesce to form the Cirle of Willis, shown in Figure 1.2 (Willis (1664)).

These primary vessels are the two internal carotid arteries (ICA) and two verterbral ar-

teries (VA), which unite intracranially to form the basilar artery. Under normal circum-

stances (especially in young people), such an arrangement permits an adequate perfusion

of all parts of the brain despite the occlusion or obstruction of any one of the four arterial

vessels (Edvinsson et al. (1992)).

Figure 1.2 Schematic diagram of the Circle of Willis. (Taken from www.webanatomy.net)

The ICA are quantitatively more important–each contributes approximately 40% to the to-

tal perfusion of the brain. Each ICA enters the cranial cavity through the foramen lacerum,

grooves the lateral aspect of the sphenoid bone, and divides into four major branches: the

anerior cerebral, the middle cerebral, the anterior choroidal, and the posterior communi-

cating arteries. The arterial component of the cerebral circulation terminates at the level of
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autoregulating capillaries, where the network chemical exchange of matabolic substances

takes place. In contrast to the systemic circulation, the vascular wall of cerebral vessels is

impermeable to large organic molecules and plasma proteins. This aspect of the cerebral

circulation is termed the blood-brain barrier.

The venous component of the cerebral circulation, responsible for carrying deoxygenated

blood and waste products away from the brain, can be separated into two subdivisions:

superficial and deep. Superficial veins that drain the cortex and white matter coalesce

towards the pia mater at the outer surface of the brain, finally joining the dural venous

sinuses. Deep cerebral veins that drain deeper structures finally coalesce to the great

cerebral vein which eventually joins the straight sinus. The final venous outflow is through

the sigmoid sinuses which becomes the internal jugular vein in the neck.

1.1.4 Brain Energy Metabolism

Cerebral blood flow transports oxygen to brain cells via the iron containing oxygen trans-

port metalloprotein haemoglobin. Haemoglobin binds with oxygen in the pulmonary cap-

illaries adjacent to the alveoli, termed oxyhaemoglobin. Oxyhaemoglobin is then trans-

ported in the red blood cells to brain cells and releases the oxygen for cell use. Deoxy-

haemoglobin is the form of haemoglobin without the bound oxygen. Besides the haemoglobins

is also found cytochrome-c-oxidase (CtOx). CtOx is the final electron acceptor of the mito-

chondrial electron transfer chain and catalyses the metabolism of oxgen within cells. Mon-

itoring of brain concentrations of oxyhaemoglobin, deoxyhaemoglobin and cytochrome-c-

oxidase is thus an alternative to monitoring cerebral blood flow for investigating cerebral

autoregulation.

1.1.5 Regulation of Blood Flow

As mentioned above, it is extremely important that cerebral blood flow and oxygen supply

are efficiently regulated, in proportion to the energy demand of brain cells. The underlying
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mechanisms through which blood flow is regulated are highly complex, yet incompletely

understood.

Figure 1.3 is a concise summary of the mechanisms responsible for cerebral blood flow reg-

ulation. CBF is driven through the cerebral vasculature by the cerebral perfusion pressure

(CPP), which depends upon the difference between ABP and ICP. Changes in ICP occur

when cerebral volume (CBV) changes occur, for example due to loss of CSF in head injury.

Global cerebrovascular resistance (CVR) defined as:

CV R =
CPP

CBF
, (1.1)

is one convenient lumped descriptor of the properties of the cerebral vasculature.

Figure 1.3 Simplified diagram of the main mechanisms responsible for the regulation of
cerebral blood flow. Taken from Panerai (2003).

Several hypotheses have been proposed to describe the mechanisms that act on the prop-

erties of the cerebral vasculature (described quantitatively by CVR) to maintain adequate

oxygen supply: myogenic, metabolic, and neurogenic mechanisms. These mechanisms are

convenient groupings of different regulation pathways that have been observed experimen-

tally. Current understanding of these pathways will now be briefly summarised.

The Myogenic Hypothesis
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The myogenic hypothesis of autoregulation suggests that the smooth muscle cells in cere-

bral vessels either constrict or dilate in response to increases or decreases in the trans-

mural pressure, respectively. This hypothesis was first reported in Bayliss (1902), who

suggested that a myogenic response arises by the altered state of the actin and myosin

filaments in smooth muscle cells, induced by a rapid change in the intravascular pressure.

Numerous studies have confirmed that isolated cerebral vessels exhibit this myogenic re-

sponse. If autoregulatory responses rely predominantly on myogenic factors, cerebral ves-

sels would be expected to constrict in response to increases in intravascular pressure, de-

spite changes in cerebral perfusion pressure. This prediction, however, is opposite to the

experimentally observation that increases in venous pressure induce dilation, not constric-

tion, in cerebral arterioles (Wei and Kontos (1982); Mcpherson et al. (1988)).

The Metabolic Hypothesis

Metabolic mechanisms of blood flow regulation hypothesize that the decreased local blood

flow allows accumulation of vasodilating metabolites (Harper and Jennett (1990)). When

CPP falls, CBF also falls, preventing the wash-out of vasoactive molecules, such as CO2,

H+, K+ and adenosine (Kuschinsky and Wahl (1978)). In particular, since CO2 is a major

end product of neuronal metabolism, this metabolic pathway is thought to be a major regu-

lator of CBF response to neural activity. During brain activation, arterial pressure remains

constant, but the increase of local metabolism leads to increasing tissue concentrations of

metabolites whch results in a vasodilatory effect. Thus the resistance decreases and blood

flow increases, supplying the necessary nutrients as required.

The Neurogenic Hypothesis

Since the extraparenchymal and intraparenchymal blood vessels are innervated (i.e. they

are contacted by nerves in a manner comparable with blood vessels in the periphery),

a hypothesis has arisen that the nerves innervating cerebral vessels contain transmit-

ters, which are received by receptors residing on cerebral vessels, inducing vasoconstric-

tion or vasodilation (McCulloch and Edvinsson (1984)). Numerous reports, however, have
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demonstrated that autoregulation is preserved in sympathetically and parasympatheti-

cally denervated animals (Busija and Heistad (1984)), suggesting that the sympathetic or

parasympathetic nervous systems are unlikely to play a central role in CBF regulation.

Other studies have reported that the lower limit of CBF autoregulation was shifted toward

higher levels of blood pressure in sympathetic activation or parasympathetic denervation

(Paulson et al. (1990); Morita et al. (1994)), suggesting a modulating effect of sympathetic

control of cerebral circulation. However, the role of autonomic modulation on autoregula-

tion is far from unanimous in the literature. A recent discussion, van Lieshout and Secher

(2008), illustrates this controversy, by outlining both point and couterpoint for the influ-

ence of sympathetic activity on cerebral blood flow. Though it draws different conclusions,

it agrees that the effect of sympathetic stimulation is practically nil under normal condi-

tions, but may be activiated to compensate the blood supply when cardiac output or blood

pressure become compromised.

Other effects

Nuermous investigations of isolated arteries have shown that endothelial cells may cause

the relaxation/contraction of vascular smooth muscle via the release of endothelium-derived

relaxing/contractile factors (Furchgott (1984); Rubanyi et al. (1986); Rosenblum et al. (1987)).

Though the role of endothelium-derived factors in cerebral autoregulation has been stud-

ied extensively, whether these factors contribute significanly to autoregulation, however,

remains unclear. Most studies performed in vitro suggest that the endothelium may func-

tion as a transducer by releasing or suppressing myogenic factors in response to altered in-

travascular pressure or flow; however, studies preformed in vivo are approximately evenly

divided between those that support and those that refute a role for the endothlium in cere-

bral vascular autoregulation (Edvinsson et al. (1992)).
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1.2 Measuring Cerebral Blood Flow and Metabolism

To understand the regulation of cerebral blood flow in health and disease requires accu-

rate measurements of cerebral blood flow and metabolism. Numerous invasive and non-

invasive techniques have been developed, each of which has unique applications, advan-

tages and limitations. Here only the key non-invasive techniques currently used for blood

flow and oxygenation measurement are described below. A more detailed review of the

historical development of these techniques and others important in the study of cerebral

autoregulation can be found in Chapter 2.

Transcranial Doppler Ultrasonography

Transcranial Doppler Ulstrasonography (TCD) is a non-invasive technique that permits

observation of the velocity, direction and properties of blood flow in the middle cerebral

artery by means of a pulsed ultrasonic beam (Aaslid et al. (1982)), as shown in Figure

1.4(a). Averaging of the TCD-measured cerebral blood flow waveform over the cardiac

cycle is typically performed in autoregulation sudies, and temporal resolutions of around

10Hz are typically obtained, which is sufficient to capture all variability in mean cerebral

blood flow velocity. However, it is worth to point out TCD measured CBF velocity is not a

direct measurement of blood flow and its variations can only represent the changes of blood

flow with the assumption of unvaried vessel diameter during the measurement period.

Near Infrared Spectroscopy

Near Infrared Spectroscopy (NIRS) is a technique for the non-invasive measurement of

tissue-averaged oxygen concentration changes by measuring the attenuation of near in-

frared light (spectrum 700-1000nm) passing from a laser diode to a sensor both of which are

incorporated in a head-mounted probe, shown in figure 1.4(b). Since the light-absorption

spectra of oxyhaemoglobin and deoxyhaemoglobin differ in the near-infrared region, this

attenuation can be related to changes in the tissue averaged concentration of oxyhaemoglobin

(O2Hb), deoxyhaemoglobin (HHb), total haemoglobin (THb) and cytochrome-c-oxidase (CtOx)
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using the modified Beer-Lambert Law (Delpy and Cope (1997)). Measurements have a time

resolution of around 6Hz and multi-channel NIRS can also provide a low spatial resolution.

Figure 1.4 a) Left: the anatomical distribution of intracerebral arteries that can be in-
sonated using a standard TCD machine; Right: a typical raw TCD data example. b) Left:
a typical NIRS set-up; Right: a typical position of head-mounted probes.

(a) Transcranial Doppler Ulstrasonography (b) Near Infrared Spectrocopy

Blood-oxygen-level-dependent fMRI

Haemoglobin is diamagnetic when oxygenated but paramagnetic when deoxygenated. The

magnetic resonance (MR) signal of blood is therefore slightly different depending on the

level of oxygenation. These differential signals can be detected using an appropriate MR

pulse sequence as the blood-oxygen-level dependent (BOLD) contrast. Though fMRI is

widely used to map the brain function (Purves et al. (1997)), it is not a directly mea-

sure of neural activity. Instead, it is an endogenous contrast mechanism that mirrors the

proportion of deoxyhemoglobin in a particular brain region, depending on the combined

changes in cerebral blood flow, cerebral blood volume, and cerebral metabolic rate of oxy-

gen (CMRO2). As illustrated in Figure ??, the stimulus first induces local changes in neu-

ral activity, which then triggers increased energy metabolism with accompanying changes

in CBF , CBV and CMRO2. These physiological changes combine to alter the MRI sig-

nal, which is known as the BOLD signal measured by fMRI. Similar to NIRS, fMRI also

utilises signals intrinsic to the brain rather than signals originating from an exterior stim-

ulus; consequently, repeated observations can be made on the same individual, providing

a major advantage over other imaging methods. fMRI provides superior spatial resolution

(currently about 2 or 3 millimetres) and good temporal resolution (about 1 second). At
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present fMRI is mostly used to analyse brain function, however, it does provide a method

to investigate local cerebral oxygenation and metabolic rate, which cannot be achieved by

TCD and NIRS.

Figure 1.5 The chain of events leading to the BOLD signal.

Stimulus
Neural
Activity

CBF increase

CMRO2 increase

CBV increase

BOLD
Signal

1.3 Summary of Thesis

A better understanding of regulation of cerebral blood flow has the potential to contribute

significantly to improved clinical practice, allowing better monitoring and assessment of

patients of post-head injury, post ischemic stroke and also gaining a better understanding

of how systemic variations influence functional imaging of the brain. The regulation of

cerebral blood flow is a very complex system which involves numerous control mechanisms.

Experiments are often carried out to test the flow response to the proposed stimuli and

to identify a particular regulatory pathway. In reality, however, the completely isolated

regulatory pathway can never exist as the parallel changes in unmeasured variability are

difficult to control and may also have a significant effect on the results. Any analytical

techniques must appreciate this reality, and their performance must be evaluated with

these considerations in mind.

This thesis focuses on the clinical evaluation of signal processing techniques for the anal-

ysis of mechanisms regulating cerebral blood flow in humans. After a thorough literature

review in Chapter 2, Chapter 3 describes a combined haemodynamic system (CHS) which

predicts the response of the cerebral vasculature to changes in arterial blood pressure,



1.3 Summary of Thesis 13

arterial CO2 concentration and neural stimulation. Dynamic simulations of the model

under different conditions show that there is significant interaction between the autoreg-

ulation and activation processes. In order to relate the model to the mathematical rela-

tionships estimated directly from clinically measurements, ABP and cerebral blood flow

velocity (CBFV) measured in the middle cerebral artery using TCD, the linear part of CHS

is derived, which closely approximates a second order system for typical values of physio-

logical parameters. The model parameters can thus be optimally estimated from available

experimental data for the Impulse Response (IR), yielding physiologically reasonable val-

ues.

Chapter 4 demonstrate how multivariate system identification can be used to analyse the

regulation of CBFV of healthy human subjects by fluctuations in ABP, end-tidal CO2 par-

tial pressure fluctuations (PETCO2) and end-tidal O2 fluctuations (PETO2) and how these

addtional inputs, PETCO2 and PETO2 , can account for higher coherence values at low fre-

quencies where univariate coherence between ABP and CBFV is always low. A simulation

study, using models described in Chapter 3, will be used to illustrate why univariate sys-

tem identification methods fail to perform when additional inputs are not accounted for.

Chapter 5 will show how the wavelet phase synchronization method can be used to inves-

tigate the time-varying phase relationship between ABP and CBFV , thus relaxing the

strict assumption of stationarity imposed by use of the Fourier transform. The fluctuations

of PETCO2 are also showed to have effects on the instantaneous ABP − CBFV phase rela-

tionship and the CO2 effects can be removed by using a correction term representing the

CO2 contribution to CBFV variations, identified by a multivariate system identification

method, as proposed in Chapter 4.

Chapter 6 will propose wavelet cross-correlation as a method of analysing frequency depen-

dent coupling, which will be applied to investigate age-dependency and posture-dependency

of the coupling between cerebral haemodynamics and systemic cardiovascular dynamics.

This will demonstrate how the discrete wavelet cross-correlation can localise this coupling
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to a particular frequency band around 0.1Hz, where low frequency oscillations occur.

The wavelet-based signal processing techniques described in Chapter 5 and Chapter 6 are

then used to quantify the contribution of CO2 variations in the baseline BOLD fluctuations

of both eyesopen and eyesshut cases. The advantage of these techiques will be illustrated

by comparing with the classical correlation coefficient and regression analysis methods.

The final chapter, Chapter 8 will draw together the findings of Chapter 3-7 and suggests

future research directions.



2
Literature review

2.1 Introduction

Chapter 1 has outlined the significance of understanding the maintenance and regula-

tion of blood flow and oxygen supply in the human brain. Without the mechanisms that

regulate cerebral blood flow (CBF), abnormally low or excessive CBF can lead to cerebral

ischemia, intracranial hypertension or even capillary damage, thus contributing to the on-

set of cerebrovascular events. As a result, both the classification and assessment of CBF

regulation become important steps in the diagnosis of many clinical conditions. They have

thus has been the subject of intensive study as shown by the very large literature.

This Chapter, therefore, will first summarise clinical studies of cerebral autoregulation, fo-

cussing on the available measurements, autoregulation status and physiologic modulation.

The second part of this chapter then addresses the mathematical analysis of the cerebral

system, including both physiologically-based modelling and data-driven modelling, as well

as signal processing algorithms.

2.2 Control of cerebral blood flow

As mentioned in Chapter 1, the brain is the most energy-consuming organ in the human

body, requiring sufficient, yet not excessive, blood flow and oxygen supply in accordance
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with its underlying functional or metabolic needs. Thus, numerous regulatory mechanisms

are involved in the delicate control of cerebral blood flow. These CBF regulatory mecha-

nisms can be separated into the central cardiovascular control mechanism and cerebral

autoregulation.

2.2.1 Central cardiovascular hemodynamics

The left ventricle primarily generates the energy for the systemic circulation (Priebe (1999)).

Changes in heart rate, myocardial contractility, peripheral resistance and venous return

also affect cerebral circulation. All these factors are tightly regulated to maintain the re-

quired mean arterial blood pressure (ABP) and cardiac output (CO) to satisfy adequate

blood perfusion in the brain and all other body organs.

Among all these regulation mechahnisms, the principal short-term ABP regulator is the

baroreflex, which is a negative feedback system based on multiple pathways, as illustrated

in Figure 2.1. The baroreceptors, mainly located in the carotid sinuses and aortic arch, are

sensitive to changes in ABP. They then communicate this information to the cardiovascular

control centre to counteract the ABP change. The sympathetic nervous system is then

activated to adjust heart rate and ventricle contractility as well as peripheral resistance in

order to restore ABP back towards its baseline value.

The baroreflex plays an important role in maintaining blood pressure at a relatively con-

stant level during daily orthostatic manoeuvres (such as getting up/standing up and lay-

ing/sitting down). Maintaining adequate blood pressure provides the first line of defense

of the cerebral circulation against hypo- or hyperperfusion.

2.2.2 Cerebral autoregulation

Cerebral autoregulation serves as the next line of defense by helping to maintain relatively

constant CBF despite variations in cerebral perfusion pressure (CPP) (the difference be-

tween ABP and intracranial cerebral pressure (ICP)), first defined in Lassen (1959) (Lassen
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Figure 2.1 Schematic diagram of the baroreflex. Adapted from deBoer et al. (1987).

(1980)). Blood flow in a series of blood vessels is determined by the drop of blood pressure

divided by the resistance, a dynamic change primarily caused by the vasodilation or vaso-

constriction of arterioles. For example, as the pressure drops, these blood vessels will dilate

resulting in a decrease of the cerebral vascular resistance which then helps to maintain a

near constant blood flow.

Due to this negative feedback loop, cerebral autoregulation enables a tight coupling be-

tween CBF/oxygen supply and the metabolic demand of the brain to be maintained and

thus plays an essential role in maintaining normal brain function. Details of its assess-

ment in both normal and various pathophysiological conditions will be addressed in the

following chapters.

2.3 Clinical studies of autoregulation

The assessment of cerebral autoregulation is important for rational clinical management

of specific conditions, such as severe head injury, acute ischemic stroke or subarachnoid

haemorrhage, which are known to abolish autoregulation (Paulson et al. (1990); Bouma

and Muizelaar (1992)). Patients whose autoregulation is impaired or abolished are very

vulnerable to pressure changes and are thus at much greater risk of cerebral ischaemia or
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secondary brain damage due to hyperfusion. These patients require much greater control

of fluctuations in CPP in order to prevent harmful haemodynamic consequences of thera-

peutic interventions (Panerai (1998)).

2.3.1 Key measurement techniques

According to the definition of cerebral autoregulation, the goal of research performed on

human cerebral autoregulation is essentially to estimate the extent to which cerebral vas-

cular resistance is actively modified in order to keep relatively constant blood flow (and

hence oxygen supply) despite changes in perfusion pressure. As a result, the assessment of

autoregulation status requires accurate measurements of both CPP and CBF, the key vari-

ables involved in autoregulation mechanism. It is worth to make it clear that the target

of cerebral autoregulation is differing in ischemia and haemorrhage: cerebral oxygena-

tion, which is directly related to brain metabolic rate, will be key variables which require

continuously monitoring in ischemic case (CBF is only a surrogate variable for cerebral

oxygen); while in haemorrhage case, the quanitity of cerebral blood flow becomes the most

crucial variable. Among the current conventional measurements of blood flow and oxy-

genation presented below, Transcranial doppler is target at measuring blood flow supply

in the brain, while the other two measurements, Near infrared spectroscopy and Blood

oxygen level-dependent functional MRI are both focused on cerebral oxygenation level.

Measurement of cerebral blood flow and blood oxygenation

Early studies of cerebral autoregulation often used indicator-dilution methods, including

inert gases such as N2O, 85Kr or 133Xe, to estimate CBF in humans (Ingvar and Lassen

(1965); Lassen (1959, 1974); Torizuka et al. (1971)). These methods provide a value of the

average CBF in units of ml of blood per 100 g of tissue per minute, but to obtain absolute

blood flow it is necessary to estimate the total brain weight. Moreover, each CBF measure-

ment with 133Xe takes 15 minutes (as the clearance of 133Xe takes around 9 to 12 minutes

(Torizuka et al. (1971))). Since it also requires the injection or inhalation of a radioactive



2.3 Clinical studies of autoregulation 19

indicator, the total number of observations in a single subject is very limited. This clearly

precludes any measurement of the temporal dynamics of cerebral autoregulation and thus

the technique can only used for studies of steady state autoregulation.

Transcranial doppler (TCD) ultrasound provided a new technique for non-invasively

examining the intracranial arteries supplying the human brain, utilising the Doppler shift

to detect the velocity of red blood cells in large blood vessels (Aaslid et al. (1982)). TCD al-

lows continuous measurements to be made of cerebral blood flow velocity (CBFV), usually

in the middle cerebral artery (MCA), with sufficient time resolution to capture dynamic

variability in the signal, and thus permiting studies to be made of the temporal dynamics

of cerebral autoregulation. The advantage of non-invasiveness and high time-resolution

led to TCD becoming the most commonly used method for measuring cerebral blood flow

in autoregulation studies (Panerai (1998)). However, to convert changes in CBFV to those

in CBF requires an additional assumption to be made that the vessel cross-sectional area

(CSA) remains stable during the examination. Consequently, one of the most discussed is-

sues in cerebral hemodynamics is whether the large cerebral arteries-especially the MCA

should be considered as rigid tubes or whether they possess dilatory properties that come

into play during CBF variations (Edvinsson et al. (1992)). Several investigations in hu-

mans suggest that the diameter of the middle cerebral artery, and other large cerebral

vessels, remains relatively constant despite changes in ABP and blood gases (Hansen et al.

(1983); Greisen et al. (1984); Giller et al. (1993); Poulin and Robbins (1996), though con-

cerns about this assumption have arisen under sympathetic stimulation or the infusion of

drugs (Panerai (1998)).

Near infrared spectroscopy (NIRS) is a relatively new method for the measurement of

cerebral hemodynamics, first outlined by Jöbsis (1977). It is an optical approach utilising

light in the near infrared region of the spectrum (700-1000nm), which can penetrate up to

8cm of biological tissue (Cope (1991)), to monitor changes in the oxygenation of the brain.

Light attenuation within tissue involves two main compartments, (i) the absorbers whose

concentration are fixed during the measurement period and (ii) the chromophores whose
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concentration (and therefore light absorption) vary with time or with oxygenation status,

such as oxyhaemoglobin (O2Hb), deoxyhaemoglobin (HHb), and oxidised cytochrome oxi-

dase (CtOx) (Elwell (1995)).

Changes in the concentration of these chromophores can be quantified by the modified

Beer-Lambert law (MBL) (Delpy and Cope (1997)):

A = log
Io

I
= α · c · d · B + G, (2.1)

where A is the optical density attenuation, Io the incident light intensity, I the detected

light intensity, α the absorption coefficient of the chromophore, c the concentration of chro-

mophore and d the geometrical distance between light emitter and light receiver. B is the

different pathlength factor (DPF) used to account for the increased pathlength due to scat-

ter (dimensionless) and G represents tissue absorption, which is assumed to be constant

during the measurement period.

Without the absolute value of G, equation 2.1 cannot be solved to provide a measure of

the absolute concentration of the chromophore in tissue, however with the assumption

that G remains constant, the changes in the concentration of the chromophore (∆c) can be

determined by the changes of light attenuation (∆A), for given values of B, d and α, which

can actually be measured:

∆A = ∆c · α · d · B (2.2)

In order to determine the concentration changes of three chromophores, O2Hb, HHb and

CtOx in the brain, the light attenuation at multiple NIR wavelengths needs to be measured

(for example the Hamamatsu Photonics NIRO 500 uses 4 wavelengths (Elwell (1995))).

Through a matrix operation which incorporates the absorption coefficients for each wave-

length and chromophore, changes in chromophore concentration can be calculated from the

measured attenuation, as shown in Equation 2.3(full details can be found in Elwell (1995)):
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NIRS relies on the biochemical specificity of the signal and it is completely noninvasive,

giving it the potential for measuring at the bedside (Elwell et al. (1994)), where it has been

widely used for monitoring the brains of new-born infants (Duncan et al. (1995); Bortfeld

et al. (2007)). Recently, it has also been used to detect changes in Hb oxygenation with

functional brain activation at a low spatial resolution, termed functional NIRS (MacIn-

tosh et al. (2003); Toronov et al. (2003); Huppert et al. (2005)). However, because of the

poor depth penetration of NIRS, concerns have been expressed in the literature about a

potential contaminating signal generated by extracranial tissues in the NIRS measure-

ments (Kirkpatrick et al. (1998); Al-Rawi et al. (2001)). This extracranial contamination is

important to consider in autoregulation studies when using NIRS since the aim is to inves-

tigate the coupling between cerebral hemodynamics and systemic variables. Extracranial

blood flow (such as skin flow) might follow systemic changes with a regulation mechanism

different from that of cerebral autoregulation.

Blood oxygen level-dependent (BOLD) fMRI is also a measure of blood oxygenation.

It based on the fact that HHb is paramagnetic whereas O2Hb is diamagnetic. Hence, an

increase in the concentration of HHb alters the local magnetic susceptibility, creating mag-

netic field distortion within and around blood vessels and producing a positive alteration

in local MR signal, known as BOLD response (Ogawa et al. (1990); Kwong et al. (1992)).

Similar to NIRS, fMRI also utilises the signal intrinsic to the brain rather than signals

originating from an exterior stimulus; consequently, repeated observations can be made

on the same individual, providing a major advantage over other imaging methods. Owing

to its superior spatial resolution (currently about 2 or 3 millimetres) and good temporal

resolution (about 1 second), BOLD-based fMRI has been widely used to map brain function

(Purves et al. (1997)). However, the effects of systemic changes on BOLD signal have been

little investigated and the results are controversial and potentially conflicting. For exam-

ple, both Wang et al. (2006) and Liu et al. (2006) have investigated the effects of ABP on

BOLD response, drawing different conclusions: Wang et al. (2006) have identified a corre-

lation between BOLD signal and ABP time series whereas Liu et al. (2006) found that ABP
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changes do not affect either the global or regional BOLD response. These different results

could be due to different experimental methodology, since Liu et al. (2006) studied BOLD

response to baseline ABP change whilst Wang et al. (2006) were focused on dynamics of

ABP and BOLD signal. Similar controversy has also arisen for the relationship between

the local BOLD signal and the global BOLD signal modified by different CO2 levels. An

attenuation of the regional BOLD (rBOLD) response after the inhalation of 5% CO2 has

been found Bandettini and Wong (1997) and Cohen et al. (2002), yet a constant rBOLD

was suggested by Corfield et al. (2001). A more complicated dependence of the regional

BOLD signal on the global signal was suggested by Kemna and Posse (2001) and Posse

et al. (2001), with an increased BOLD response in mild hypercapnia (ETCO2 < 50mmHg)

with a decrease at higher ETCO2 levels. These controversies could be due to nonlinearities

in the BOLD response, which is a major complication in explanations of the BOLD signal

in clinical settings.

Measurement of cerebral perfusion pressure

CPP is normally expressed as the difference between systemic mean ABP and ICP (Paulson

et al. (1990)). Under normal conditions ICP will be low and CPP can be approximated

by mean ABP corrected for height of the head (Lassen (1959)). However, in severe head

injury, ICP is elevated, or varies dramatically within minutes, as a result of hydrocephalus,

in which case its measurement becomes essential for the correct estimation of CPP as

ABP − ICP .

In earlier static autoregulation studies, the most common method of measuring ABP was

with an intravascular catheter (Panerai (1998)). Though it is undoubtedly the most accu-

rate technique for measure ABP, it is an invasive method that limits its application in clin-

ical settings, especially for normal subjects. The Finapres device, alternatively, provides a

non-invasive recording of the continuous ABP waveform based on the principle of arterial

volume clamping (Molhoek et al. (1984); Parati et al. (1989)), which could facilitate the

incorporation of autoregulation testing into routine clinical practice. However, assessment
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of autoregulation based on methods which induce large changes in mean ABP might also

lead to changes in cardiac output which might then affect the pressure drop between the

site of measurement and the large cerebral vessels, making it inaccurate to estimate ABP

by this non-invasive method (Treib et al. (1996)). Birch and Morris (2003) also expressed

the suspicion that preipheral vasoacction caused by sudden thigh cuff release may distort

the measurement of blood pressure with the Finapres. However, a recent published paper

(Panerai et al. (2008)) has investigate the influence of non-invasive Finapres device on the

dynamic cerebral autoregulation identification by comparing to blood pressure recorded

in the ascending aorta. Highly correlated result between the two different measurements

proves the relability of the Finapres device in autoregulation assessment.

2.3.2 Static cerebral autoregulation curve

Static autoregulation studies only look at the relationship between mean CBF and CPP (or

mean ABP in most cases) (Panerai (1998)). They do not consider the time course of changes

in flow following changes in pressure, which belongs to the scope of dynamic autoregulation

studies and is addressed below. The basis of this static approach is the classical autoreg-

ulation curve, shown in Figure 2.2, which describes the active response of cerebrovascular

resistance arteries (dilating during ABP decrease and constricting during ABP increases),

thus maintaining relatively constant levels of CBF over a fairly broad range of ABP (Lassen

(1959); Paulson et al. (1990)). However, it should be noted that the autoregulation plateau

region does not necessarily have a zero slope (Rosenblum (1995); Panerai et al. (1995b);

Ursino et al. (1995))

When arterial pressure exceeds the limits of the autoregulation plateau, cerebral resis-

tance arteries respond passively and CBF increases or decreases passively with further

increases or decreases in ABP. Thus, the critical levels of ABP are defined as lower and

upper limits of CBF autoregulation: reduction of ABP below the lower limit results in hy-

poperfusion of the brain and cerebral ischemia, whilst further increases of ABP above the

upper limit lead to hyperperfusion and possible disruption of the blood-brain barrier.
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Figure 2.2 The ideal response of cerebral vasculature and mean blood flow to changes in
mean arterial pressure. Adapted from Jennings (2003).

Owing to the clinical importance of both limits, a number of studies have attempted to

locate the position of the lower or upper limit of autoregulation or shifts in the autoregula-

tion curve due to changes in other physiological parameters (a comprehensive review can

be found in Panerai (1998)). Among these assessments of static autoregulation, the most

common approach used to induce changes in mean ABP is the infusion of drugs which

do not have effects on cerebral vasculature or metabolism (Lassen (1959); Olesen (1972);

Lassen (1974); Paulson et al. (1988)). Other methods include blood volume displacement

such as head-up tilting (Jrgensen et al. (1993)), lower body negative pressure (Bondar et al.

(1994)), surgery (Lundar et al. (1985)) and sleep studies (Balfors and Franklin (1996)).

However, for the investigations that induce large changes in mean ABP, it is very possible

that parallel shifts would take place in other physiological variables that might also have

a strong influence on CBF, which is the main concern with this static approach (Panerai

(1998)).

2.3.3 Dynamic cerebral autoregulation

Interest in the dynamics of cerebral autoregulation directly followed the availability of

Transcranial Doppler ultrasound which provides excellent temporal resolution for measur-

ing CBF. Studies of dynamic autoregulation are more concerned with the characterisation
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of the temporal dynamics of CBF responses to a change in pressure than the absolute

value of time-averaged changes. In 1989, Aaslid et al. introduced the thigh cuff technique

to invoke a sudden drop in ABP and found that the active CBF response started within

approximately 2 seconds, and recovered within 10-15 seconds, as shown in Figure 2.3.

Figure 2.3 Dynamics of cerebral autoregulation during thigh cuff test. All tracings are
shown in values relative to control prerelease values. Adapted from Zhang et al. (1998a).

Compared to traditional steady-state autoregulation studies, this dynamic autoregulation

test is not time-consuming and, when coupled to the use of non-invasive measurements

of blood pressure, can be easily repeated (Aaslid et al. (1989); Birch et al. (1995); Panerai

et al. (1996)). More importantly, the short time interval required to perform dynamic tests

minimises the influences of other variables such as CO2 or mental activation, which can

compromise assessments based on static methods as discussed previously. As a result, this

dynamic approach has become a favorable choice for clinical assessment of autoregulation

and has thus been studied extensively in the literature (Aaslid et al. (1989, 1991); Tiecks

et al. (1995); Zhang et al. (1998a); Panerai et al. (1999, 2001)).

2.3.4 Autoregulation Stimuli

Measurement of cerebral autoregulation requires a change in blood pressure, which can

either be forced or naturally occuring. The type of stimuli can be split into those that intro-
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duce a large step change in pressure and follow the dynamic time course of cerebral blood

flow (dynamic autoregulation), or look at its steady state value (static autoregulation) and

those that investigate the dynamics of the response to spontaneous fluctuations (dynamic

autoregulation).

Drug infusion was widely used in early static studies of auotregulation, as well as some

dynamic autoregulation studies (Panerai (1998)). For example, ABP can be increased by

the infusion of phenylephrine (Tiecks et al. (1995)), angiotensin or noradrenaline and de-

creased by the influsion of sodium nitropusside or thrimethapan. However, the uptake of

a drug has its own temporal dynamics in humans, which clearly makes it difficult to inter-

pret dynamic responses to a drug. Also, for ethical reasons repeated sudies are unlikely to

be approved.

Besides drugs, changes in cerebral perfusion pressure can also be achieved by chang-

ing pressure in the lower limbs, either through changes in posture or through the infla-

tion/deflation of thigh cuffs. This results in a large step change in pressure, which is,

again, unethical for some patient groups, such as subjects with severe peripheral disease

(Tiecks et al. (1996)). The inflation of thigh cuffs can be quite painful and concerns have

been raised that it might produce sympathetic activation (Panerai (1998)). It is also likely

that parallel shifts of other physiological variables will take place, and unless these shifts

are monitored this will severely impact the repeatability of the results. Other studies have

attempted to overcome this difficulty by investigating the CBF response to forced periodic

variations in pressure, such as sinusoidal changes in lower body pressure (Birch et al.

(2002); Liu et al. (2003)), periodic posture changes due to periodic squatting (Birch et al.

(1995)), or periodic blood gas changes due to periodic deep breathing (Diehl et al. (1995)).

These techniques require repetition of the test, which can significantly reduce the level of

noise present; however sinusoidal lower body negative pressure is not suitable for some

patients, and periodic squatting or deep breathing require a certain level of fitness that

cannot be guaranteed in all clinical subjects (Rowley (2008)).
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As mentioned above, the techniques adopted to stimulate either step changes or slow oscil-

lation in ABP all have inherent problems in the clinical assessment of dynamic autoregula-

tion. It would thus be ideal if the spontaneous fluctuations in ABP could be used to assess

the dynamic performance of cerebral autoregulation.

Slow spontaneous variations in cerebral hemodynamics and metabolism have been ob-

served under a wide range of experimental conditions (a comprehensive summary of which

can be found in Obrig et al. (2000)). Though the underlying mechanisms of these oscilla-

tions are not clear, they are found to share several common features: (1) they occur without

any external stimulus (spontaneity); (2) they can be differentiated from other oscillations

such as heart beat (slowness); (3) they have been founded to be altered by pharmacological

and pathological conditions (modulatability).

These oscillations can be decomposed into different fluctuation components by their dif-

ferent spectral features. Variability around 0.3Hz, termed respiratory sinus arrhythmia

(RSA), is observed in NIRS measured O2Hb, HHb and total hemoglobin (tHb) and also

in ABP . Numerous theories have been proposed for the presence of this variability in

blood pressure and cerebral haemodynamics. Innes et al. (1993) proposed that changes

in pressure in the chest provoke changes in cardiac stroke volume through the baroreflex,

contributing to respiratory frequency pressure variability in humans (Cohen and Taylor

(2002)). This is, however, controversial as variability at 0.3Hz has been reported to occur

in direct synchrony with respiratory sinus arrhythmia, suggesting that both oscillations

could have a central vagal origin (deBoer et al. (1987); Taylor and Eckberg (1996)).

Oscillations at a lower frequency, around 0.1Hz, are also observed in cerebral haemody-

namics, being termed low-frequency oscillations (LFOs). Hudetz et al. (1992) report oscil-

lations in CBF measured using laser doppler flowmetry (LDF) within a frequency range of

0.06−0.1833Hz in anaesthetized rats when blood pressure is held constant below 90mmHg.

Mayhew et al. (1996) used reflected light imaging to investigate 0.1Hz oscillations in the

exposed cerebral cortex of rat and cat. Obrig et al. (2000) demonstrated that similar oscil-
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lations can be captured noninvasively in the human brain using NIRS to measure cerebral

oxygenation and Elwell et al. (1999) underlined the implications of these oscillations for

functional activation studies.

Within the same frequency band, high variability in ABP and HR is also found. These

oscillations, called Mayer waves (Mayer (1876)), originate from the action of the baroreflex

in the systemic regulation of the cardiovascular system, and can be ascribed to sympa-

thetic nervous activity (Nilsson and Aalkjaer (2003)). Since the cerebrovascular system is

a one part of the systemic circulation, it is mediated by both central sympathetic activa-

tion and local myogenic or metabolic mechanisms (Priebe (1999)). It is thus very unlikely

that LFOs found in cerebral hemodynamic variables are completely independent of their

cardiovascular counterparts. Indeed, it has been shown in Katura et al. (2006) that one

third of cerebrovascular oscillations in the range of 0.04-0.15 Hz can be tracked back to the

systemic cardiovascular fluctuations (HR and ABP) in the same frequency band. Though

information transfer entropy used in Katura et al. (2006) is able to assess not only the

coupling but also the causality between two variables, it is still not clear how to convert

transfer entropy results into the percentage of information transfer from cadiovasuclar os-

cillations to cerebrovascular oscillations. Fluctuations in HR (< 0.1Hz) have also recently

been identified as an important source of variance in the resting-state fMRI BOLD signal

(Shmueli et al. (2007)).

Cerebral autoregulation status can be assessed by considering the bivariate relationship

between these resting state fluctuations in systemic variables (primarily ABP) and those

related to cerebral hemodynamics (CBFV or O2Hb) (Zhang et al. (1998a,b); Panerai et al.

(1999, 2001)). This assessment method makes best use of the available data from mod-

ern, noninvasive measurement techniques, and does not require the use of a strenuous,

painful, or even dangerous stimulus, but considerable controversy exists in the literature

about the origin and interpretation of these spontaneous fluctuations. These problems are

compounded by the fact that the relationship between ABP and CBF is not purely con-

trolled by pressure autoregulation, but also influenced by changes of other physiological
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variables such as blood gas tension or functional activation (Latka et al. (2005); Panerai

et al. (2005))(This issue will be revisited in detail below). As a result, in dynamic autoreg-

ulation studies based on spontaneous fluctuations, sensitive and verifiable data analysis

techniques are required to avoid making false conclusions about the autoregulation status.

2.3.5 Physiological modulation of autoregulation

As mentioned above, ABP is not the only determinant of CBF. Other parameters such as

arterial gas tension, primarily arterial CO2 tension (PaCO2) and arterial oxygen tension

(PaO2), have vasodilatory or vasoconstrictory effects on cerebral vessels and thus influence

blood flow, this effect being known as cerebrovascular reactivity (Edvinsson et al. (1992)).

In humans, 5% and 7% CO2 inhalation raises CBF by approximately 50% and 100%, respec-

tively (Kety and Schmidt (1948)). Poulin et al. (1996) and Poulin et al. (1998) also observed

that there is a lag of around 6 seconds in CBFV changes measured in the middle cerebral

artery in response to CO2 changes. Besides CBF, CO2 also affects pressure autoregula-

tion status. It has been demonstrated that hypercapnia impairs autoregulation, whereas

hypocapnia improves autoregulation (Aaslid et al. (1989); Birch et al. (1995)).

Besides blood gas reactivity, autoregulation status has also been found to be altered by var-

ious pathological and pharmacological conditions. It has been known for many years that

sympathetic activation will shift the upper limit of autoregulation toward higher pressures,

whereas acute denervation may shift the limits of the autoregulation toward lower blood

pressure levels (Bill and Linder (1976); Edvinsson et al. (1976)). More recently, Panerai

et al. (2001) found that the instantaneous ABP − CBFV relationship was dependent on

the choice of manoeuvre, suggesting that differing dynamic autoregulation status associ-

ated with different degrees of sympathetic activation. Hypertension and ageing are both

found to shift the lower limit of autoregulation to a higher level of pressure, which makes

hypertensive patients and elderly people more susceptible to ischemic stroke (Strandgaard

et al. (1973); Wollner et al. (1979)).
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2.4 Analysis of clinical autoregulation data

2.4.1 Assessment of static autoregulation

The earliest static studies of cerbral autoregulation relied entirely on the absolute values of

CBF and ABP, in comparison with the static cerebral autoregulation curve (figure 2.2). This

is mainly due to the fact that CBF data obtained using inert indicator washout techniques

were severely limited, as discussed in Section 2.3.1. Few studies attempted to reproduce

the entire autoregulation curve. Most commonly, investigators induced changes in mean

ABP to determine whether a particular group of patients showed active autoregulation or

not. In most cases, only two measurements were collected for each individual, before and

after a change in ABP (Panerai (1998)). Some studies use an index of static autoregulation

(sARi) (Bouma and Muizelaar (1990, 1992); Bouma et al. (1992); Strebel et al. (1995)),

defined as:

sARi = %∆CV R/%∆ABP (2.4)

where the cerebrovascular resistance, CV R is given by CV R = ABP
CBF . However, estimation

of an autoregulation curve from two data points is highly questionable (Panerai (1998)).

Studies which performed more than two measurements adopted linear regression to quan-

tify the relationship between CBF and mean ABP and to recover the slope for the autoregu-

lation curve, which can be used as an objective parameter to assess the static performance

of autoregulation. This group of studies includes the use of regression to decide the posi-

tion of the lower limit or upper limit, or both, of the autoregulation curve (Schmidt et al.

(1990); Larsen et al. (1994); Olsen et al. (1996); Strandgaard et al. (1973); Strandgaard

(1976)). If the slope is approximately zero, it can be assumed that linear regression coin-

cides with the plateau region of a normal autoregulation curve (figure 2.2). If the slope is

significantly positive, this can either represent the linear portion of the curve beyond its

autoregulation range (below its lower limit or above its upper limit, see figure 2.2), or the

central region of the curve when autoregulation is impaired. Both possibilities represent

the absence of active pressure autoregulation. Both correlation coefficient (γ) and averaged
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CBF change as a percentage of mean ABP value can be obtained through linear regression

analysis. Thresholds of γ = 0.5 or 0.5 − 4%/mmHg have been proposed for the separation

between normal and impaired autoregulation, respectively (Jorch and Jorch (1987); Pryds

et al. (1990); Panerai et al. (1995a)). Although the linear regression method is the most re-

liable approach to study the static properties of autoregulation, both correlation coefficient

and slope index would become meaningless if the regression is not statistically significant.

As a result, a classification criterion based both on the significance (p-value) and the slope

of regression has been proposed (Panerai et al. (1995a)).

The shortcoming of both sARi and linear regression is that they do not take account of

changes in other physiological variables which might also affect CBF during the test, as

mentioned previously. To solve this problem, additional measurements were collected to

monitor the simultaneous changes in PaCO2 and PaO2 and multiple regression analysis

was used to compensate their effects (Buijs et al. (1992); Menke et al. (1993); Benders

et al. (1995)). For the case of CO2, a related method is to correct CBF measurements

using equations which describe CO2 activity (Muizelaar et al. (1984); Schmidt et al. (1990);

Olsen et al. (1996); Tominaga et al. (1976); Young et al. (1993)). The risk of not controlling

for the effect of confounding variables was demonstrated by the study of Cencetti et al.

(1997) where the CBF changes previously attributed to pressure changes in response to

tilting (Brooks et al. (1989); Daffertshofer et al. (1991)) were actually partly produced by a

reduction in PaCO2 induced by posture change.

2.4.2 Assessment of dynamic autoegulation–mathematical models

Early dynamic studies often used the thigh cuff technique to induce a significant rapid

change in ABP and monitored the CBF response (Aaslid et al. (1989, 1991); Lagi et al.

(1994); Strebel et al. (1995); Tiecks et al. (1995); Jünger et al. (1997)). With this approach,

impaired autoregulation would suggest a mean CBFV pattern passively following mean

ABP time course, whereas normal autoregulation would show that CBFV starts to return

and reaches its baseline level much sooner than ABP . As a result, Aaslid et al. (1989)
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introduced an index, ’rate of regulation (RoR)’:

RoR =
∆CV R

∆ABP ×∆t
, (2.5)

as a quantification for the speed of CBFV recovery and thus dynamic autoregulation sta-

tus. The function ∆ is used to represent changes about the experimentally measured base-

line and ∆t is the time over which the change is calculated. In Aaslid et al. (1989), RoR was

measured as a function of PaCO2 and a significant inverse relationship between PaCO2 and

RoR was demonstrated, suggesting differing autoregulation status. RoR was also used to

characterise cerebral autoregulation dynamics by Steiger et al. (1994); Newell et al. (1996);

Smielewski et al. (1996).

Tiecks et al. (1995) proposed a second order differential equation to model the CBFV re-

sponse to the ABP drop provoked by the thigh cuff technique. The equation involves three

parameters: an autoregulatory gain, K, a damping factor, D, and a time constant, T . These

three parameters were grouped to provide a ten-level autoregulation index, ARI, with a

value of ARI = 0 representing total absence of autoregulation, and a value of ARI = 9

corresponding to very efficient autoregulation response (Tiecks et al. (1995)). In clinical

settings, the value of ARI was determined from the CBFV response to pressure change by

finding which value of ARI provided the best fitted model response to the measured data

(Tiecks et al. (1995, 1996); White and Markus (1997)). This dynamic autoregulation index

was found to be highly correlated to the static autoregulation index, sARi (Tiecks et al.

(1995)).

The dynamic autoregulation models presented in Aaslid et al. (1989) and Tiecks et al.

(1995) are two typical examples of linear models of autoregulation which relate measured

time series to indices representing autoregulation status. Both of them are ’signal-based’,

recovering model parameters directly from data, yet encapsulating the authors’ hypothe-

sis of the dynamics of cerebral autoregulation, such as linearity, with model parameters

being physically meaningful, such as cerebrovascular resistance in Aaslid et al. (1989) and

time constant in Tiecks et al. (1995). The development of subsquent mathematical models
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can then be approximately divided into two approaches. One aims to estimate the purely

mathematical relationship between different clinical variables, including Mx autoregula-

tion index (Czosnyka et al. (1996, 1997, 2001); Reinhard et al. (2005)), ARX model (Liu

et al. (2003)), impulse response of transfer function analysis (Zhang et al. (1998a); Pan-

erai et al. (1999, 2001)), linear Wiener-Laguerre model (Panerai et al. (1999, 2001); Mitsis

et al. (2002)), and second-order Volterra kernels (Panerai et al. (1999); Mitsis et al. (2002,

2004b)). ARX models, impulse response and linear Wiener-Laguerre models are all linear,

which cannot explain some aspects of cerebral hemodynamics such as the spontaneous os-

cillations observed in CBFV and some of them fit data poorly (Giller and Mueller (2003)).

Second-order Volterra kernels do not make a linear assumption of ABP −CBFV relation-

ship and are able to characterize nonlinearities in cerebral autoregulation. However, it

is hard to gain physical insights from this non-parametric approach (Giller and Mueller

(2003)). Mx index of autoregulation is calculated as the correlation coefficient between

spontaneous fluctuations in CBFV and ABP over a 3 minute moving window. The advan-

tage of using windowed correlation is that it does not assume that the coupling relationship

remains constant with time; this is important when clinical interventions are being carried

out, since it is important not to miss or to average out deterioration that may occur in the

middle of a test. A recent study (Czosnyka et al. (2008)) shows that Mx agrees well with

traditional ARI in diagnosing impaired autoregulation status for head-injured patients.

The second approach relates different clinical parameters through models based on phys-

iological assumptions, for example modelling nonlinearities from tissue elasticity and in-

teractions with intracranial pressure (the extravascular pressure of cerebral vessels), as

shown in Figure 2.4. Examples include Ursino and Lodi (1997, 1998); Lodi et al. (1998);

Ursino et al. (2000); Payne (2006); Banaji et al. (2005). Many of the variables in such

models cannot be measured directly and hence attempts have been made to perform least

square fits of some model parameters to clinical data (Ursino et al. (1995); Ursino and Lodi

(1997)); however the large number of parameters involved makes such parameter fits com-

putationally intensive and ill-posed for short records of clinical data and hence difficult to
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validate the model. As a result, these physiologically-based models are now more applied

to theoretically test hypotheses about complex interacting systems (for example, the inter-

action between pressure autoregulation and CO2 reactivity in Lodi et al. (1998); Ursino

and Lodi (1998); Ursino et al. (2000); Payne (2006); the interaction between autoregula-

tion, CO2 activity and neural activation and hence BOLD response in Payne (2006)), and

less used in a clinical setting for diagnosis of cerebral autoregulation.

Figure 2.4 Biomechanical analog of the dynamic cerebral autoregulation model: Pa, sys-
temic arterial pressure; Pla and Rla, pressure and resistance of large intracranial arteries,
respectively; Ppa, Rpa, and Cpa, pressure, resistance, and compliance of pial arterioles, re-
spectively; Pc, capillary pressure; q, tissue cerebral blood flow; Rpv, resistance of proximal
cerebral veins; Cvi, intracranial venous compliance; Pv, cerebral venous pressure; Pvs and
Rvs, sinus venous pressure and resistance of the terminal intracranial veins, respectively;
Rf and Ro, cerebrospinal fluid (CSF) formation and CSF outflow resistance, respectively;
qf and qo, CSF formation rate and CSF outflow rate, respectively; Pic and Cic, intracranial
pressure and intracranial compliance (taken from Ursino et al. (2000) with permission).

Payne and Tarassenko (2006) proposed a combined analysis to link the complex physiologically-

based models to experimentally-derived models, which is the first attempt to bridge the gap

and thus take the advantage of both approaches. This combined analysis is able to estimate

autoregulation status clinically as well as helping to provide physiological insights into the

processes that govern cerebral autoregulation. The linearised process used by Payne and

Tarassenko (2006) provides a dimensionality reduction of the original complex nonlinear

model and thus can be used to recover some variables from the available experimental data

through the simplifed parameter fitting process. On the other hand, the model simulations

are able to recover some key features of the clinical measurement and thus help to un-

derstand and interpret the data. As a result, a combined analysis of physiologically-based
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modelling and experimental data processing becomes a very attractive process and is used

throughout the following Chapters.

2.4.3 Frequency domain analysis

As mentioned in Section 2.3.4, the techniques adopted to simulate step changes in ABP,

such as the thigh cuff technique, have inherent problems that limit their clinical use.

Techniques are now mainly focused on spontaneous oscillations in ABP, CBFV and blood

gas levels, such as PaCO2 and PaO2 , which are well defined in their frequency content. It

is therefore natural to use frequency-domain techniques to consider variations in signal

power and the interrelationship between signals at different frequencies.

Typical frequency methods for investigating the regulation of cerebral haemodynamics in-

clude power spectra analysis under various physiological or pathological conditions. For

example, Tachtsidis et al. (2004) reported that the frequency content of NIRS measured

O2Hb was dependent on posture in healthy young subjects. Schroeter et al. (2004) found

that the power of low frequency oscillations around 0.1Hz in O2Hb declines with ageing.

However, large inter-subject variability are often found in these absolute measurements of

power spectra, which makes statistical differences hard to achieve.

More sophisticated techniques, including system identification algorithms have been ap-

plied to investigate the bivariate relationship between systemic changes, such as ABP

oscillations, and cerebral hemodynamics, CBFV or O2Hb variations. Transfer function

analysis is a standard system identification technique, explained in detail in numerous

texts, for example Ljung (1998). Here just an short outline of univariate transfer function

analysis is present, with the specific details of practical implementation used in Chapter

4, including multivariate transfer function identification, outlined in that section.

From the time series for ABP , P (t), and CBFV , V (t), the frequency-domain transforms

P (f) and V (f) are computed with the Fourier transform. Their autospectra, Gpp(f) and

Gvv(f), and the cross-spectrum Gpv(f) are estimated using a Welch periodogram (Welch



2.4 Analysis of clinical autoregulation data 36

(1967)) as:

Gpp(f) = E[P ∗(f)P (f)], (2.6)

Gvv(f) = E[V ∗(f)V (f)], (2.7)

Gpv(f) = E[P ∗(f)V (f)]. (2.8)

The complex transfer function H(f) between P (t) and V (t) is then given by:

H(f) =
Gpv(f)
Gpp(f)

. (2.9)

Its absolute value and angle give the gain and phase shift of the system, taking P (t) as the

input and V (t) as the output. The univariate coherence function Γ2
P (f) is estimated by:

Γ2(f) =
|Gpv(f)|2

Gvv(f)Gpp(f)
. (2.10)

The squared coherence reflects the fraction of the output power that can be linearly related

to the input power at each frequency. Γ(f) is an assessment of accuracy in estimation

of the transfer function coefficients, gain and phase; the values of the recovered system

parameters are only valid where this coherence is high.

For a system that can be described by a univariate linear system of ordinary differential

equations (ODEs) with constant coefficients, the Fourier transform of the output is related

to the Fourier transforms of the input signals via a linear transfer function, with the gain

describing how the two power spectra (input and output) are related, and phase chrarac-

terising the phase shift between oscillations in the input signal and the output signal. In

this case of a pure linear relationship between the input and output signals, Γ2(f) will be 1

at all frequencies, guaranteeing the accuracy of the identified transfer function coefficients.

However, as shown in the physiologically-based models outlined above, the cerebral haemo-

dynamic system is not a simple linear time-invariant system; actually it is nonlinear (due

to tissue elasticity and interactions with intracranial pressure), time-varying (vasomotion1

causing varying vessel radius and hence resistance) and multivariate (blood flow is not only
1Rhythmic oscillations in vascular tone caused by local changes in smooth muscle constriction and dilation.
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controlled by pressure change, but also influenced by blood gas concentrations). Therefore,

the values of Γ2(f) calculated when assessing the real cerebral autoregulation system are

always lower than 1 at some frequencies. Actually, a minimum value of Γ2(f) > 0.5 is

conventionally adopted to represent a significant linear association between the input and

output at a certain frequency (Panerai et al. (1997)). The relationship between values of

the coherence function and statistical confidence is explored in Panerai et al. (1997) and

Wang and Tang (2004).

The first application of transfer function analysis of autoregulation was performed by Giller

(1990) who estimated the amplitude frequency response (gain) and coherence function be-

tween spontaneous oscillations in ABP and TCD-measured CBFV. Giller demonstrated

that patients with subarachnoid haemorrhage showed higher values of coherence than

normal patients, indicating impaired autoregulation. Though this finding is consistent

with the interpretation that active autoregulation reduces the degree of linear dependency

between fluctuations in pressure and flow, it could also support the alternative conclusion

of increased CO2 or O2 reactivity in patients with subarachnoid haemorrhage with equal

validity, since oscillations in PaCO2 and PaO2 were not considered in the study. In fact, it has

been shown that the impulse response, and thus transfer function, under hypercapnia can

easily be classified into the group with abnormal autoregulation because of their similar

pattern (Panerai et al. (1996)).

Since the publication of Giller (1990), numerous studies have used transfer function anal-

ysis for the recovery of the dynamics of cerebral autoregulation (Zhang et al. (1998a); Pan-

erai et al. (1999, 2001); Oehm et al. (2003); Reinhard et al. (2001, 2003a,b, 2005)). Ex-

amination of transfer function coefficients (gain and phase) and coherence as a function of

frequency is used to investigate cerebral autoregulation status. As shown in Figure 2.5,

the estimated frequency response of the ABP/CBFV relationship below 0.50 Hz at normal

autoregulation can be divided into three regions:

1. Low frequency (< 0.07 Hz): Low coherence, low gain and large phase lead.

2. Intermediate frequency (0.07 − 0.20 Hz): Increasing coherence, increasing gain and de-
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creasing phase.

3. High frequency (> 0.20 Hz): High coherence, relatively large gain and minimal phase

lead.

Besides gain and coherence, which are used to separate patients from normal autoregu-

lation in Giller (1990), the phase frequency response between CBFV and ABP has also

been shown by Panerai et al. (1998) to be an important indicator of autoregulation status,

with more positive phase for the group with normal autoregulation in the frequency region

0.06 − 0.20Hz, i.e. CBFV oscillations lead ABP oscillations. This finding of positive phase

lead indicating active autoregulation is also supported by the results of induced periodic

oscillations in Diehl et al. (1995) and Birch et al. (1995). However, it is worth pointing

out that we need to be careful adopting transfer function gain and phase in a particular

frequency range as criteria as they are no longer valid where the corresponding coherence

is low.

Figure 2.5 Transfer function analysis of fluctuations of arterial blood pressure and cere-
bral blood flow velocity. Group-averaged transfer function: gain (A), phase (B), and
magnitude-squared coherence (C) are plotted as solid lines. Dotted lines correspond to
Standard Deviation. Adapted from Latka et al. (2005) with permission.

Very few transfer function studies take into account the dynamics of PaCO2 and PaO2 ,

though they have been demonstrated to play an important role in controlling blood flow,

possibly due to the difficulties in obtaining simultaneous measurements. The only trans-

fer function analyses of cerebral autoregulation that include PETCO2 measurements to ac-

count for PaCO2 variability are found in Edwards et al. (2003) and Panerai et al. (2000).

They both discussed the effects of CO2 by using time domain analysis techniques; however
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the methods employed do have a direct frequency domain analogue. Panerai et al. (2006)

illustrated the importance of considering autoregulation as a multivariate system rather

than univariate system identification problem, by using an additive input cerebrovascu-

lar resistance index, CV RI, defined as ABP/CBFV , alongside ABP . The result seems

encourageing: the multiple coherence of CBFV for low frequencies is found to be signifi-

cantly higher than the corresponding values obtained with univariate coherence reported

before. However, one system input here, CV RI, is directly related to the output, thus it

does not contribute to the validity of linear system relationship though it does artificially

change the value of the coherence function.

Besides unmeasured variability, nonstationarity is another factor that can invalidate the

assumptions of transfer function analysis, especially for measurements taken under cer-

tain physiological conditions like exercise or tilting. Normal transfer function analysis sim-

ply provides the averaged results, remvoing any useful time information. As mentioned be-

fore, Czosnyka et al. (1996) employed a short time window to obtain Mx index of autoregu-

lation as a time-varying correlation coefficient between spontaneous fluctuations in CBFV

and ABP and thus became the first non-stationary investigation in cerebral autoregula-

tion dynamics. Recently, more robust time-varying techniques such as time-varying trans-

fer function analysis (Zhao et al. (2005); Rowley (2008)), wavelet cross-correlation analysis

(Rowley et al. (2007); Mizuno-Matsumoto et al. (2005)) and wavelet phase synchronization

analysis (Latka et al. (2005); Rowley et al. (2007)) have all been developped to obtain a

better estimation of the dynamics of the cerebral autoregulation system.

2.4.4 Time-Frequency Analysis

As mentioned above, the windowed correlation index, Mx, introduced by Czosnyka et al.

(1996), characterises the relationship between ABP and CBFV fluctuations as a correlation

coefficient over a short window in time. It has the ability to monitor changes that occur in

the signal with time, which therefore becomes attractive in clinical settings together with

its advantage of low dimensionality. However, it is still a purely time domain analysis and
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thus may make it easy to miss the important frequency information of the spontaneous

oscillations in physiological variables. Transfer function analysis, in contrast, describes

the scaling and phase relationship between fluctuations in ABP and CBFV as a function of

frequency, which captures an important aspect of the structure of these fluctuations. How-

ever, as discussed before, this transfer function estimation suffers from the big drawback

of averageing out all the potential useful time information. To overcome this drawback, it

is natural to consider time-frequency analysis which combines the advantages of both time

and frequency domain analysis. Several time-frequency algorithms being used for cerebral

autoregulation analysis in the literature are thus presented below.

Short-time Fourier transform

The short-time Fourier transform (STFT), first introduced by Gabor (1946), is a Fourier-

related transform that determines the sinusoidal frequency and phase content of local sec-

tions of a signal as it changes over time. It incorporates a degree of time localisation into

the Fourier transform by applying a moving window function of finite length. As the win-

dow sliding along the time axis, the resulting two dimensional signal can be expressed

as:

STFT {x(t)} = X(f, τ) =
� ∞

−∞
x(t)w(t− τ)e−j2πftdt (2.11)

where w(t) is the window function, for example, a Gaussian window given by:

w(t) =
e−t2/2σ2

σ
√

2π
, (2.12)

the parameter, σ, defining the width of the window in the time domain. A large value of

σ increases the frequency resolution of the estimate, however reduces the temporal reso-

lution; a small σ would result in good temporal resolution at the cost of a poor frequency

resolution. A frequency vs temporal resulution trade-off exists in the choice of window

length, defined by σ here, which is the biggest downfall of the STFT method. Many real

signals require good time resolution for high-frequency events, and good frequency resolu-

tion for low-frequency events, therefore it is sensible to use a window length that varies
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depending upon the frequency being analysed. This is the approach adopted by the wavelet

transform (or multi-resolution analysis in general).

The STFT was used in Giller and Mueller (2003) to analyse how the frequency content of

TCD measured CBFV changes with time, as a measure of its nonstationary and nonlinear

behaviour. Based on the CBFV measurements from 29 healthy subjects, Giller and Mueller

(2003) claim that the presence of bifurcations 2 and chirps 3 in the STFT computed spec-

trograms indicates the presence of non-linearity. This conclusion is questionable: since a

short time FFT is a moving average observation, any changes in frequency are smoothed

out, and therefore it is more likely that the observed smooth changes in frequency con-

tent are artifacts of the process used to compute the STFT (Rowley (2008)). Moreover,

changes of the frequency content of CBFV are to be expected when the system is driven by

multiple inputs. Techniques for investigating the presence of non-linearity in cerebral au-

toregulation system involves information transfer entropy (Katura et al. (2006)), which is

useful in interpreting structure such as directionality in a coupling relationship. However,

estimation of the required multivariate probability density functions from short-duration

clinical records is a difficult problem. Alternatively, Rowley (2008) overcomes this problem

using a Gamma Test which provides similar nonlinear dependency measure, yet with more

efficient computation, since it avoids using a kernel based estimation technique.

The Continuous Wavelet Transform

The continuous wavelet transform (CWT) of a signal x(t) is defined for all positive values

of scale, a, and time delay, τ , as:

Wx(a, τ) =
1√
a

� ∞

−∞
x(t)ψ(

t− τ

a
)dt a ∈ R+, τ ∈ R+, (2.13)

where ψ(t) is a continuous function called the mother wavelet and ψ( t−τ
a ) is a translated

and scaled version of the mother wavelet. A valid mother wavelet and its corresponding
2Defined as the smooth splitting of spectral power in a frequency band into two sub-bands over time
3A linear increase in the frequency of most power in the signal with time
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Fourier transform, Ψ(f), satisfy the following properties:
� ∞

−∞
ψ(t)dt = 0, (2.14)

� ∞

−∞
| ψ(t) |2 dt = 1, (2.15)

� ∞

0

| Ψ(f) |2

f
df < ∞. (2.16)

Equation 2.14 ensures that the wavelet has a zero mean value; Equation 2.15 guarantees

compact support in the time domain (its nonzero activity is essentially limited to a finite

region of time); the last equation is known as the admissibility condition, which is equiv-

alent to compact support in the frequency domain. Some popular mother wavelet of CWT

which satisfies all the three conditions are Meyer, Mexican Hat and Morlet wavelets (Per-

cival and Walden (2000)). Mother wavelets can also be in complex form, with one example,

the complex Morlet wavelet (Goupillaud et al. (1984)), defined as:

ψ(t) =
1√
πfb

ej2πfcte−t2/fb (2.17)

where fb is the bandwidth and fc the wavelet centre frequency. The real and imaginary

parts of the Morlet wavelet are plotted in Figure 2.6.

Figure 2.6 Complex Morlet Wavelet.
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Though the scale a in the wavelet domain mimics frequency in the Fourier transform,
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the translation from scale to frequency depends upon the particular choice of wavelet.

However, an approximate relationship between wavelet scale a and translated frequency,

pseudo-frequency, fa, for a given wavelet and a sampling period can be computed as (cit):

fa =
fc

a×∆
, (2.18)

where fc is the centre frequency of a wavelet in Hz, and ∆ is the sampling period. This

translation allows a direct comparison to be made between wavelet-based and Fourier-

based analysis.

Latka et al. (2005) used the complex Morlet wavelet with the CWT to compute the instan-

taneous phase of the CBFV and ABP signals and a synchronization index between the two

signals, defined as the standard deviation of the phase difference in a wrapped coordinate

system (Fisher (1995)):

∆̄φ(a) = tan−1

��
tsin(∆φ(a, t))�
tcos(∆φ(a, t))

�
. (2.19)

Studies carried out in healthy subjects showed two distinct peaks in synchronization at

around 0.1Hz and 0.33Hz, corresponding to the Mayer wave and respiration rhythms re-

spectively. In contrast, the phase difference in the low frequency region (0.02 − 0.07Hz)

showed an almost uniform distribution, involving zero and negative phase, which has been

refered to as intermittent autoregulatory failure (Giller and Mueller (2003)). It should be

noted, however, that Latka et al. (2005) do not consider any measure of PaCO2 and PaO2

reactivity which could play an important role in the instantaneous phase of CBFV in the

low frequency region.

Besides investigating the instantaneous phase difference, wavelet cross-correlation was

introduced in Rowley et al. (2007) as the cross-correlation between CWT coefficients of two

time series. Compared to ordinary cross-correlation, wavelet cross-correlation is also an

measure of similarity between two time series, but localised to different frequencies. This

CWT-based technique was used by Rowley et al. (2007) to analyse the coupling between

oscillations in ABP and NIRS measured O2Hb in both autonomic failure patients and age-

matched controls. A statistical difference was found in the scales of maximum wavelet
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cross-correlation, suggesting that cerebral and systemic changes are coupled at different

frequencies for patients and healthy subjects.

Despite the various advantages of CWT, this algorithm is, however, computationally expen-

sive, as it converts a one dimensional signal to a two dimensional matrix of time-frequency

wavelet coefficients which introduces redundancy. As a result, discrete wavelet transforms,

provide an alternative approach that retains certain key features of the CWT yet with a

significant reduction in computational expense.

The Discrete Wavelet Transform

The main idea of the discrete wavelet transform (DWT) is the same as for the CWT, i.e.

to obtain a time-scale representation of a signal, but in a more succinct manner (Percival

and Walden (2000)). The CWT is computed by changing the scale of the analysis window,

shifting the window in time, multiplying by the signal, and integrating over all times. In

the discrete case, a time-scale representation is obtained using digital filtering techniques:

the signal is passed through a series of high-pass filters to analyse the high freqencies, and

it is passed through low-pass filters to analyse the low frequencies. Mathematically, it can

be written as:

W1[n] = (x ∗ g)[n] =
∞�

k=−∞
x[k]g[n− k] (2.20)

V1[n] = (x ∗ h)[n] =
∞�

k=−∞
x[k]h[n− k] (2.21)

where g represents the impulse response of high-pass (wavelet) filter and h of low-pass

(scaling) filter. The two filters are related to each other and are known as a quadrature

mirror filter. The outputs gives the detail coefficients, W1[n] and approximation coefficients,

V1[n].

However, since half the frequencies of the signal have now been removed, half the samples

can be discarded according to Nyquist’s rule. So the detail coefficients and the approxima-
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tion coefficients can be subsampled to:

(W1 ↓ 2)[n] = W1[2n] =
∞�

k=−∞
x[k]g[2n− k] (2.22)

(V1 ↓ 2)[n] = V1[2n] =
∞�

k=−∞
x[k]h[2n− k] (2.23)

This decomposition has halved the time resolution since only half of each of the filter out-

put characterises the signal. However, each output has half the frequency band of the input

so the frequency resolution has doubled. This decomposition is repeated on the approxima-

tion coefficients which is further decomposed with the high and low pass filters and then

down-sampled, allowing higher frequency resolution on the low frequency component. This

decomposition of the signal into discrete frequency bands in the discrete filtering stages of

the pyramid algorithm are shown in Figure 2.7. H(·) and G(·) in the figure represent the

frequency domain transfer function of the discrete filters h and g.

Figure 2.7 DWT decomposition. At each level of the pyramidal algorithm the signal is
decomposed into low and high frequencies. Due to the decomposition process the input
signal must be a multiple of 2n where n is the number of levels.

The Maximal Overlap Discrete Wavelet Packet Transform

The Maximal Overlap Discrete Wavelet Wavelet Packet Transform (MODWPT) has two

important advantages over the DWT. First, it is translationally invariant; if a pattern in a

time series is translated, translational invariance of a transform technique specifies that

the numerical descriptors of the time series in the transform domain are translated from

the original time domain but not modified (Mallat (1999)). In contrast to the standard
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DWT, MODWPT omits the subsampling in the time domain at each stage of the pyramid

alorithm. Instead, it inserts zeros into the discrete filter banks and rescales the coefficients

by
√

2, as shown in Figure 2.8. This desired time invariant transform enable the MODWT

details and smooths associated with zero phase filter, thus easy to be lined up with the

original time series (Percival and Walden (2000)).

Secondly, the use of the Discrete Wavelet Package transform breaks up the limit of the

frequency resolution of DWT that high scales (low frequencies) always have greater fre-

quency resolution than low scales (high frequencies), which may not always be optimal for

analysis in the frequency domain. As shown in Figure 2.8, it passes the approximating

coefficients into the filter bank as well as the detail coefficients, which gives a library of

wavelet coefficients and allows for adaptive selection of frequency resolution (Percival and

Walden (2000)).

Figure 2.8 MODWPT decomposition. Compared to DWT, the MODWPT pyramidal de-
composition avoids the subsampling process and the obtained coefficients have the same
length as the original time series. Moreover, MODWPT has more flexible frequency reso-
lution than DWT.

For the MODWPT, complex coefficients can be obtained such that the real and imaginary

components of each coefficient form an approximate Hilbert relationship by the use of

Hilbert wavelet pair filters (Selesnick (2002); Selesnick et al. (2005); Whitcher and Craig-

mille (2004); Whitcher et al. (2005)). An example pair of wavelet filteres forms approxi-
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mate Hilbert relationship are shown in Figure 2.9. Similar to the complex Morlet wavelet

in CWT, this MODWPT is also able to produce an approximate analytical signal localised

at both time and frequency, with the complex magnitude approximating the amplitude of

the signal at that frequency and the angle approximating the phase. Based on MODWPT

decomposition, time-varying auto and cross power spectral density functions can be esti-

mated, allowing for estimation of a time varying transfer function and coherence functions.

The use of the MODWPT in this way was first proposed by Whitcher et al. (2005) to analyse

signals obtained from electromyograph (EMG) recording in human subjects. It was further

applied to the analysis of dynamic autoregulation in Rowley (2008) as a time-varying mul-

tivariate system identification.

Figure 2.9 Approximate Hilbert transform pair of orthonormal wavelet (left) and mid-
phase spectral factorization (right). Adapted from Selesnick et al. (2005) with permission.

2.5 Summary

This chapter has provided a comprehensive overview of the literature relevant to the field.

The physiological processes of the maintenance and regulation of cerebral blood flow by the

systemic cardiovascular control and cerebral vasculature were presented in Section 2.2.

Successful monitoring of cerebral autoregulation performed on human subjects in clinical

settings was introduced in Section 2.3, where it was also shown that these measurements

incorporate numerous artefacts due to unmeasured variability and the limitations of non-

invasive measurement procedures. The assessment of autoregulation status used in clini-

cal settings and presented in the literature was then outlined in Section 2.4. In particular,
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the multivariate and time-varying characteristics associated with cerebral autoregulation

requires techniques that are robust in the presence of unmeasured variability and that can

cope with changes in signal statistics due to nonstationarities to obtain a reliable clinical

diagnosis of cerebral autoregulation.

Chapter 3 will thus use a existing physiologically-based model, Combined Hemodynamic

System (CHS) of Payne (2006), to investigate the interaction among pressure autoregula-

tion, CO2 reactivity and neural activation processes. It will investigate the effects of PaCO2

variability on the pressure-flow relationship and the neural activity-BOLD signal relation-

ship, both of which could influence the assessment of autoregulation and BOLD reponse if

not accounted for.

Chapter 4 will then demonstrate, using a experimental data-set, how acounting for PaCO2

variability by measurement of PETCO2 allows improved recovery of the dynamics of cerebral

autoregulation using a standard multivariate system identification algorithm, as indicated

by the increased multiple coherence values compared to univariate coherence in the low

frequency range. This shows that some of the apparent system nonlinearities suggested

by the observed low values of coherence at low frequencies in the literature can actually be

attributed to unmeasured variability.

Chapter 5 will further address another important characteristic of actual physiological

measurements, nonstationarity, which invalidates the precondition of linear transfer func-

tion analysis. Using the same data-set as in Chapter 4, it will be demonstrated how PaCO2

variations distort the instantaneous phase relationship between ABP and CBFV and ac-

count for the low synchronization index identified by Latka et al. (2005). This suggests that

some apparent nonstationarity can also be attributed to other physiological variability not

being taken into account.

Chapters 4 and 5 demonstrate the importance of considering PaCO2 variability, yet present

a system analysis technique accounting for CO2 effects, that assumes that the properties

of this relationship remain constant with time, which is however not always necessarily
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valid. Chapter 6 will domonstrate how the maximal overlap wavelet packet transform may

be used to relax this assumption by considering a bivariate relationship in a particular

frequency band. This new algorithm will be used to investigate the age-dependency of both

cardiovascular and cerebral changes in response to orthostatic stress.

Chapter 7 will investigate sources of low-frequency variation in BOLD signal arising from

spontaneous fluctuations in PaCO2 and heart rate in volunteers at rest, suggesting that it

is extremely important to consider systemic changes when performing functional imageing

studies.



3
System definition

3.1 Introduction

In Chapter 2, a summary of current physiologically-based models of cerebral autoregu-

lation was given, showing how they can be helpful in testing hypotheses about complex

interacting systems. Recently, Payne (2006) proposed a unified mathematical model which

incorporated the cerebral blood flow and oxygenation responses to three different local

stimuli: changes in ABP, CO2 and neural activity within a single structure. Despite the

physiological fact that all these stimuli act on the same cerebral system, this model is the

only one that integrates different models of the cerebral vasculature in order to combine

the contributions of different stimuli. The model can thus be used, for example, to explore

how variations in CO2 influence the CBF or BOLD reponses to one particular input that

is of direct interest, i.e. CBF regulation to pressure change and BOLD response to neural

stimulus.

In this chapter, some of the assumptions made in the above model are examined and a re-

vised version of Payne’s model, termed the Combined Hemodynamic System (CHS) is pre-

sented. The new version of the model makes fewer approximations about a crucial model

parameter, and extends the prediction range of the model to include changes in the de-
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oxyhaemoglobin (HHb), oxyhaemoglobin (O2Hb) and total haemoglobin (tHb) responses to

neural activity, as well as the CBF and BOLD responses. This enables many more param-

eters to be compared to experimental results from the literature. Moreover, the transfer

functions of cerebral autoregulation and CO2 reactivity based on CHS are derived, using

the same linearisation method proposed by Payne and Tarassenko (2006), linking the com-

plex physiologically-based models to experimentally-derived results. This thus combines

the advantages of both approaches and opens up the possibility of estimating autoregula-

tion status clinically as well as helping to provide physiological insights into the processes

that govern cerebral autoregulation. Additionally, such a linearised model can be used

to test advanced signal processing techniques, which will be presented in the following

chapters.

3.2 Model Description

The schematic of the CHS is shown in Figure 3.1, which is very similar to the model used

in Payne (2006) and Ursino et al. (2000), the differences being discussed below.

The system is divided into two main subsystems: the arterial compartment and the capillary-

venous compartment. The arterial compartment is further divided into regulating and

non-regulating compartments: the first segment representing the larger arteries, which

are assumed to have fixed resistance, Rla, and blood volume, Vla; the second represent-

ing the smaller arteries and arterioles, where changes in arterial compliance, Ca, baseline

value C̄a, allow for the changes in arterial volume, Vsa, baseline value V̄sa, and thus resis-

tance, Rsa, baseline value R̄sa. It is the second segment that is primarily responsible for

flow regulation.

The capillaries are assumed to have a fixed resistance and volume, whereas the venous

compartment is assumed to have a fixed resistance but varying volume, Vv, baseline value

Vvn, which is controlled by the venous compliance, Cv. The two resistors in Figure 3.1

represent the capillary and small veins, Rsv, and the larger veins, Rlv, respectively. In-
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tracranial pressure, ICP, Pic, baseline value P̄ic, primarily changes as a result of varying

cerebral blood volume (CBV). The modelling of changes in ICP is difficult because of the

lack of experimental data in normal subjects. Here a nonlinear compliance Cic is taken to

characterize the intracranial pressure-volume (Pic-Vic) relationship, in common with many

other authors, for example Ursino et al. (2000) and Lu et al. (2004). This is the main differ-

ence between the CHS model presented here and the one in Payne (2006), which assumed

ICP to be constant. The difference between their simulation results will be shown below.

Figure 3.1 Schematic of model: Pa, systemic arterial pressure; Rla, resistance of non-
regulating arterial compartment; P1, Rsa and Ca, pressure, resistance, and compliance of
regulating arterial compartment; Rsv, resistance of capillary compartment and small veins;
Cv, venous compliance; P2, venous pressure; Pv and Rlv, venous pressure and resistance of
large veins, respectively; Pic, intracranial pressure; Cic, intracranial compliance

The haemodynamic equations are used to relate the pressure, volume and resistance of the

different compartments of the cerebral system. In the arterial compartment, the vessel

resistance is assumed to vary with the inverse of radius to the power four, where volume

is proportional to the radius squared, thus for regulating vessels, volume varies according

to the inverse square root of the resistance. Together with the definition of compliance and
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the conservation law for blood flow, this gives for the arterial compartment1:

Vsa

V̄sa
=

�
R̄sa

Rsa
, (3.1)

dVsa

dt
=

d(Ca(P1 − Pic))
dt

, (3.2)
dVsa

dt
=

Pa − P1

Rla + Rsa/2
− P1 − P2

Rsa/2 + Rsv
. (3.3)

In the capillary and venous compartment:

dVv

dt
= Cv

d(P2 − Pic)
dt

, (3.4)

Cv =
1

kven(P2 − P̄ic − Pv1)
, (3.5)

dVv

dt
=

P1 − P2

Rsa/2 + Rsv
− P2 − Pv

Rlv
, (3.6)

where kven and Pv1 are constants. Venous volume can then be directly calculated by sub-

stitution of Equation 3.5 into Equation 3.4 and integrating to give:

Vv =
�

1
kven

�
ln(P2 − P̄ic − Pv1) + Vvn. (3.7)

The constant of integration, Vvn, is set to give a suitable basal venous volume fraction.

Cerebral blood flow can be calculated in big arteries:

Fin,a =
Pa − P1

Rla + Rsa/2
, (3.8)

in the microvasculature:

q = Fout,a = Fin,v =
P1 − P2

Rsa/2 + Rsv
, (3.9)

and in the venous outflow:

Fout,v =
P2 − Pv

Rlv
. (3.10)

ICP variations can be calculated from:

dVic

dt
= Cic

dPic

dt
, (3.11)

Cic =
1

KePic
, (3.12)

dVic

dt
=

dVsa

dt
+

dVv

dt
, (3.13)

1In the following equations, capital letters are used to represent the parameter value, the small letter
representing the non-dimensional value respectively, i.e. the parameter value divided by its baseline value
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where Ke is the rigidity coefficient of the cranium, whose normal values have been esti-

mated to be in the range of 0.7 to 2.9 (Ursino et al. (2000)). The variation of volume (dVic

dt )

is the sum of the variations of arterial volume (Vsa) and venous volume (Vv) since changes

in capillary volume and CSF volume are neglected. All the values of the parameters used

in the CHS are given in Table 3.1.

Table 3.1 Parameters Used in the Simulations of CHS
Parameter Description Value
Rla Resistance of large (non-regulating) arteries 1.4mmHg.s/ml
Rsa Baseline resistance of small (regulating) arteries 4.03mmHg.s/ml
Rsv Resistance of small veins (including capillaries) 1.32mmHg.s/ml
Rlv Resistance of large veins 0.56mmHg.s/ml
Pa Baseline arterial blood pressure 100mmHg
Pv Venous outlet pressure 6mmHg
Pic Baseline of intracranial pressure 10mmHg
Pvl Pressure offset for venous compliance −2.25mmHg
Vla Volume of large (non-regulating) arteries 1ml
Vsa Baseline volume of large (non-regulating) arteries 12ml
Vvn Offset for venous volume 28ml
Viv Baseline of intracranial volume 80ml
Ca Baseline arterial compliance 0.205ml/mmHg
kven Elastance coefficient for venous compliance 0.186/ml
ke Rigidity coefficient of the cranium 0.08/ml
Gq Gain of flow-based feedback mechanism 3.0ml/mmHg
τq Time constant of flow-based feedback mechanism 20s
PaCO2 Baseline arterial CO2 pressure 40mmHg
τCO2 Time constant of arterial CO2 pressure 40s
∆C+

a Amplitude of positive change in arterial compliance 2.87ml/mmHg
∆C−

a Amplitude of negative change in arterial compliance 0.164ml/mmHg
τ1 First time constant for neural feedback 2s
τ2 Second time constant for neural feedback 6s
g Baseline non-dimensional tissue oxygen concentration 0.2
E Baseline Oxygen Extraction Fraction 0, 4
τg Time constant for tissue oxygen concentration 1s
K Scaling between activation and oxygen demand 0.05
� Scaling factor for neuronal efficacy 1
V0 Scaling factor for BOLD response 0.02

The feedback system is assumed to consist of three stimulating mechanisms for adjusting

arterial compliance: CBF (q), arterial CO2 concentration (PaCO2) and neural stimulation
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(u). As in Payne (2006), these are assumed to be of the form:

τq
dxq

dt
+ xq = Gq(

q − q̄

q̄
), (3.14)

τCO2

dxCO2

dt
+ xCO2 = fn(

PaCO2

¯PaCO2

), (3.15)

τ1τ2
d2xM

dt2
+ (τ1 + τ2)

dxM

dt
+ xM = �u, (3.16)

where changes in CBF and arterial CO2 from their baseline values act to stimulate delayed

changes in their respective state variables. The delays are mimicked by first order filters

with time constants of τq and τCO2 respectively. For CO2 the function in Equation 3.15 is

selected to provide the best fit to the data of Reivich (1964):

fn(
PaCO2

¯PaCO2

) = 0.3 + 3tanh

�
PaCO2

¯PaCO2

− 1.1
�

. (3.17)

In Equation 3.16, the scaling factor � represents the efficacy with which neuronal activity

causes an increase in the state variable. τ1 and τ2 are the time constants for neural acti-

vation. It is then assumed that the three feedback mechanisms act in a linearly additive

manner:

x = xM + xCO2 − xq, (3.18)

and that x then modifies Ca by means of the following sigmoidal relationship, Ursino et al.

(2000):

Ca = C̄a +
1
2

�
∆C+

a tanh( 2x
∆C+

a

)if x > 0,

∆C−
a tanh( 2x

∆C−a
)if x < 0

�
. (3.19)

Previous studies (Aaslid et al. (1989)) have indicated that CO2 level has a major effect on

CBF autoregulation. Specifically, during hypercapnia, the CBF increases and autoregula-

tion is impaired, whereas in hypocapnia, CBF decreases and autoregulation is improved,

which suggests the two mechanisms are not actually linearly additive. This relationship

will be further discussed in the next section.

The deoxyhaemoglobin transport equation previously derived in Buxton et al. (1998), based

on mass transport, is used here:

τvḣv = fin,v
E

E0
− fout,v

hv

vv
, (3.20)
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where hv is the venous deoxyhaemoglobin, and τv is the venous transit time defined as

τv = V̄v

q̄ , the ratio of baseline venous volume to baseline flow. CBF, fin,v, venous outflow,

fout,v and venous volume, vv, are all derived from the haemodynamic model. The OEF, E,

is related to CBF by the oxygen transport model for steady flow described in Zheng et al.

(2002). Similarly, the venous oxyhaemoglobin transport equation, based on mass balance,

is:

τvȯv = fin,v
1− E

1− E0
− fout,v

ov

vv
, (3.21)

and finally BOLD response is calculated using the following equation proposed in Obata

et al. (2004):
∆B

B
= V0(a1(1− hv))− a2(1− vv)), (3.22)

where a1 = 3.4E0/0.4 and a2 = 0.57E0/0.4 + 0.43 for B0 = 1.5T and TE = 40ms.

Finally, the oxygen haemoglobin and deoxyhaemoglobin and total haemoglobin in the cere-

bral blood flow can be estimated as the weighted volume sum of the oxyhaemoglobin, de-

oxyhaemoglobin and total haemoglobin in the arterial compartment and venous compart-

ment2:

HbO =
oa(1− rv) + ovrv(1− E0)

1− rv + rv(1− E0)
, (3.23)

HbR =
ha(1− rv) + hvrvE0

rvE0
, (3.24)

HbT = oa + ha(1− rv) + ovrv(1− E0) + hvrvE0, (3.25)

where rv is the ratio of baseline venous volume to the total cerebral blood volume, which

can be calculated as V̄v/(Vla + V̄sa + V̄v). oa can be estimated as 1 and ha as 0 based on the

assumption that there is no deoxyhaemoglobin in arterial flow.
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Figure 3.2 a) Model-predicted haemodynamic response of CHS; b) Group-averaged re-
sponse functions from simultaneous NIRS and ASL-fMRI scans (Huppert et al. (2005)) to
2s neural stimulus.
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3.3 Simulation results

3.3.1 Neural activation

The model response of the model simulation to a 2s neural stimulus under normal condi-

tions are shown in Figure 3.2(a) including HbO, HbR, HbT , CBF and the BOLD response.

Simulation results have been normalized to the maximum change of each parameter, and

the HbR traces have been inverted to allow better visual comparison with experimental

data. Measured haemodynamic responses using NIRS and ASL-fMRI instruments are

also presented in Figure 3.2(b) for comparison (Huppert et al. (2005)).

Table 3.2 The time-to-peak of the region-of-interest averaged responses for the five haemo-
dynamic parameters measured in Huppert et al. (2005) and simulation result of CHS

Parameter Experiment TTP (s) Simulation TTP (s)
CBF 3.4 ± 0.7 3.3
HbO 4.0 ± 1.4 3.6
HbT 3.9 ± 1.5 3.3
HbR 6.0 ± 1.0 6.0
BOLD 5.9 ± 1.0 5.8

Table 3.2 is a summary of values of the time-to-peak (TTP) of the region-of-interest aver-

aged responses for the five haemodynamic parameters measured in Huppert et al. (2005)
2These are fractional values
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to a short 2-s finger-tapping task, in comparison with the model prediction. The simula-

tion results agree very well with the experimental data, which predicts a lag between the

peak HbR and HbO (HbT ) responses and the BOLD and CBF responses of approximately

2 seconds.

3.3.2 CO2 effect

Chapter 2 outlined the importance of PaCO2 in the modulation of pressure autoregulation.

It has been demonstrated in Aaslid et al. (1989) that hypercapnia impairs autoregulation,

whereas hypocapnia improves it, this being by examination of the CBF response in a thigh-

cuff experiment at different PaCO2 levels, as shown in Figure 3.3(a). In the CHS, this CO2

effect was modelled as an additional input of the feedback system controlling CBF. Note

that is, the CHS model presented here, ICP is not assumed constant, unlike in Payne

(2006), since hypercapnic or hypocapnic conditions will induce relatively large changes in

CBV and thus ICP. The simulation results of CHS are shown in Figure 3.3(b), compared to

the experimental results.

Figure 3.3 Simulation of thigh cuff experiments using CHS. Thigh cuffs are deflated at 0s.
From left to right: hypocapnia, normocapnia, and hypercapnia.
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In hypocapnia (Figure 3.3(a), left), autoregulatory action was very rapid; after only 1.9

seconds ∆CBF was reduced by half and after 4.2 seconds it was greater than its initial

value. The autoregulatory response was slower in normocapnia (Figure 3.3(a), middle);
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the time for half-maximal response being 3.4 seconds, with overshoot being smaller than

that found in hypercapnia. No overshoot and a much-delayed half-maximal response were

found in hypercapnia (Figure 3.3(a), right). Calculated cerebrovascular resistance, CVR,

is presented in the bottom of the figure. In the simulation results (Figure 3.3(b)), CBF

response and CVR of normcapnia (Figure 3.3(b),middle) is most consistent with the exper-

imental result except for a larger initial overshoot of CVR. The CBF response and CVR

of both hypercapnia (Figure 3.3(b), left) and hypocapnia (Figure 3.3(b), right) are signifi-

cantly different from the experimental results, which suggests that autoregulation gain Gq

and time constant τq cannot be assumed to be constant in different PaCO2 state. In other

words, the model assumption that the two simuli, ABP and CO2 are linearly added, does

not hold; their interaction relationship is more complex.

Another phenomenon worth noticing is the initial overshoot of CVR (calculated by dividing

ABP by CBF). The initial overshoot of CVR illustrates that there is a time lag of active

autoregulation to changes in ABP, and the immediate passive response of blood vessels to

the drop of ABP is volume dilation rather than constriction, which makes the proportional

CBF change even bigger than the ABP change. There is a vasodilatory peak of CVR sti-

multaneous with the ABP rise which represents a large passive arterial dilatation due to

the ABP transients (Panerai et al. (2005)). The CHS models this process well by using a

first-order linear system to introduce delay into the active autoregulation response.

The effects of CO2 on the dynamics of the CBF and BOLD responses to neural stimulus

are more controversial, as illustrated by the debate over experimental results in current

literature, as presented in Chapter 2. With the CHS model, which incorporates neural acti-

vation and physiological variation together, we are able to investigate the BOLD response

at different CO2 levels by model simulation.

The BOLD responses predicted by the proposed model for a 4s stimulus of magnitude 0.3

starting at 1s in hypocapnia (PaCO2 = 30mmHg), normocapnia (PaCO2 = 40mmHg) and

hypercapnia (PaCO2 = 50mmHg) are shown in Figure 3.4.
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Figure 3.4 Model predicted CBF and BOLD responses in normocapnic, hypercapnic and
hypocapnic conditions.
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(b) BOLD response

The magnitude of the BOLD response decreases with increasing CO2 level, which is consis-

tent with the finding of Bandettini and Wong (1997) and Cohen et al. (2002), whilst contra-

dicting those of other studies, Corfield et al. (2001), Posse et al. (2001), Kemna and Posse

(2001). The TTP of predicted CBF slightly increases with the increasing CO2 level, which

reflects the trend that the CBF response slows down in hypercapnia whereas it speeds up

in hypocapnia, according to the finding of Kemna and Posse (2001). However, the TTP of

predicted BOLD response is almost the same, rather than increasing with elevated CO2,

as shown in the experiments of Cohen et al. (2002), Kemna and Posse (2001) and Posse

et al. (2001).

As mentioned above, the three stimuli are added linearly, so the gains and time constants

governing each stimulus are independent of each other. In Section 3.4.3 it will be shown

that the system coupling the neural activity to CBF can be estimated by a fourth order lin-

ear system, whose dominant time constants are τ1 and τ2. Thus, the response time of CBF

will be in predominantly determined by these time constants, rather than by the other

model parameters, which should be the main reason for the model failing to predict the

variation in the time constant of the haemodynamic response with varying CO2. If the

assumption that the feedback parameters are constant is relaxed, i.e. that the haemody-

namic response slows down with increasing CO2 level, as shown in Figure 3.5, this shows
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Figure 3.5 Model predicted CBF and BOLD response in normocapnia, hypercapnia and
hypocapnia condition, with the three feedback systems correlated. τ1 = 2.0, τ2 = 6.0,
τq = 20 in normocapnia; τ1 = 2.0, τ2 = 8.0, τq = 40 in hypercapnia; and τ1 = 2.0, τ2 = 4.0,
τq = 15 in hypocapnia.
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much better agreement with the trends found in the literature.

3.4 Model linearisation

3.4.1 Linear transfer function of autoregulation

To derive the linear transfer function, small changes about the basal conditions are as-

sumed using a Taylor series expansion. Since the resulting equations will all be linear,

the Laplace transform is used to convert the differential equations into a transfer func-

tion. The differential equations governing the flow autoregulation from Section 3.2 are

thus linearised to the difference equations presented below.

Equation 3.1 becomes:

∆Rsa = −2
∆Vsa

Vsa
Rsa. (3.26)

Equation 3.2 becomes:

s∆Vsa = sCa(∆P1 −∆Pic) + s∆Ca(P1 − Pic). (3.27)

Equation 3.3 becomes:

s∆Vsa =
∆Pa −∆P1

Rla + Rsa/2
− q

∆Rsa

Rla + Rsa/2
−∆q. (3.28)
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Equation 3.4 and Equation 3.6 become:

s∆Vv = sCv∆P2

=
∆P1 −∆P2

Rsa/2 + Rsv
− q

∆Rsa/2
Rsa/2 + Rsv

− ∆P2

Rlv
. (3.29)

Equation 3.11 and Equation 3.13 combine to give:

s∆Vic = sCic∆Pic

= s∆Vsa + ∆Vv. (3.30)

Equation 3.19 is simplified to:

Ca = C̄a − x, (3.31)

which together with Equation 3.14 gives:

∆Ca = −Gq
∆q

q(1 + sτq)
. (3.32)

Equation 3.9 becomes:

∆q =
∆P1 −∆P2

Rsa/2 + Rsv
− q

∆Rsa/2
Rsa/2 + Rsv

. (3.33)

q is the microvascular CBF, which drives the BOLD response in the CHS. However, what

can be measured directly by Transcranial Doppler is actually the velocity of flow in the

middle cerebral artery (VMCA), which is equivalent to fin,a in the CHS. The expression for

VMCA can be derived from Equation 3.8:

VMCA =
1
A

Pa − P1

Rla + Rsa/2
, (3.34)

where A is the cross-sectional area of the MCA, which is assumed to be invariant here. An-

giographic studies and direct visualization of the MCA during surgery have suggested that,

during a variety of stimuli known to affect cerebral blood flow, the diameter of the MCA

changes minimally (< 3.0%) (Zhang et al. (1998a)). However, small changes in diameter

are difficult to measure and may produce large changes in velocity. The assumption made

in this study is that changes in diameter of the MCA are minimal; therefore, beat-to-beat
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changes in mean velocity may represent predominantly beat-to-beat changes in cerebral

blood flow. Hence for small pressure changes, velocity changes will be:

∆VMCA

VMCA
=

∆Pa −∆P1

Pa − P1
− ∆Rsa/2

Rla + Rsa/2
. (3.35)

By eliminating other unwanted parameters, the transfer functions for both CBF and VMCA

can be derived from the above difference equations:

H1(s) =
∆q/q̄

∆Pa/P̄a

=
(α3 + 1)α1 + 1

β1(1 + (α3 + 1)α1)− (β2 + β3
1+sτv

)(1− (α3 + 1)α1 − sα1τa) + ( α2
1+sτq

)(2− sα1τa)
, (3.36)

H2(s) =
∆VMCA/ ¯VMCA

∆Pa/P̄a

=
1
β1

�
1 +

(β2 + β3
1+sτv

)(1− (α3 + 1)α1)− 2α2
1+sτq

β1(1 + (α3 + 1)α1)− (β2 + β3
1+sτv

)(1− (α3 + 1)α1 − sα1τa) + ( α2
1+sτq

)(2− sα1τa)

�
,

(3.37)

where the relevant non-dimensional parameters and time constants are:

α1 =
V̄sa/q̄

R̄saC̄a
, (3.38)

α2 = Gq

�
(
P̄a − P̄ic

P̄a − Pvs
)− β1

�
/C̄a, (3.39)

α3 =
C̄a

C̄ic
, (3.40)

β1 =
Rla + R̄sa/2

Rtotal
, (3.41)

β2 =
R̄sa/2 + Rsv

Rtotal
, (3.42)

β3 =
Rlv

Rtotal
, (3.43)

τa = (Rla + R̄sa/2)C̄a, (3.44)

τv = RlvC̄v. (3.45)

The first parameter is a ratio of time constants, the second a measure of feedback gain, the

third is a ratio between arterial compliance and intracranial compliance, the fourth to the

sixth the fractions of different compartments of resistance, linked by β1 + β2 + β3 = 1, and
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the seventh and the eighth are time constants related to the arterial and venous compart-

ments respectively. The CBF transfer function has a numerator of order 2 and a denomi-

nator of order 3, whereas the VMCA transfer function has numerator and denominator both

of order 3, which means that a sudden increase (or decrease) in blood pressure will produce

a sudden increase (or decrease) in velocity. The two transfer functions are very similar to

those derived in Payne (2006), as the nonlinear systems are quite similar to each other.

The influence of changes in intracranial pressure is solely reflected in the non-dimensional

parameter α3 in the modified transfer function, which will be dissused below.

Figure 3.6 a) Impulse response of CBF transfer functions of CHS and that derived in
Payne and Tarassenko (2006). b) Step response of CBF transfer function of CHS and that
derived in Payne and Tarassenko (2006). The dotted lines in 3.6(b) represent the final
values of the step responses.
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(b) Step Response

Since Rsa comprises the majority of the resistance to flow, β3 is relatively small compared

to β1 and β2; it is thus assumed to be close to zero. The transfer functions then approximate

to:

H1(s) =
(α3 + 1)α1 + 1

((α3 + 1)α1 + 2β1 − 1) + (1− β1)sα1τa + ( α2
1+sτq

)(2− sα1τa)
, (3.46)

H2(s) =
1
β1

�
1 +

(1− β1)(1− (α3 + 1)α1)− 2α2
1+sτq

((α3 + 1)α1 + 2β1 − 1) + (1− β1)sα1τa + ( α2
1+sτq

)(2− sα1τa)

�
.

(3.47)

The simplified transfer functions for both CBF and VMCA are second order, and the param-

eters in the transfer function are reduced to (α1, α2, α3, β1, τq, τa). By using the parameter



3.4 Model linearisation 65

values given earlier, the values of the non-dimensional parameters in the transfer function

are found to be:

α1 = 0.8738 α2 = 5.5503 α3 = 0.1640
β1 = 0.4672 τq = 20s τa = 0.9231s

The impulse response (IR) and the step response (SR) of the CBF and VMCA transfer func-

tions are shown in Figure 3.6 and Figure 3.7 respectively. The impulse response and step

response of the transfer function for both CBF and VMCA, as derived by Payne (2006) are

also presented for comparison.

Figure 3.7 a) Impulse response of VMCA transfer function of CHS and CBF transfer func-
tion derived in Payne (2006). b) Step response of VMCA transfer function of CHS and VMCA

transfer function derived in Payne (2006). The dotted lines in 3.7(b) represent their final
values.
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(b) Step Response

As shown in Figure 3.6 and Figure 3.7, the CBF and VMCA responses are quite different

from each other. The step response of CBF starts from zero, which illustrates that CBF

does not show a sudden change in response to a sudden ABP change. The different dynamic

behaviour of CBF and VMCA is due to the passive storage properties of small arteries and

arterioles, modelled as a compliance in the haemodynamic circuit. In some other models,

the two are not properly distinguished. The classic Tiecks model of Tiecks et al. (1995)

models the flow autoregulation through a feedback term in the VMCA, rather than in the

microvascular CBF.

The influence of ICP changes on autoregulation is reflected by the longer time constant
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of the IR and SR of CHS compared to that of the fixed ICP model. Most studies of cere-

bral autoregulation in humans assume that ICP is low and that it is not affected by the

induced changes in ABP, due to the difficulty of obtaining accurate measurements of ICP.

However, Panerai et al. (2002) applied the transfer function approach to measurements of

ABP, VMCA and ICP performed in head injury patients and demonstrated that ICP can in-

fluence estimates of dynamic cerebral autoregulation, including in the patient group whose

ICP were relatively low and ABP-VMCA transfer function were similar to normal subjects.

In the CHS, all the values of parameters related to ICP oscillation are in the normal range,

resulting in similar IR and SR of calculated transfer function compared to that of the fixed

ICP model, which suggests that the changes in ICP of normal subjects have little effect on

the autoregulation status.

As mentioned in Chapter 2, many different linear and nonlinear models have been used in

the literature to obtain the IR and SR of VMCA, including ARX models (Liu et al. (2003)),

the Tiecks model (Tiecks et al. (1995), Panerai et al. (1999)), fast Fourier transforms (Pan-

erai et al. (1999), Zhang et al. (1998a)), Linear Wiener-Laguerre models (Panerai et al.

(1999), Panerai et al. (2001), Mitsis et al. (2002)) and Quadratic Wiener-Laguerre models

(Panerai et al. (1999), Mitsis et al. (2002)). In addition, different types of manoeuvre have

been adopted to produce pressor or depressor changes, including thigh cuff test, Valsalva

maneuver, cold pressor test, lower body negative prssure, and hand grip test, as well as

continuous baseline recording (Panerai et al. (2001), Liu et al. (2003)). The patterns of IR

and SR obtained by different models and different stimuli however vary widely, as shown

in Figure 3.8 cited from two different experiments. Payne and Tarassenko (2006) use their

derived IR to fit one set of the experimental data, connecting the physiologically based

models with the experimentally based transfer function analysis. However, the fitted val-

ues of some parameters such as the time constant of autoregulation, τ , found by Payne

and Tarassenko (2006), were much smaller than the values expected from the literature.

This is mainly due to two reasons: first, the theoretical IR, calculated from the contin-

uous system in Payne and Tarassenko (2006), is not exactly the same as the discrete IR
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obtained from the experimental data though the system identification techniques. Second,

since the values of some model parameters are quite sensitive to the precise values of the

experimentally obtained IR, it is hard to achieve very accurate values especially when the

signal-to-noise ratio of the experimental data is low.

Figure 3.8 a) Step response from Panerai et al. (1999): Full curve and dash-dotted curve
represent SR in normocapnia, dotted curve represent SR in hypercapnia. b) Step responses
in Liu et al. (2003), circular line represent SR in normocapnia and star line hypercapnia.

(a) SR in Panerai et al. (1999) (b) SR in Liu et al. (2003)

As a result, the IR or SR will not be used here to fit a particular set of experimental data

from the literature; instead, the derived transfer function will be compared with some of

the features that are agreed generally in the literature. The first is transit time: from

Figure 3.7, IR and SR take about 3 seconds before they return to the static state, which

is consistent with the literature. The influence of the two parameters governing the flow

feedback, Gq and τq, on the speed of autoregulation are shown in Figure 3.9. As the feed-

back gain is elevated, the response becomes increasingly oscillatory, with a deeper trough

occuring earlier: the response time thus speeds up, but becomes less stable. As the feed-

back time constant is elevated, the reverse response occurs. The second feature relates to

the final value of the SR, which is equivalent to the static state of autoregulation. The

expression of final value of SR can be derived from Equation 3.47:

FV =
1
β1

�
1 +

(1− (1 + α3)α1)(1− β1)− 2α2

(1 + α3)α1 − 1 + 2α2

�
, (3.48)
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which is related to Gq though α2. A decreased flow feedback gain, Gq, representing im-

paired autoregulation status in hypercapnia, can be used to explain the findings of Panerai

et al. (1999) and Liu et al. (2003) that the final value of SR in hypercapnia stays at a higher

value. as shown in Figure 3.8.

Figure 3.9 Variation in VMCA SR for changes in: (a) feedback gain; (b) feedback time
constant.
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(b) Influence of time constant

3.4.2 The CO2 response

Alongside cerebral pressure autoregulation, the other main mechanism responsible for

controlling CBF is the reactivity of cerebral vessels to the arterial CO2 level. A num-

ber of physiological studies have shown that CBF response to a step change in CO2 is

not instantaneous but shows a relatively slow rise. Poulin et al. (1996) and Poulin et al.

(1998) describe the rising phase of VMCA by a simple exponential equation with a time con-

stant of 45s and a pure delay of 6s to step changes of end-tidal CO2 (EtCO2) (Poulin et al.

(1996)). Panerai et al. (2000) and Mitsis et al. (2004b) studied the dynamic characteristics

of the PaCO2-VMCA relationship though the measurement of breath-by-breath variability

in EtCO2 in continous recordings obtained from normal subjects at rest. It was found that

EtCO2 fluctuations and the interactions between MABP and EtCO2 have a considerable

effect in the low freqency of VMCA variation. Since CHS has coupled the flow autoregu-

lation and CO2 reactivity together, it is thus valuable to calculate the transfer function
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of the flow reponse to CO2 and to compare it to Poulin et al.’s model and other available

experimental data. This is similar to the approach of Payne and Tarassenko but applied to

CO2 changes.

The differential equations governing CO2 cerebrovascular reactivity are almost the same

as those governing flow autoregulation. The difference exists only in two equations: Equa-

tion 3.3 becomes:

s∆Vsa = − ∆P1

Rla + Rsa/2
− q

∆Rsa

Rla + Rsa/2
−∆q, (3.49)

since there is no arterial pressure change, the compliance equation (Equation 3.19) be-

comes:

∆Ca = −Gq
∆q

q(1 + sτq)
+ GCO2

∆PaCO2

PaCO2(1 + sτCO2)
. (3.50)

After simplification, the transfer function of both CBF and VMCA to CO2 changes are ob-

tained:

J1(s) =
∆q/q

∆PaCO2/PaCO2

=
α2(2− sα1τa)

((α3 + 1)α1 + 2β1 − 1) + (1− β1)sα1τa + ( α2
1+sτq

)(2− sα1τa)

∗GCO2/Gq

1 + sτCO2

, (3.51)

J2(s) =
∆VMCA/VMCA

∆PaCO2/PaCO2

=
1
β1

�
1 +

α2(2β1 + (1− β1)sα1τa)
((α3 + 1)α1 + 2β1 − 1) + (1− β1)sα1τa + ( α2

1+sτq
)(2− sα1τa)

�

∗GCO2/Gq

1 + sτCO2

. (3.52)

where the definitions of [α1, α2, α3, β1, τq, τa] are the same as before. Compared to Equation

3.47, only two new parameters, GCO2/Gq and τCO2 , are introduced. The impulse response

and step response of the VMCA transfer function are shown in Figure 3.10, with the exper-

imentally derived IR and SR in Figure 3.11 for comparison.

The step reponse (Figure 3.10(b)) is in good agreement with previous observations of the

VMCA response to step-like changes in CO2, such as Wilson et al. (1985), Ellingsen et al.
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Figure 3.10 Model predicted: a) Impulse response; b) Step response of VMCA to CO2

change.
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Figure 3.11 Experimentally derived: a) Impulse response; b) Step response of VMCA to
CO2 change (Panerai et al. (2000)).

(a) Impulse Response (b) Step Response
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Figure 3.12 a) Variation in VMCA impulse response for changes in: (a) Flow regulation
time constant; (b) CO2 reactivity time constant.
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(1987), Poulin et al. (1996) and Poulin et al. (1998). In particular, the simulations illustrate

that there are two different time constants in the step response, which is consistent with

the experimental result of Panerai et al. (2000). However, the fast increase occurs in 0−2.5

seconds in the model predicted SR, which is different from 6 seconds observed in Panerai

et al. (2000). Poulin et al. (1996) and Poulin et al. (1998) also mentioned the existence of

fast and slow components of cerebral blood flow response to step change in EtCO2. The

current model gives a possible explanation of the observed two phases: the initial shape

rise of the flow response is vessel dilation in response to the increasing CO2 level, and

then the increase slows down as increased CBF activates the competitive flow feedback

mechanism and thus offsets the influence of the dilation stimulus of CO2. Thus the speed

of response of CO2 reactivity is not only determined by the CO2 feedback time constant,

τCO2 , but also by the flow feedback time constant, τq, as shown in Figure 3.12.

In Poulin et al. (1996), an asymmetry in the transient response to a positive and negative

step in the EtCO2 was observed, which is due to the asymmetry of wash in and out times of

the CO2 stimulus (Garnham et al. (1999)). The above simulation results suggest another

possible cause: flow autoregulation status is different at different CO2 levels, which im-

plied that different values of flow regulation time constant are found in the ”on” and ”off”

responses, thus resulting in a different response speed.
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Panerai et al. (2000) also provide the impulse response of CO2 reactivity, which shows a

peak at approximately 4s. It is should be noticed that the simulation result (Figure 3.10(a))

is significantly different from the experiment result (Figure 3.11(a)). This could be due to

changes in some model parameter values, as in the fitted parameters of ABP − VMCA

transfer function in Payne and Tarassenko (2006). Another possible reason is a pure time

delay, as introduced in Poulin et al. (1996), shifting the peak of the equivalent impulse

response and thus the model fitting improved considerably.

3.4.3 BOLD response

The physiological basis of the BOLD response in fMRI studies was explained in Chap-

ter 2. Several mathematical models have been proposed to link the changes in measured

BOLD signal to changes in neural activity. Models are described relating: (1) neural ac-

tivity to changes in CBF; (2) flow changes to oxygen delivery to tissue through capillaries,

and thus HHb concentration in the venous compartment; (3) flow changes to changes in

CBV; (4) changes of CBV and HHb to the BOLD response. Friston et al. (2000) proposed a

second-order haemodynamic model which simulates the CBF response to underlying neu-

ral activity u. When coupled with the well known Balloon model linking CBF and BOLD

(Buxton et al. (1998); Obata et al. (2004)), it is able to predict the dynamics of the BOLD re-

sponse to neural activation. As shown in Figure 3.14(b), the predicted first-order Volterra

Kernel emulate the empirical kernels in every way except for the protracted undershoot.

In this section, the linearised version of CHS is used to predict the linear kernel and thus

to demonstrate its advantage over the second-order haemodynamic model of Friston et al.

(2000).

CHS models the CBF response to neural activity u through a compliance change:

∆Ca = −Gq
∆q

q(1 + sτq)
+

�u

(sτ1 + 1)(sτ2 + 1)
. (3.53)
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The derived transfer function linking the neural activity (u) to the CBF response is:

M1(s) =
∆q/q

u

=
α2(2− sα1τa)

(α3 + 1)α1 + 2β1 − 1 + (1− β1)sα1τa + ( α2
1+sτq

)(2− sα1τa)

∗ �

(1 + sτ1)(1 + sτ2)
. (3.54)

where the definitions of [α1, α2, α3, β1, τq, τa] are the same as before. As shown in its pole-

zero map (Figure 3.13), 1/τ1 and 1/τ , two poles most close to Y axis, control the speed of

CBF response to neural activation.

Figure 3.13 Pole-zero map of u − CBF transfer function. Two poles most close to Y axis
corresponds to 1/τ1 and 1/τ .
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CHS also incorporates oxygen delivery equation derived in Buxton et al. (1998) and Zheng

et al. (2002), which extends the cerebral circuit to a full BOLD signal model. The differen-
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tial equations governing the regional CBF to BOLD response are:

E = (1− g)(1− (1− E0

1− g0

1/q

)), (3.55)

τg ġ =
E

E0
q − ku, (3.56)

τvv̇v = q − fout,v, (3.57)

˙fout,v =
V̄v/q̄

RlvC̄v
v̇v, (3.58)

τvḣv = q
E

E0
− fout,v

hv

vv
, (3.59)

y = V0(a1(1− hv))− a2(1− vv)). (3.60)

The corresponding linearized equations are:

∆E = −∆g(1− C) + (1− g0)ClnC
∆q

q
, (3.61)

τgs∆g =
∆E

E0
+

∆q

q
, (3.62)

τvs∆vv =
∆q

q
−∆fout,v, (3.63)

∆fout,v = αv∆vv, (3.64)

τvs∆hv =
∆E

E0
+

∆q

q
−∆fout,v −∆hv + ∆vv, (3.65)

∆y = V0(−a1∆hv + a2∆vv), (3.66)

where C = (1− E0
1−g0

)1/q, αv = V̄v/q̄
RlvC̄v

. The corresponding transfer function is:

K(s) =
∆y/y

∆q/q

=
(a2 − a1)V0

αv + sτv
+

a1V0

1 + sτv
− a1V0s(E0 + (1− g0 − E0)lnC)

E0
1−g0

(1 + sτg(1− g0))(1 + sτv)
. (3.67)

The transfer function linking neural activity u to BOLD response y is finally:

M(s) =
∆y/y

u

= M1(s) ∗K(s). (3.68)

The impulse response of K(s), which is the exact equivalent of the 1st-order kernel, is

shown in Figure 3.14(a), in comparison with the empirical and model-based kernel of Fris-

ton et al. (2000) (Figure 3.14(b)).
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Figure 3.14 a) Predicted first-order kernel of the CHS model. b) The left-hand panel is the
first-order kernel based on parameter estimates from the experimental data. The right-
hand panel is the first-order kernel predicted by the haemodynamic model of Friston et al.
(2000).
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It can be seen that there is a remarkable agreement in the first order kernel, especially

in the protracted post-stimulus undershoot, which is not predicted by the model of Friston

et al. but is predicted by the CHS model. This is important because it suggests that the

time constants governing the positive BOLD signal and its post-stimulus undershoot are

different, which is natural as the former is caused by the neural stimulus whereas the

latter is proposed to be due to flow autoregulation here. In the CHS, the protracted under-

shoot of BOLD originates from the protracted undershoot of x, the state variable modifying

arterial compliance, which is further controlled by both the neural stimulus and flow au-

toregulation mechansim, as shown in Figure 3.15. In the absense of autoregulation, the

post-stimulus undershoot will disappear (Payne (2006)). This finding, again, agrees well

with the experimental results of Cohen et al. (2002), suggesting a prolonged undershoot in

the hypocapnic and normocapnic conditions which is absent in the hypercapnic condition,

where the autoregulation mechanism is impaired.

As mentioned in Chapter 2, besides neural activation, changes in PaCO2 will also modulate

global CBF and thus global BOLD signal (Grubb et al. (1974); Hoge et al. (1999a,b)). For

the CHS, the transfer function linking PaCO2 to the BOLD response y can be also derived
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Figure 3.15 State variable governing arterial compliance, x, the neural activity feedback
factor, xMR and the flow autoregulation feedback factor, xq in response to a 2 s neural
stimulus starting at 1s. x is calculated as xMR − xq.
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as:

J(s) =
∆y/y

∆PaCO2/PaCO2

= J1(s) ∗K(s). (3.69)

where J1 is Equation 3.51, the PaCO2 − CBF transfer function derived above.

The step response of J(s), which predicts the global BOLD response to a sudden change in

PaCO2 , is shown in Figure 3.16(a), together with the simulated BOLD response to neural

activation in hypercapnia. Similar to the CBF step response to PaCO2 changes, the global

BOLD response to step-like changes in CO2 also shows two different time constants, a fast

increase followed by a slow change, in good agreement with previous observations of Cohen

et al. (2002), shown in Figure 3.16(b). The activation of autoregulation mechanisms, again,

was hypothesized to slow down the BOLD response here. It also be worth to notice the

time constant of fast response at hypercapnia is longer than hypocapnia (Figure 3.16(b)),

which could be due to the increased time delay of impaired autoregulation at hypercapnia.

3.5 Discussion

A compact model of the haemodynamic response to changes in ABP, CO2 level, and neural

activity has been presented, and it has been shown how this agrees qualitatively with the

available data, and captures some of the key experimental observations in qualitative form,
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Figure 3.16 a) Step response of BOLD to CO2 change (blue line) and simulated BOLD
response to neural activation in hypercapnia (green line). b) Averaged blood oxygenation
level dependent (BOLD) time courses (thick lines) and averaged end-tidal CO2 (ETco2)
level (thin lines) during the normocapnia/hypercapnia (red lines) and the normocap-
nia/hypocapnia (blue lines) experiments (Cohen et al. (2002)).
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the reasons for poor prediction of others also being explored. The model is not expected to

be a complete mathematical explanation of autoregulation and the BOLD response and to

recover the experimental data perfectly; advantage has simply been taken of the numerous

computational tools available to develop models directly from the experimental literature

which can reproduce similar results in order that the most important pathways can be

simulated, and the effects of interventions to various pathways modelled.

In the arterial compartment of the CHS, the regulating compliance, Ca, is in the middle

of the regulating resistance, Rsa, as in the haemodynamic circuit first developed by Ursino

et al. (2000). Alternatively, Lu et al. (2004) placed the compliance in front of the resistance,

while others, de Mul et al. (2005), assumed that compliance comes after the resistance. All

three use the lumped structure as a simplification of the real system: although they share

the same steady response, their dynamic responses are quite different. Ursino et al.’s

structure is preferred here because P1, which is another parameter to control the change

of arterial volume (refer to Equation 3.2), can be kept almost constant with varying CBF

because of the large and dominating value of regulating resistance, Rsa. In that case, the

arterial volume is mainly controlled by the arterial compliance, which is the direct recipient

of the stimulus feedback.
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Though pressure autoregulation has been studied intensively in the literature, its interac-

tion with CO2 reactivity and BOLD response to neural activation is less well investigated,

neither by experimental nor modelling methology. By analysing the linear dynamic be-

havior of CHS, autoregulation was found to have a large effect on the cerebral vasculature

response to both CO2 reactivity and neural activition: PaCO2 − CBF and PaCO2 − BOLD

transfer function analysis shows that autoregulation, corresponding to slow increase of

CBF/BOLD to step changes of CO2, in consistent with the experimental results of Poulin

et al. (1996, 1998); the linearised neural activity-BOLD signal model further links auotreg-

ulation with the experimentally observed prolonged post-stimulus BOLD undershoot (Fris-

ton et al. (2000); Cohen et al. (2002)). However, these hypotheses about the role of autoreg-

ulation in these processes still need direct experimental design and reliable measurements

of CBF, BOLD and other crucial variables to be validated.

3.6 Summary

Starting from a combined haemodynamic system that predicts the haemodynamic response

to changes in arterial blood pressure, arterial CO2 concentration and neural stimulation

very similar to that developed by Payne (2006), every compartment of the system has been

carefully examined and evaluated. First, the model simulation results were generated

and were found to be a agreement with available experimental data. Second, the effect of

changes in ICP on the CBF and BOLD response was explored, suggesting that it cannot

be neglected, especially in hypercapnia and hypocapnia. Finally, model simulations of

autoregulation and the CBF and BOLD responses at different PaCO2 states were compared

with the existing experimental data, showing that the gain and time constant governing

flow autoregulation and neural activity are not independent of CO2 level.

By linearising the original nonlinear CHS model, the linear dynamic behavior of cerebral

blood flow in response to both pressure changes and CO2 reactivity has been examined

and compared to experimental data taken from the literature. The complex flow feedback
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mechanism acting on the arterial compliance of CHS is approximated as a second order

transfer function for VMCA in response to ABP changes, which is consistent with the ex-

perimental data. The crucial parameters influencing the speed of autoregulation have also

been analysed and discussed, and thus might be estimated by the experimentally-derived

IR and SR results. Besides CBF autoregulation, the BOLD response of CO2 reactivity

and neural activity based on CHS has been linearised and found to be in very good agree-

ment with available experimental data. Especially, the success in predicting the prolonged

BOLD undershoot illustrates the advantage of CHS in generating CBF though arterial

compliance feedback system over other existing models.

CHS model simulations show that CBF/BOLD is controlled by multiple stimuli and thus,

in clinical settings, it is necessary to consider the effects of other stimuli when attempting

to identify the relationship between a particular stimulus and the CBF/BOLD responses.

In the following chapters, both the nonlinear and linear models will be used as the basis

for interpreting multivariate experimental data, where system identification techniques

will be examined in detail and compared to the model predictions. The value of using this

combined model-analysis approach will thus be clearly seen.



4
Multivariate system identification for

cerebral Autoregulation

The effect of spontaneous beat-to-beat mean arterial blood pressure (ABP ) fluc-

tuations and breath-to-breath end-tidal carbon dioxide (PETCO2) and end-tidal

oxygen (PETO2) fluctuations on beat-to-beat cerebral blood flow velocity (CBFV )

variations is studied using a multiple coherence function. Multiple coherence

is a measure of the extent to which the output, CBFV , can be represented as a

linear time invariant system of multiple input signals. Analysis of experimen-

tal measurements from 13 different healthy subjects reveal that, with additional

inputs, PETCO2 and PETO2 , the multiple coherence for frequencies < 0.05Hz is

significantly higher than the corresponding values obtained for univariate co-

herence with a single input of ABP . The result illustrates that the low value

of univariate coherence at small frequencies may be due to the effects of PETCO2

and PETO2 fluctuations on CBFV variability. Moreover, it is also found that the

transfer function between ABP and CBFV time series identified from previous

univariate techniques at low frequencies can be modified by CO2 and O2 reactiv-

ity and no longer represents pressure autoregulation only. Multivariate system

identification provides a technique of incorporating additional variability and

recovering from this artifact. Finally, a physiologically-based model and its lin-

ear transfer function are used as a simulation tool to investigate possible causes
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of low univariate coherence 1.

4.1 Introduction

The autoregulation of cerebral blood flow, CBF , is normally defined as the ability of the

brain to maintain adequate blood flow despite variations in a number of external factors

such as arterial blood pressure, ABP , heart rate and respiration rate. Assessment of cere-

bral autoregulation is an important adjunct to measurements of cerebral blood flow for di-

agnosis, monitoring or prognosis of cerebrovascular disease, such as atherosclerosis. Given

the high temporal resolution of transcranial Doppler ultrasound (TCD) which measures

cerebral blood flow velocity, CBFV , normally in the middle cerebral artery, a large number

of methods have been used to interpret the status of cerebral autoregulation by analysing

the dynamic relationship between ABP and CBFV .

Existing work can be broadly divided into two approaches: linear and nonlinear. Linear

techniques represent the ABP-CBF system as a transfer function and identification tech-

niques are used to recover the model from data (Panerai et al. (1999, 2001); Zhang et al.

(1998a)). It is generally hypothesized that the system behaves like a high-pass filter, i.e.

variations in cerebral blood flow due to changes in arterial pressure are effectively damped

in the low-frequency range whilst in the high frequency range, where autoregulation may

be less effective, changes in arterial pressure may transfer simply to changes in cerebral

blood flow (Zhang et al. (1998a)). Nonlinear models include high-order Volterra kernels

(Panerai et al. (1999); Mitsis et al. (2002, 2004b)) and physiologically-based models, repre-

senting the nonlinearities from tissue elasticity and interactions with intracranial pressure

(Ursino and Lodi (1998); Ursino et al. (2000); Payne (2006)). These models can be related

to the transfer functions identified from the experimental data using a combined analysis,

as described in Payne and Tarassenko (2006).

In linear transfer function analysis, the Frequency Response (FR) identified from experi-
1This study has been published as Peng et al. (2007).
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mental data has been widely used to characterize the system behaviour. The FR is com-

prised of three parameters: gain, phase and coherence. Gain represents the estimated

scaling between the output and input as a function of frequency. Phase is a measure of

the time delay normalized to one period. The squared coherence function is a measure of

the fraction of the output power that can be linearly related to the input power, using the

estimated transfer function, and thus is a good measurement of the linearity of the system.

Existing studies appear to agree that the estimated frequency response of ABP/CBFV re-

lationship below 0.50 Hz can be divided into three regions:

1. Low frequency (< 0.07 Hz): Low coherence, low gain and large phase lead.

2. Intermediate frequency (0.07 − 0.20 Hz): Increasing coherence, increasing gain and de-

creasing phase.

3. High frequency (> 0.20 Hz): High coherence, relatively large gain and minimal phase

lead.

Gain and phase together can be used to reconstruct the Impulse Response (IR) through

the inverse Fourier Transform. However, the spectral estimation of gain and phase is only

accurate when the corresponding coherence is high. The observed low coherence in the

low frequency band thus indicates that a linear time-invariant system model is not a valid

representation of the dynamic of cerebral autoregulation in that range. Numerous authors

use this experimentally observed low coherence in the low frequency band to question en-

tirely the validity of transfer function estimation techniques for cerebral autoregulation

(Latka et al. (2005); Rowley et al. (2007); Giller and Mueller (2003)). This has motivated

many attempts to perform more sophisticated nonlinear system identification procedures

on the system (Mitsis et al. (2002, 2004b)).

In contrast, Panerai et al. (Panerai et al. (2006)) argued that the low values of coher-

ence in the low frequency region mean that the system is more effectively modelled as a

multiple-input system, having blood flow as its output. The validity of a linear model must

thus be assessed using a multiple coherence function. In Panerai et al. (2006), alongside

ABP , an additive input cerebrovascular resistance index, CV RI, was introduced, defined
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as ABP/CBFV . The result seems encouraging: the multiple coherence of CBFV for low

frequencies is found to be significantly higher than the corresponding values obtained with

univariate coherence. However, since one system input, CV RI, is directly related to the

output, it does not contribute to the validity of linear system relationship though it does

artificially change the value of the coherence function.

It is also known that CBFV variation is not entirely determined by pressure. Alongside

cerebral pressure autoregulation, the other main mechanism responsible for controlling

blood flow is the reactivity of cerebral vessels to arterial CO2 (PaCO2) and O2 (PaO2) levels.

Since PaCO2 and PaO2 reactivity can be assessed by end-tidal CO2 (PETCO2) and end-tidal

O2 (PETO2) measurements, a number of physiological studies have investigated the dy-

namic characteristics of the CO2−CBFV relationship through measuring both the CBFV

response to a step change in PETCO2 (Poulin et al. (1996, 1998)) and the continuous record-

ing of breath-by-breath spontaneous fluctuations in PETCO2 (Mitsis et al. (2004b); Panerai

et al. (2000)). Mitsis et al. (Mitsis et al. (2004b)) modelled a multiple-input nonlinear sys-

tem (with both ABP and PETCO2 as inputs) using the Laguerre-Volterra network method-

ology and demonstrated that CO2 fluctuations, as well as the interactions between ABP

and CO2 have a considerable effect on CBFV variation at low frequencies, which suggests

ABP alone is not enough to explain low frequency CBFV variability.

In this Chapter, we thus explore the cerebral system using two important physiological

variables, PETCO2 and PETO2 , as extra inputs to the system. Multiple coherence is used to

assess the validity of this multiple-input model, particularly in the low frequency range,

to investigate the validity of performing linear system identification on this system. An

existing Ordinary Differential Equation (ODE) model of cerebral autoregulation (Payne

(2006)) is also used to simulate the effect of various hypotheses about the observed low

univariate coherence in the transfer function identification process.
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4.2 Method

4.2.1 Experimental Methods

Thirteen healthy subjects participated in the study. All subjects received verbal and writ-

ten instructions outlining the experiment procedure; written informed content was ob-

tained, studies conformed to the standards set by Declaration of Helsinki, and research

study was approved by the Conjoint Health Research Ethics Board at the University of

Calgary (Grant ID 15671). Participants were not taking any medication, all were non-

smokers, and none had any history of cardiovascular, cerebrovascular, or respiratory dis-

ease. The experimental data were collected under supine, free-breathing conditions (Mitsis

et al. (2004a)).

The experimental variables PETCO2 and PETO2 were monitored using a mass spectrometer

(AMIS2000, Innovision, Odense, Denmark) and were sampled every 20ms. ABP was mon-

itored continuously in the finger by photoplethysmography (Portapress, TPD Biomedical

Instrumentation, the Netherlands). CBFV was measured with a 2-MHz Doppler ultra-

sound system (TC22, SciMed, Bristol, U.K.) in the right middle cerebral artery. Both the

pressure and velocity signals were sampled every 10 ms. The time series of all experi-

mental variables were further resampled to 1Hz using cubic spline interpolation (a low-

pass filtered with a cut-off frequency of 0.4Hz was applied to remove any frequency above

Nyquist frequency prior to resampling). This frequency was chosen to be consistent with

existing value widely used in the literature (Zhang et al. (1998a); Mitsis et al. (2004b,a)).

The resampled data were then high pass filtered using a fifth-order Butterworth filter with

a cut-off frequency of 0.005Hz to remove the very slow variation and baseline shift (Rowley

et al. (2007); Mitsis et al. (2004b,a)). Sections of the time series having a duration of 2000

seconds were selected for spectral and transfer function analysis.
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4.2.2 Mathematical Methods

From the time series for ABP , P (t), and CBFV , V (t), the frequency-domain transforms

P (f) and V (f) were computed with an FFT algorithm. The power spectrum of P (t), Gpp(f),

is calculated as:

Gpp(f) = E[P ∗(f)P (f)], (4.1)

where the expected value of the complex product E[P (f) ∗P (f)] is obtained with the Welch

technique (Welch (1967)) by smoothing the spectra with a 128-point (128-second) Hanning

window with 50% overlap. Similarly, the cross-spectrum Gpv(f) is computed as:

Gpv(f) = E[P ∗(f)V (f)]. (4.2)

The univariate coherence function Γ2
P (f) is estimated by:

Γ2
P (f) =

|Gpv(f)|2

Gvv(f)Gpp(f)
, (4.3)

where Gvv(f) is the power spectrum of V (t). The squared coherence reflects the fraction of

output power that can be linearly related to the input power at each frequency. Similarly

to a correlation coefficient, it varies between 0 and 1: a value of 0 indicates that the output

is linearly independent of the input whilst a value of 1 reveals a pure linear relationship

between the input and output.

The complex transfer function H(f) between P (t) and V (t), is given by:

H(f) =
Gpv(f)
Gpp(f)

. (4.4)

However, in addition to ABP , PETCO2 and PETO2 are known to be physiological parameters

that control the changes in velocity. Those can be added into the system as two extra

inputs, as shown in Figure 4.1. The proportion of output that can be linearly related to the

inputs is thus written as (Bendat and Piersol (2000)):

Y (f) = HPV (f)P (f) + HCV (f)C(f) + HOV (f)O(f). (4.5)
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Figure 4.1 Schematic of the multiple-input system. Measured ABP , PETCO2 and PETO2

are model inputs and y(t) is model output: model predicted CBFV .

Defining the matrix of autospectra and cross-spectra for the input signals as:

Gi =




GPP GPC GPO

GCP GCC GCO

GOP GOC GOO



 , (4.6)

the cross-spectra between the inputs and cerebral blood flow velocity as:

Go =




GPV

GCV

GOV



 , (4.7)

and the vector of system partial transfer functions as:

H =




HPV

HCV

HOV



 , (4.8)

the corresponding autospectrum of the model output can be written in matrix form as

(Bendat and Piersol (2000); Perreault et al. (1999)):

GY Y (f) = E[Y ∗(f)Y (f)]

= HT GiH, (4.9)

where the different auto- and cross-spectra can be calculated according to Equations 4.1

and 4.2. The partial transfer function H can be estimated by solving the following matrix

equation:

Gi ∗H = Go. (4.10)
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The multiple coherence is defined as the ratio between the linear system output spectrum

to the measured velocity spectrum (Bendat and Piersol (2000); Perreault et al. (1999)):

ΓM
2(f) =

GY Y (f)
GV V (f)

. (4.11)

4.2.3 Simulation Study

A typical physiologically-based nonlinear model and its linear approximation were used to

explore three possible reasons for the drops of coherence function: 1. noise; 2. nonlineari-

ties; 3. contribution of additional inputs such as PETCO2 and PETO2 . The detailed descrip-

tion of the nonlinear model used here can be found in Payne (2006). The linearised approx-

imation of this model comprises transfer functions for ABP −CBFV and PETCO2−CBFV .

The linearisation procedure can be found in Payne and Tarassenko (2006), and all equa-

tions are given in the Appendix. The simulation processes for both linear and nonlinear

models comprise the following steps:

1. Measured ABP for a single patient is used as the single system input to predict CBFV .

The univariate coherence between the model input and output is calculated at all frequen-

cies.

2. Total power spectral power in ABP and CBFV was calculated as the standard deviation

of the ABP and predicted CBFV time series. The input and output Gaussian white noise

are generated by two random time series with a uniform power over frequencies from 0

to 0.05 Hz, whose standard deviations are 10% of the standard deviation of ABP and pre-

dicted CBFV time series respectively. The input and output noise were added to model

input and model output to mimic measurement noise, the univariate coherence then being

obtained from the new signals with noise.

3. Measured PETCO2 of the same patient is included as an extra system input. The uni-

variate coherence between one model input, ABP , and model predicted CBFV is obtained.

The multiple coherence between all model input signals and model output signals is also

provided for comparison.
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4.3 Results

4.3.1 Experimental Study

The mean values of the ABP , PETCO2 , PETO2 and CBFV time series, averaged over the

2000-second recordings for the 13 subjects, are given in Table 5.1, together with the inter-

subject variability. Typical 5 minute data segments are shown in Figure 4.2, and the cor-

responding power spectra in Figure 4.3. Most of the ABP and CBFV power is found below

0.1Hz, while most of the PETCO2 and PETO2 power lies below 0.05Hz.

Table 4.1 Mean Values (± Standard Deviation) for ABP , PETCO2 , PETO2 , and CBFV ,
averaged over 2000 second recording from 13 subjects

ABP [mm Hg] PETCO2 [mm Hg] PETO2 [mm Hg] CBFV [cm/sec]
76.6 ± 7.0 37.4 ± 1.8 87.7 ± 2.7 53.5 ± 5.2

Figure 4.2 Time series of typical data segments.
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Figure 4.3 Power spectra of typical data segments.
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(a) ABP spectrum
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(b) PETCO2 spectrum
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(c) PETO2 spectrum
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(d) CBFV spectrum

Figure 4.4(a) shows the univariate coherence between ABP and CBFV , the multiple coher-

ences for the ABP +PETCO2 inputs, ABP +PETO2 inputs and ABP +PETCO2 +PETO2 inputs

(group mean value ± standard deviation). The values of univariate coherence and multiple

coherences for a typical subject and group mean values are also shown in Figure 4.4(b) and
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Figure 4.4(c) respectively. In the low frequency band, i.e. < 0.05Hz, the three multiple co-

herences (ABP + PETCO2 inputs, ABP + PETO2 inputs and ABP + PETCO2 + PETO2 inputs)

are all noticeably higher than the corresponding values for univariate coherence (ABP in-

put), while no obvious difference between multiple coherence and univariate coherence is

shown at higher frequencies, i.e. > 0.05Hz. This result illustrates that the contribution of

PETCO2 and PETO2 terms and their interaction terms with ABP are found mainly at low

frequencies, which is consistent with the results of Mitsis et al. (2004b).

Figure 4.4 Univariate coherence and multiple coherences for ABP input, ABP + PETCO2

inputs, ABP + PETO2 inputs and ABP + PETCO2 + PETO2 inputs respectively. Solid line,
averaged estimates; dotted line, ± standard deviation. Black lines, univariate coherences
with the single input ABP , Γ2

P ; green lines, multiple coherence with ABP and PETCO2 as
inputs, Γ2

PC ; blue lines, multiple coherence with ABP and PETO2 as inputs, Γ2
PO; red lines,

multiple coherence with ABP , PETCO2 and PETO2 as inputs, Γ2
PCO.
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herences (mean value ± standard devia-
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(c) group averaged values

A paired t-test (see Goulden (1959)) was then used to analyze the statistical significance of

the difference between the univariate coherence and multiple coherences. The p-value at

each frequency is shown in Figure 4.5. Since five independent hypotheses are tested on one
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data set, the Bonferroni method is used to correct the statistical significance level. In order

to achieve simultaneous p-values of 0.05, a stricter individual p-value of 0.01 is used for each

pair. Figure 4.5(a) illustrates that multiple coherences (ABP + PETCO2 , ABP + PETO2 and

ABP + PETCO2 + PETO2) are significantly increased in the low frequency band (0− 0.04Hz)

compared with the univariate coherence with single input ABP . However, the multiple

coherence of three inputs is not significantly different from the multiple coherence of two

inputs (Figure 4.5(b)). This indicates that considering only PETCO2 or PETO2 is sufficient

to obtain a representation of the low frequency system dynamics. An additional input does

not add significantly more information. This is reflected in the fact that PETCO2 and PETO2

fluctuations are highly correlated.

Figure 4.5 P-value of paired t-test of the hypothesis that the mean value of univariate
coherence and multiple coherence is the same. P-values less than 0.01 were accepted as
statistically significant.
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(b) p-value of two-input and three-input system

Figure 4.6 shows the spectrum of the measured CBFV and spectrum of the residue (the

difference between measurement and system prediction) of both the univariate system

and the multivariate system. The high values of residue of the single input system over

low frequencies indicates that most of the CBFV power in the low frequency range is not

linearly transformed from ABP alone. The reduced residue of the multivariate system in

that frequency range reflects the fact that it can be explained better by the combination

of ABP and other important physiological parameters such as PETCO2 and PETO2 . The
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fact that there is still spectral power in the residue perhaps illustrates nonlinearities as

explored in Mitsis et al. (2004b) or nonstationarities as explored in Latka et al. (2005)

and Rowley et al. (2007), or may be due to the effects of other unmeasured physiological

parameters.

Figure 4.6 Spectra of measured CBFV and model residue (univariate system and multi-
variate system).
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Figure 4.7(a) shows the group-averaged normalized cross spectra of ABP − PETCO2 and

ABP − PETO2 , having peak values of approximately 22Hz−1 and 66Hz−1 respectively. The

high peak value of the cross spectra illustrates that it is unlikely that their effect on trans-

fer function identification is negligible. Figure 4.7(c) shows the identified ABP/CBFV

transfer function, H, both for the single-input system and the multiple-input system. It

is important to illustrate here the clinical significance of taking these multiple inputs into

account. The dotted line in Figure 4.7(c) shows the frequency response of Tieck’s model

(Tiecks et al. (1995)), a widely used model to obtain autoregulation index by parametric

fitting of time series from experimental data. The frequency responses of the two different

transfer functions are thus fitted to the amplitude of frequency response (gain) of Tieck’s

model and the obtained autoregulation indexes (ARI) presented. This illustrates that,

since the estimated gain in the low frequency band is lower with the contribution of cross-

terms, the best fit values of ARI of the two transfer functions are also different. The ARI

calculated without the cross-term is 3, whilst with the cross-term is 4. For some subjects
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which have a relatively high correlation between ABP and PETCO2 or PETO2 , as shown

in Figure 4.7(b), the difference in the estimated gain becomes larger, as shown in Figure

4.7(d). The univariate estimated transfer function of ABP − CBFV behaves more like an

all-pass filter whilst for the multivariate system it is still a high-pass filter. The fitted ARI

of the former transfer function is only 2, which is supposed to represent impaired autoreg-

ulation status, whilst with the corrected multiple-input system, the fitted ARI is 4, which

is within the healthy range. This clearly illustrates that the contribution of cross-terms

is very important in the low frequency band and could lead to an incorrect classification

of autoregulation status when they are not considered. Again, this is consistent with the

results of Mitsis et al. (2004b).

4.3.2 Simulation Study

Figure 4.8(a) and Figure 4.8(b) show the coherence function between the model input, mea-

sured ABP , the model output, predicted CBFV , for the linear and nonlinear models re-

spectively. For the case of a single input, ABP , the univariate coherence for the linear

system is 1 at all frequencies2, whilst the coherence for the nonlinear system is slightly

reduced. For the case of an extra input, PETCO2 , the univariate coherence between ABP

and CBFV decreases in the low frequency band for both the linear and nonlinear systems,

whilst multiple coherence remains the same as it accounts for the contribution of CO2.

The effect of white noise is also reflected by a reduction in coherence, especially in the high

frequency range. This might be due to the lack of high frequency power of the input signal.

The simulation result illustrates that nonlinearity is not the only factor resulting in low co-

herence, as other factors such as an unmeasured input or noise can also play an important

role in affecting the coherence. A number of existing models of cerebral autoregulation are

in fact linear when considering spontaneous oscillations in blood pressure. The results of

this simulation study appear to show that unmeasured variability rather than nonlinearity
2Note that to remove baseline drift the signals were high-pass filtered as 0.005Hz (see Methods). This

explains the sharp drop in coherence at very low frequencies.
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Figure 4.7 a) The group averaged cross power spectrum between ABP and PETCO2 , GPC

(green line) and the group averaged cross power spectrum between ABP and PETO2 , GPO

(blue line). b) Cross power spectra GPC (green line) and GPO (blue line) for one subject.
c) The group-averaged estimated transfer function gains for ABP − CBFV for univariate
system (black continuous line) and multivariate system (red continuous line). The corre-
sponding fitted Tiecks autoregulation indexes are also shown in the figure: ARI = 3 for
univariate system (black dotted line); ARI = 4 for multivariate system (red dotted line). d)
The estimated transfer function gains for a particular subject with cross power spectrum
shown in figure 4.7(b) for univariate system (black continuous line) and multivariate sys-
tem (red continuous line). The fitted Tiecks autoregulation index: ARI = 2 for univariate
system (black dotted line); ARI = 4 for multivariate system (red dotted line). A relatively
large value of cross-term results in a noticeable difference between the estimated gains in
the low frequency range.
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(a) Group averaged cross power spectrum
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is a more plausible explanation for low univariate coherence.

Figure 4.8 Model simulation. a) Coherences for linear model inputs and output. Univari-
ate coherence with single model input, ABP (black line); univariate coherence between
ABP and CBFV (red continuous line) and multiple coherence (red dotted line) with mul-
tiple inputs ABP and PETCO2 ; univariate coherence between surrogated ABP and sur-
rogated CBFV for single input system, with 10% noise added to both model input and
output. b) Coherence for nonlinear model input and output. Similar to linear model, uni-
variate coherence for single-input system (black line); univariate coherence between ABP
and CBFV (red continuous line) and multiple coherence (red dotted line) for multiple-input
system; univariate coherence between surrogated ABP and surrogated CBFV , with 10%
noise adding to both model input and output.
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(b) nonlinear system

4.4 Discussion

Many investigators have attempted to characterize the ABP/CBFV relationship with var-

ious linear methods (Zhang et al. (1998a); Tiecks et al. (1995); Panerai et al. (1999); Liu

et al. (2003)). The observed low univariate coherence found at low frequencies, which

are those of most clinical interest, has always constrained the use of these linear meth-

ods. A number of researchers have thus questioned the validity of linear techniques and

attempted to identify the system dynamics with more advanced and complex nonlinear

analysis methods (Mitsis et al. (2002, 2004b); Giller and Mueller (2003)). We have shown

here that by considering the contribution of CO2 and O2 to CBFV , the coherence is sig-

nificantly increased at low frequencies, which improves the validity of linear techniques.

In other words, some of the apparent nonlinearity can be attributed to unmeasured vari-
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ability. Whether the system will appear to be less stationary due to these system inputs is

another important issue, which will be presented in Chapter 5.

CO2 and O2 reactivity

It is well known that cerebral blood flow is modulated by changes in arterial CO2 and

O2 (Renkin and Michel (1983); Paulson et al. (1990)). With the recent development of

techniques used to measure cerebral blood flow and to control arterial gases continuously,

a number of studies have focused on the assessment of dynamic changes in cerebral blood

flow to changes in PaCO2 and PaO2, for example, Mitsis et al. (2004b); Poulin et al. (1996,

1998); Panerai et al. (2000). Panerai et al. (Panerai et al. (2000)) found that spontaneous

breath-to-breath changes in PaCO2 can contribute significantly to the observed CBFV

variability as the correlation of model predicted CBFV and measured CBFV improved

after adding CO2 as an additive model input. Mitsis et al. (Mitsis et al. (2004b)) further

pointed out that the contribution of PETCO2 terms and interaction terms are mainly found

in the low frequency band, while ABP terms act mainly at high frequencies. The results

presented here (Figure 4.4) are consistent with these previous findings. The increased

multiple coherence in the low frequency band reflects the contribution of the linear PETCO2

and interaction terms. Mitsis et al. (Mitsis et al. (2004b)) use NMSE, defined as the

normalized error between model output and measurement, to assess the contribution of

both linear and nonlinear terms. Because of a different signal processing methodology, it

is difficult to compare their result with ours quantitatively.

Using a physiologically-based model, we have shown that it is plausible that the univariate

coherence of ABP − CBFV is reduced by the presence of end tidal PETCO2 disturbances,

which mimic how PETCO2 fluctuations influence flow autoregulation. The dynamic effects

of PETO2 on CBFV are less emphasized, partly because PETO2 fluctuations are highly cor-

related to PETCO2 . The linear information content in PETCO2 and PETO2 is not identical,

illustrated by the small change in multiple coherence; however, this difference is not sig-

nificant for our subject group.
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Multiple-input system and multiple coherence

In the study of dynamic cerebral pressure autoregulation, the system comprising blood

pressure as input and velocity as output is now a standard model (Giller and Mueller

(2003)) and transfer function analysis has often been adopted to quantify this relationship.

The fundamental assumption for the estimation of transfer function gain and phase is

system linearity, quantified by using coherence. The observed low univariate coherence

shows that the system is not adequately represented by a linear time invariant relationship

and hence the system is either not univariate, or nonlinear, or nonstationary.

Multiple coherence theory developed previously (Bendat and Piersol (2000)) can be used

to address the first problem and assess the extent of linear time invariance. Similar to

univariate coherence, multiple coherence measures the ratio of output power that can be

linearly related to input variables at each frequency. For a multiple-input single-output lin-

ear time-invariant system, multiple coherence should be close to 1 at all frequencies. Low

univariate coherence between one input signal and one output signal at any frequency may

be observed if most power at that particular frequency in the output signal is transformed

from other input signals. Figure 4.8(a), using a simulation study, is a good example of this

case: even for a pure linear system, the univariate coherence between ABP and model pre-

dicted CBFV is reduced because most of the model output power in the low frequency band

is transformed from PETCO2 rather than ABP . In the real system governing CBFV varia-

tion, we have here illustrated that the low value of univariate coherence between ABP and

CBFV at low frequencies may be explained by the effects of other inputs of system such as

PETCO2 and PETO2 because the corresponding values for multiple coherence are high after

considering their contribution to CBFV variability.

Panerai et al. (Panerai et al. (2006)) showed that by introducing a second derived variable,

CV RI, multiple coherence could be increased using only univariate measures. We have

argued that multiple measurements must be taken to set an accurate estimation of the

transfer function. We now examine why the use of a derived variable is not sufficient in this

case. Considering two inputs: ABP and resistance index CV RI, defined as ABP/CBFV ;
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and one output, CBFV , the system in Panerai et al. (2006) is written as:

V (f) = H1(f)P (f) + H2(f)R(f), (4.12)

where H1(f) and H2(f) are the partial transfer functions for ABP − CBFV and CV RI −

CBFV .

For small changes around the basal condition, ∆R, can be expanded as a Taylor series:

∆CV RI

CV RI
=

∆ABP

ABP
− ∆CBFV

CBFV
. (4.13)

Equation 4.13 can be written in the frequency domain as:

R(f) = P (f)− V (f) (4.14)

Thus Equation 4.12 becomes:

V (f) = H1(f)P (f) + H2(f)(P (f)− V (f))

= (H1(f) + H2(f))P (f)−H2(f)V (f). (4.15)

Equation 4.15 illustrates that the system with two inputs (ABP and R) is equivalent to

the system with two inputs (ABP and CBFV ). By definition, multiple coherence will be

unity for a multivariate system in which one system input is linearly related to the output

(Bendat and Piersol (2000)). After rearrangement, Equation 4.15 becomes:

V (f) =
H1(f) + H2(f)

1 + H2(f)
P (f)

= H(f)P (f). (4.16)

Equation 4.16 shows that this multiple-input system is the same as the single-input system

for small changes in ABP , illustrating that a derived parameter such as CV RI does not

contribute to a better understanding of the dynamic determinants of CBFV .

Cross-term and transfer function identification

Some researchers think the interactions between ABP and PETCO2 are small and negli-

gible (Panerai et al. (2000)). Others have emphasized the significance of the cross-term,
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which was found to account for a large part of the total model prediction power (Mitsis

et al. (2004b)). Our result is consistent with the result of Mitsis et al. (2004b), and we

have further showed that most of the cross spectrum power between ABP and PETCO2 is

concentrated at low frequencies and that it will affect the results of the transfer function

identification and autoregulation index estimation. In fact, the effects of uncorrelated and

correlated noise on transfer function analysis are different: the former will reduce the co-

herence, but does not affect the identified transfer function, whilst the latter will affect

both. In other words, any unmeasured variable will influence the coherence, but only those

which are correlated to ABP will affect the transfer function identification if not accounted

for. As shown in Figure 4.7, the result of ARI estimation is clearly affected by the presence

of significant cross power between ABP and PETCO2 .

Nonlinear effects

Many previous studies focused on the question of whether the dynamic system of cerebral

autoregulation is best considered to be linear or nonlinear. Giller et al. (Giller and Mueller

(2003)) argued that the ABP/CBFV system is nonlinear because of five main reasons:

1. Low coherence at low frequencies.

2. Spontaneous oscillations observed in velocity are independent of the pressure.

3. Highly nonstationary velocity and blood pressure signals.

4. Presence of bifurcations and chirps.

5. Failure of ARX and OE models3.

We have showed that the univariate coherence between ABP and CBFV can be low be-

cause the contribution of other physiological variables such as PETCO2 and PETO2 that

drive CBFV variability has not been properly considered. Since ABP is not the only de-

terminant of CBFV fluctuations, it is natural that there exist spontaneous oscillations in

CBFV that are independent of pressure. We have illustrated that to some extent these

oscillations may be due to CO2 variability. It is also possible that these oscillations arise

from vasomotion, a point we will refer to later. For the third reason, even with a time
3The model definitions can be found in Dutton et al. (1997).
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invariant system from pressure to velocity, a highly non-stationary pressure signal will

produce a highly non-stationary flow signal. The algorithm we have presented here tests

the validity of a linear time-invariant relationship identified from the data. High values

of coherence suggest that the data used in this study may be considered approximately

stationary. The failure of ARX and OE models might well also be due to an unmeasured

variability. Bifurcation and chirps were defined in Giller and Mueller (2003) as a splitting

of the frequency content into two sub-bands at a point in time, and a linear increase in the

frequency of most power in the signal with time. It should be noted that since a short time

FFT is a moving average observation; any changes in frequency will appear smoothed; and

therefore smoothness of frequency changes in this are infact an artifact of the process and

should not be interpreted as significant results. Changes of the frequency content of CBFV

are to be expected when the system is driven by multiple inputs.

Although Volterra kernels have been used to characterize the nonlinearities in ABP/CBFV

system (Panerai et al. (1999); Mitsis et al. (2002, 2004b)), it is difficult to gain physical in-

sights from this non-parametric approach (Panerai et al. (1999); Giller and Mueller (2003)).

Another approach is the use of physiologically-based models which include nonlinearities

from tissue elasticity and interactions with intracranial pressure, such as the models of

Ursino and Lodi (1998), Ursino et al. (2000) and Payne (2006). The effect of the built-in

nonlinearities is reflected by the reduced coherence over all frequencies comparing to the

coherence for the linear model, as shown in Figure 4.8(b). However, this difference is not

significant, illustrating that these nonlinear models behave more linearly when consid-

ering spontaneous oscillations. Comparing nonlinearities, the more significant coherence

reduction is due to the effect of an extra system input, CO2. In fact, the active pressure

autoregulation system can be considered as a high-pass filter and the transfer of low fre-

quency ABP fluctuations to CBFV variability is successfully blocked. In contrast, CO2

reactivity mechanisms behave like a low-pass filter which allows only the CO2 power at

low frequencies to transmit to CBFV . As a result, in the low frequency band of CBFV ,

ABP is no longer the dominant determinant, which is reflected by the reduced univariate
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coherence between ABP and CBFV . However, multiple coherence remains high because

it includes the contribution of CO2 to CBFV variability. The model simulations (Figure

7.7) support this explanation.

Other mechanisms of control of cerebral blood flow

Besides pressure autoregulation and CO2 reactivity, vasomotion and neural activity are

known to be other mechanisms which have an effect on cerebral blood flow. Vasomotion is

defined as rhythmic oscillations in vascular tone caused by vascular smooth muscle con-

striction and dilation. The origin of vasomotion is still not clear, but it has been found to

correlate with blood pressure and neural or humoral input. Its intensity and quantity, or

even presence is highly variable according to the results of available experiments (Nilsson

and Aalkjaer (2003)).

Neural activity is well known to control of local blood flow supply, which is the founda-

tion of many neuroimaging techniques including Near Infra-Red Spectroscopy (NIRS) and

functional magnetic resonance imaging (fMRI). For spontaneous fluctuations of blood flow,

neural activity can be also an important controlling mechanism. Zhang et al. (Zhang et al.

(2002)) showed the estimated transfer function gain and phase were altered by the removal

of autonomic neural activity using ganglion blockade. It has been suspected that beat-to-

beat fluctuations in sympathetic nerve activity may modulate cerebral autoregulation sta-

tus and contribute to CBFV variability. We notice there is still considerable residue in the

multiple-input system, which might be due to vasomotion and neural activity. However,

any firm conclusion will require more accurate measurement of these variables and will

thus need to be investigated in the future.



5
Wavelet phase synchronization analysis of

cerebral blood autoregulation

The dynamic relationship between beat-to-beat mean arterial blood pressure (ABP )

fluctuations and cerebral blood flow velocity (CBFV ) variations has been inten-

sively studied. The experimentally observed low coherence in the low frequency

band has previously indicated that the assumptions of linearity and/or station-

arity, the preconditions of the linear transfer function analysis, are not valid in

that frequency region. Latka et al. (2005) used a wavelet phase synchronization

method to identify the instantaneous phase difference between ABP and CBFV

and low values of synchronization index were found in the low frequency range,

seeming to provide further evidence that the cerebral autoregulation system is

nonstationary. Here we focus on another possible factor corresponding for this

low synchronization index–unmeasured variability. We demonstrate analytically

and with a physiologically-based cerebral hemodynamic model that, in the case

of multiple inputs, the phase difference between one input, ABP , and the output,

CBFV , will be distorted by an additional input, end-tidal CO2 (PETCO2), and

no longer accurately represent the true ABP − CBFV system phase shift. We

also prove that this phase distortion can be corrected if the transfer functions

for ABP − CBFV and PETCO2 − CBFV are known or can be estimated. A sig-

nificantly increased value of synchronization index in the low frequency band
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is found using the CO2 correction term with experimental data on thirteen sub-

jects. This essentially indicates that the lack of synchronization between ABP

and CBFV previously identified by Latka et al. (2005) can be partly attributed

to unmeasured variability 1.

5.1 Introduction

An important protective feature of the cerebral circulation is the ability to maintain cere-

bral blood flow, CBF , despite variations in a number of external factors such as arterial

blood pressure, ABP , heart rate and respiration rate (Paulson et al. (1990)). If cerebral au-

toregulation is impaired, abnormally low or excessive CBF can lead to cerebral ischemia,

intracranial hypertension or even capillary damage, thus contributing to the onset of cere-

brovascular events. Thus, assessment of cerebral autoregulation becomes an important

issue for diagnosis, monitoring or prognosis of cerebrovasular disease. Given the high

temporal resolution of transcranial Doppler ultrasound (TCD) which measures cerebral

blood flow velocity, CBFV , normally in the middle cerebral artery, a body of literature

has attempted to assess the status of cerebral autoregulation by analysing the dynamic

relationship between ABP and CBFV .

Linear transfer function analysis (Panerai et al. (1999, 2001); Zhang et al. (1998a)) is a

standard model for cerebral hemodynamics. Within this framework, cerebral autoregula-

tion is considered to be a high-pass filter that transmits rapid changes in blood pressure

but dampens and delays low-frequency perturbations (Zhang et al. (1998a); Latka et al.

(2005)). For ABP as the filter input and CBFV as the output, transfer function identifi-

cation techniques have been widely used to recover the filter parameters (gain and phase)

from experimental data. However, the spectral estimation of gain and phase is only ac-

curate when the corresponding coherence is high. The observed low coherence in the low

frequency band thus indicates that a univariate linear time-invariant system model is not
1This study has been accepted for publication as Peng et al. (2008b)
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a valid representation of the dynamic of cerebral autoregulation in that range.

Numerous authors use this experimentally observed low coherence in the low frequency

band to question entirely the validity of transfer function estimation techniques for cere-

bral autoregulation (Latka et al. (2005); Giller and Mueller (2003); Rowley et al. (2007)).

The identified (or suspected) nonlinear and nonstationary relationship between ABP and

CBFV has motivated many attempts to perform more sophisticated system identification

procedures on the system including high order Volterra kernels (Mitsis et al. (2002, 2004b))

and phase synchronization methods (Latka et al. (2005)). The latter mathematical frame-

work is based on wavelet decomposition, which allows for the identification and charac-

terization of time varying phase difference. Strong phase difference variability between

ABP and CBFV was found in the low frequency range, suggested by the low value of

synchronization index.

However, the relationship between ABP and CBFV time series in the low frequency re-

gion is not entirely determined by pressure autoregulation. Alongside cerebral pressure

autoregulation, the other main mechanism responsible for controlling blood flow is the

reactivity of cerebral vessels to arterial CO2 and O2 levels, which are assessed by breath-

to-breath end-tidal CO2 (PETCO2) and O2 (PETO2) measurements. Mitsis et al. (Mitsis et al.

(2004b)) and Peng et al. (Chapter 4) have investigated the dynamic characteristics of the

CBFV variability and a considerable proportion of low frequency CBFV fluctuations can

be attributed to PETCO2 fluctuations and the interaction between ABP and PETCO2 . In

particular, Peng et al. (Chapter 4) built a linear time-invariant system of multiple inputs:

ABP , PETCO2 and PETO2 . Multiple coherence was used to assess the validity of this mul-

tivariate system and it was found that the multiple coherence for frequencies < 0.05Hz is

significantly higher than the corresponding values obtained for univariate coherence with

a single input of ABP . This illustrates that, alongside nonlinearity and nonstationarity,

unmeasured variability is also an important factor resulting in low univariate coherence.

Similar to univariate coherence, a low value of univariate synchronization index might be

also due to the effects of unmeasured parameters.
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In this Chapter, we thus explore the validity of performing a univariate phase synchroniza-

tion analysis on the cerebral system in the presence of another variable, PETCO2 (PETO2

is not included here because in this same data set, PETO2 fluctuations were found to be

highly correlated to PETCO2 fluctuations and do not provide significantly more information

to CBFV variability (Chapter 4)). A mathematical formula of the error of the algorithm is

deduced, showing that if the two transfer functions ABP − CBFV and PETCO2 − CBFV

are known or can be estimated, the error of wavelet phase difference can be corrected. This

is demonstrated by both synthetic and real data.

5.2 Method

5.2.1 System definition

As mentioned in Section 5.1, CBFV is controlled by both ABP and PETCO2 fluctuations.

Thus the cerebral system can be written as:

V (t) = P (t)⊗hPV (t) + C(t)⊗hCV (t) + n(t) (5.1)

where P (t) is the ABP time series, C(t) is the PETCO2 time series, V (t) is the CBFV

time series; hPV and hCV are the impulse responses of the system relating ABP − CBFV

and PETCO2 − CBFV respectively; n(t) is the noise term, including other unmeasured

variability, such as vasomotion and mental activity, and instrument induced noise; the

symbol ⊗ represents the convolution operator.

5.2.2 Multivariate transfer function analysis

The relationship between system inputs, ABP and PETCO2 , and system output, CBFV , is

evaluated using multivariate transfer function analysis. The component of the output that

can be linearly related to the inputs is thus written as:

Y (f) = HPV (f)P (f) + HCV (f)C(f) (5.2)
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in which P (f) and C(f) are frequency-domain transforms of P (t) and C(t) respectively.

HPV and HCV are partial transfer functions, which can be obtained by solving the following

matrix equation (Chapter 4):

Gi ∗H = Go, (5.3)

in which Gi =
�

GPP GPC

GCP GCC

�
, the matrix of autospectra and cross-spectra of the input

signals, Go =
�

GPV

GCV

�
, the matrix of cross-spectra of the input and output signals, and

H =
�

HPV

HCV

�
, the vector of system partial transfer functions.

Multiple coherence is defined as the ratio between the linear system output spectrum and

the measured velocity spectrum, which is:

ΓM
2(f) =

GY Y (f)
GV V (f)

, (5.4)

in which GY Y (f) = HT GiH.

5.2.3 Wavelet phase synchronization method

Continuous complex Morlet wavelet transforms can be performed for P (t), C(t) and V (t),

giving the complex time series, WP (a, t), WC(a, t) and WV (a, t), as a function of wavelet

scale a and time t (Le Van Quyen et al. (2001)). The complex argument of these time series

gives a representation of the instantaneous phases, φP (a, t) φC(a, t) and φV (a, t). Taking

the difference allows instantaneous phase difference to be calculated as:

∆φP (a, t) = φV (a, t)− φP (a, t), (5.5)

∆φC(a, t) = φV (a, t)− φC(a, t). (5.6)

To analyse synchronization between ABP and CBFV time series, the circular mean, ¯∆φP (a)

of the phase difference over the duration of a test segment can be calculated using (Rowley

et al. (2007)):

¯∆φP (a) = tan−1

��
tsin(∆φP (a, t))�
tcos(∆φP (a, t))

�
. (5.7)



5.2 Method 106

The synchronization index, γP (a) (Latka et al. (2005)), which is an inverse circular statis-

tical analogue of variance is calculated using:

γP (a) =
1
N

([
�

t

cos(∆φP (a, t))]2 + [
�

t

sin(∆φP (a, t))]2), (5.8)

in which N is the number of time points in the series. ¯∆φC(a) and γC(a) can be calculated

in the same way and be used to analyse the synchronization between PETCO2 and CBFV .

The value of synchronization index lies in the interval 0 ≤ γ ≤ 1 and varies with the scaling

parameter, a. In the case of perfect phase synchronization, i.e. φV (a, t)−φP (a, t) = constant,

γP (a) = 1. In contrast, when the distribution of the phase differences is uniform, the time

average of both trigonometric functions are zero, which leads to a zero synchronization

index. A high value of synchronization index thus indicates that the phase difference be-

tween the two signals at any given frequency has a low variation over time.

5.2.4 Phase distortion by another variable

However, for the multivariate system in the presence of another input C(t), the phase

difference ∆φP does not necessarily represent the instantaneous phase of hPV (t), denoted

by ψPV . Suppose that the inputs to the system (Equation 5.1) are sinusoidal with an angle

frequency of ω:

P (t) = AP cos(ωt + φP ), (5.9)

C(t) = ACcos(ωt + φC), (5.10)

with the instantaneous phase of the primary input, P (t), taken as the reference, i.e. φP = 0,

thus the output will be:

V (t) = AP |HPV (eiω)|cos(ωt + ψPV ) +

AC |HCV (eiω)|cos(ωt + φC + ψCV ) + Ancos(ωt + φn),

(5.11)
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where:

ψPV = ∠HPV (eiω), (5.12)

ψCV = ∠HCV (eiω). (5.13)

HPV and HCV are the transfer functions for ABP − CBFV and PETCO2 − CBFV respec-

tively.

The instantaneous phase difference that would be recovered using a wavelet phase estima-

tor between ABP and CBFV is:

∆φP (t) = φV (t)

= tan−1{AP |HPV |sinψPV +
AP |HPV |cosψPV +

AC |HCV |sin(φC + ψCV ) + Ansinφn

AC |HCV |cos(φC + ψCV ) + Ancosφn
}, (5.14)

at each angle frequency ω. The error between the identified phase difference and system

phase shift is:

∆φe(t) = ∆φP (t)− ψPV (t)

= tan−1{AC |HCV |sin(φC + ψCV − ψPV )+
AC |HCV |cos(φC + ψCV − ψPV )+
Ansin(φn − ψPV )

AP |HPV | + Ancos(φn − ψPV )
} (5.15)

The above equation illustrates that, as well as the PETCO2 term, any noise term will also

distort the result of phase difference identification. However, if HPV and HCV are known or

can be estimated, the error caused by PETCO2 fluctuations can be corrected. The corrected

phase difference is:

∆φc
P = ∆φP −

tan−1

�
AC |HCV |sin(φC + ψCV − ψPV )

AP |HPV | + AP |HCV |cos(φC + ψCV − ψPV )

�
(5.16)

where ∆φc
P is the estimate for ψPV at each angle frequency ω. Continuous complex Morlet

wavelet transforms are also used to estimate instantaneous amplitude and phase of each
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signal, i.e. |WP |(a, t) and |WC |(a, t) replace AP (ω, t) and AC(ω, t) respectively; ψPV (a, t) and

ψCV (a, t) replace ψPV (ω, t) and ψCV (ω, t), thus the correction term can be written as:

∆φc
P (a, t) = ∆φP −

tan−1

�
|WCHCV |sin(φC + ψCV − ψPV )

|WP HPV | + |WCHCV |cos(φC + ψCV − ψPV )

�
, (5.17)

as a function of wavelet scale a and time t. Its circular mean, ¯∆φc
P , and the corresponding

synchronization index, γc
P , are also calculated as:

¯∆φc
P (a) = tan−1

��
tsin(∆φc

P (a, t))�
tcos(∆φc

P (a, t))

�
, (5.18)

γc
P (a) =

1
N

([
�

t

cos(∆φc
P (a, t))]2 + [

�

t

sin(∆φc
P (a, t))]2). (5.19)

The corrected phase difference is a better estimation of the ABP − CBFV system phase

shift. This will now be demonstrated using a physiologically-based linear model and an

example physiological data set.

5.2.5 Data collection and processing

Synthetic Data

Synthetic data is generated by a linear time-invariant model. The system comprises two

transfer functions for ABP−CBFV and PETCO2−CBFV , which are linear approximations

of the physiologically-based model described in Payne (2006). The linearisation procedure

can be found in Chapter 4 and Payne and Tarassenko (2006). Measured ABP and PETCO2

of a single subject were used as model inputs. The wavelet phase synchronization method

is used to identify the phase difference between one model input, ABP , and model output,

CBFV , with or without another model input, PETCO2 . The circular mean phase differences

in both cases are then compared to the true phase shift of the ABP − CBFV system and

their difference calculated. Moreover, with the known ABP −CBFV and PETCO2 −CBFV

transfer functions, Equation 5.17 is used to obtain the corrected phase difference, with the

effect of CO2 removed. The time-averaged value of corrected phase difference is then com-

pared to the true ABP −CBFV system phase shift, and its corresponding synchronization
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index is also compared with the theoretical value, unity. This test on synthetic data is used

to validate the modified phase synchronization method for multivariate system outlined

above.

Physiological Data

Thirteen healthy subjects participated in the study. All subjects received verbal and writ-

ten instructions outlining the experiment procedure; written informed content was ob-

tained, studies conformed to the standards set by Declaration of Helsinki, and research

study was approved by the Conjoint Health Research Ethics Board at the University of

Calgary (Grant ID 15671). Participants were not taking any medication, all were non-

smokers, and none had any history of cardiovascular, cerebrovascular, or respiratory dis-

ease. The experimental data were collected under supine, free-breathing conditions (Mit-

sis et al. (2004a), Chapter 4). The experimental variables PETCO2 were monitored using

a mass spectrometer (AMIS2000, Innovision, Odense, Denmark) and were sampled every

20ms. ABP was monitored continuously in the finger by photoplethysmography (Porta-

press, TPD Biomedical Instrumentation, the Netherlands). CBFV was measured with a

2-MHz Doppler ultrasound system (TC22, SciMed, Bristol, U.K.) in the right middle cere-

bral artery. Both the pressure and velocity signals were sampled every 10 ms.

The time series of all experimental variables were further resampled to 1Hz using cubic

spline interpolation. This frequency was chosen to be consistent with existing value widely

used in the literature (Zhang et al. (1998a); Mitsis et al. (2004b,a)). The resampled data

were then high pass filtered using a fifth-order Butterworth filter with a cut-off frequency

of 0.005Hz to remove the very slow variation and baseline shift (Rowley et al. (2007); Mitsis

et al. (2004b,a)). Sections of the time series having a duration of 2000 seconds were selected

for spectral and transfer function analysis. Power spectral densities were calculated for

each of the preprocessed time series with the Welch technique (Welch (1967)) with a 128-

point (128 seconds) Hanning window with 50% overlap. Transfer functions for ABP −

CBFV , HPV , and for PETCO2−CBFV , HCV , were estimated through multivariate transfer

function analysis (Chapter 4). Wavelet phase differences between ABP and CBFV are
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then identified using the wavelet phase synchronization method and estimated transfer

functions were used to eliminate the effect of the other variable, PETCO2 . The identified

phase difference, with and without correction terms, is compared to the estimated phase

shift of HPV using the multivariate system identification technique.

5.2.6 Statistics

The variability of the ABP , PETCO2 and CBFV time series was assessed by calculating

the coefficients of variation given by standard deviation divided by the mean for all values

in each recording, as in Panerai et al. (2006). The differences between two synchroniza-

tion indices of ABP − CBFV relationship with and without CO2 correction were tested

for significance with the two-tailed Wilcoxon signed rank test (see Goulden (1959)). The

percentage of positive instantaneous phase between ABP and CBFV over all subjects was

also obtained in both cases. Again, the two-tailed Wilcoxon signed rank test was used to

test their difference.

5.3 Results

5.3.1 Synthetic data

Figure 5.1 shows the frequency responses of the ABP − CBFV transfer function, HPV ,

and the PETCO2 − CBFV transfer function, HCV , for the model (normalized response).

The pressure autoregulation mechanisms were modelled as a high-pass filter transmitting

rapid changes in ABP but blocking low-frequency variation. As shown in Figure 5.1(a),

small gain was found at high scales (low frequencies) and large gain at low scales (high

frequencies) with slight resonance around a scale of 3.5 (0.3Hz). The positive value of

phase in the low frequency range indicates changes in velocity lead changes in pressure,

which is due to the active resistance mechanism, as suggested in Panerai et al. (2006).

However, in the high-frequency range, changes in velocity are almost in phase with changes

in pressure. In contrast to pressure autoregulation, CO2 reactivity was modelled as a low-
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pass filter with high gains at high scales (low frequencies) and low gains at low scales (high

frequencies). The negative value of phase at all scales indicates that PETCO2 leads CBFV

in all frequency range, which is in good agreement with experimental data (Poulin et al.

(1996, 1998)).

Figure 5.1 Frequency response of the model. a) Gain and phase of ABP −CBFV transfer
function. b) Gain and phase of PETCO2 − CBFV transfer function.
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Figure 5.2 shows the phase synchronization result between the model input (measured

ABP ) and the model output (predicted CBFV ). For the case of a single input, ABP , the

circular mean phase difference, ¯∆φP is consistent with the actual system phase shift, ψPV ,

at all scales. The corresponding synchronization index is also close to unity. However,

for the case of an extra input, CO2 (measured PETCO2), ¯∆φP no longer represents φPV in

the low frequency region, where the corresponding synchronization index, γP , is low. The

identification error can be corrected using Equation 5.17, the corrected value, ¯∆φc
P , being

very close to ψPV , the corresponding synchronization index, γc
P , returning to higher values

close to unity.

The above result illustrates that, in the case of multiple inputs, the phase difference be-
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Figure 5.2 Wavelet phase synchronization for linear time-invariant model input and out-
put. a) Single input, ABP . Top: phase shift of ABP − CBFV transfer function, ψPV ,
over different scales (black dotted line); time-averaged phase difference between ABP and
CBFV , ¯∆φP (red solid line). Bottom: synchronization index between ABP and CBFV , γP .
b) Multiple inputs: ABP and PETCO2 . Top: phase shift of ABP − CBFV transfer func-
tion, ψPV , over different scales (black dotted line); time-averaged phase difference between
ABP and CBFV without correction, ∆̄φP (red line); time-averaged phase difference with
correction, ¯∆φc

P (green dashed line). Bottom: synchronization index between ABP and
CBFV without correction, γP (red solid line); synchronization index with correction, γc

P
(green dashed line).
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tween one input, ABP , and the output, CBFV , will be distorted by an additional input,

PETCO2 , and no longer accurately represent the true ABP − CBFV system phase shift.

However, with the correction term which eliminates the effect of other disturbing vari-

ables, the modified phase synchronization method can successfully estimate the real sys-

tem phase shift. This method, which has been shown here to be valid in identifying the

multivariate system, will now be applied to real physiological data to analyse the cerebral

autoregulation system.

5.3.2 Physiological data

A total of 13 data files were available for analysis. Their baseline values and coefficients of

variation for ABP , PETCO2 and CBFV variables are given in Table 5.1.

Table 5.1 Baseline values and coefficients of variation for ABP , PETCO2 , PETO2 , and CBFV
for 13 subjects (values are Means ± SD)

Variable Baseline variation
ABP 76.6 ± 7.0 [mmHg] 4.9 ± 1.2 [%]
PETCO2 37.4 ± 1.8 [mmHg] 2.4 ± 0.7 [%]
CBFV 53.5 ± 5.2 [cm/s] 5.9 ± 1.3 [%]

ABP − CBFV and PETCO2 − CBFV transfer functions were identified from the experi-

mental data by multivariate transfer function analysis (Section 5.2.2). Their frequency

responses are shown in Figure 5.3. The estimated ABP −CBFV transfer function behaves

like a high-pass filter, with high gain at low scales: 2−10 (frequencies: 0.5−0.1Hz) and low

gain at high scales: 10−50 (frequencies: 0.1−0.02Hz). Positive phase indicates that CBFV

leads ABP in the low frequency band, which is consistent with other studies (Panerai et al.

(1999, 2001); Zhang et al. (1998a)). In contrast, the estimated PETCO2 − CBFV transfer

function behaves like a low-pass filter, with lower gains at low scales: 8 − 15 (frequencies:

0.07 − 1.25Hz) and higher gains at high scales. Although the estimated gain seems to be

quite large at scales 2 − 10, actually there is very little PETCO2 power at those frequen-

cies, so the estimation is not robust in that frequency region. The corresponding multiple

coherence is also shown in Figure 5.3(c), similarly to that shown in Chapter 4.
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Figure 5.3 Frequency response of the identified system. a) Estimated transfer function
gain and phase for ABP − CBFV relationship. b) Estimated transfer function gain and
phase of PETCO2 −CBFV relationship. c) Multiple coherence of multivariate system. Solid
line: mean value; dotted line: ± standard deviation.
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Figure 5.4 shows the identified mean phase difference of ABP − CBFV and PETCO2 −

CBFV system, together with their corresponding synchronization indexes (group mean

value ± standard deviation). For the ABP −CBFV system, high values of synchronization

index were found at high frequencies, with two distinct peaks, a narrow one at 0.25Hz

(a = 4, γ = 0.83) and another broad one at 0.08Hz (a = 12, γ = 0.75). In contrast, much

lower index values were found at lower frequencies (higher scales: a > 30, γ < 0.5). This

result is generally consistent with the findings of Latka et al. (2005), with slight differently

peak frequencies. For the PETCO2 − CBFV system, the inverse trend was found with an

enhanced value of synchronization index at increased scales, which illustrates that PETCO2

fluctuations have a more significant contribution to low frequency CBFV variability.

The estimated ABP − CBFV and PETCO2 − CBFV transfer functions using multivariate

transfer function analysis are used to correct the effect of the additional variable, PETCO2 ,

and to estimate the real phase shift of ABP − CBFV system. The corrected mean phase

difference and synchronization index are also shown in Figure 5.4. The density map (Fig-

ure 5.5(a)) represents the time evolution of the normalized phase difference without CO2

correction, ∆φP /2π (top), and with CO2 correction, ∆φc
P /2π (bottom) for 50 integer values of

the wavelet scale a for a typical subject. In particular, Figure 5.5(b) displays the variation
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of the phase difference for the scale a = 40 (fa = 0.025Hz). In the low frequency part of the

spectrum, the phase difference slowly evolves over time with broad distribution, with both

phase leading (0− π) and phase lagging (−π− 0) between CBFV and ABP . However, with

the correction term, which removes the effects of CO2, the instantaneous phase difference

becomes more positive, as shown in Figure 5.5(c) (P < 0.002).

Figure 5.4 Phase difference and synchronization index for real system (mean value ±
standard deviation). Top: time-averaged phase difference between ABP and CBFV time
series, ¯∆φP , PETCO2 and CBFV , ¯∆φC , and corrected time-averaged phase difference be-
tween ABP and CBFV , ¯∆φc

P . Bottom: the corresponding synchronization indices, γP , γC

and γc
P respectively.
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The last figure (Figure 5.6) shows the group-averaged circular mean phase and synchro-

nization index. In the low frequency band, i.e. < 0.05Hz (a > 20), the value of the corrected

synchronization index is significantly higher than the original index (P < 0.005) while no

obvious difference exists between them at higher frequencies. The slightly lower value

of corrected synchronization index in the high frequency range is because the estimated

transfer functions are not accurate in the frequency band where there is inadequate input

power. This issue will be revisited in Section 5.4. The result indicates that the lack of

synchronization between ABP and CBFV at low frequencies is partly due to the effect of

CO2, and with the correction term which eliminates its influence, the entrainment of ABP

and CBFV is found to be stronger. This also illustrates that the effects of CO2 are found

mainly at low frequencies, which is consistent with the results of Mitsis et al. (2004b) and
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Figure 5.5 Instantaneous phase difference. a)Density map of the normalised instanta-
neous phase difference over time, ∆φP /2π (top), and with CO2 correction, ∆φc

P /2π (bottom)
for a typical subject. b) Plot of normalized phase difference for scale a = 40. c) Histogram
showing percentage of positive instantaneous phase over time with and without CO2 cor-
rection (group mean value ± standard deviation).
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Chapter 4.

In the low frequency region where the synchronization index is low, the identified phase

difference is also different from the estimated system shift ( ¯∆φP and ψPV ), although not

significantly so. With the correction term, the two are in better qualitative agreement ( ¯∆φc
P

and ψPV ), as would be expected. The increased value of the corresponding synchronization

index indicates that there is a phase difference with less variation over time. Thus, with a

smaller standard deviation, the circular mean phase difference provides a better estimate

of the real system phase shift.

Figure 5.6 a) Comparison of mean phase difference between ABP and CBFV without CO2

correction, ¯∆φP , with CO2 correction, ¯∆φc
P , and phase shift of estimated ABP − CBFV

transfer function using multivariate transfer function analysis, ψPV , is also provided for
comparison. b) Synchronization index without CO2 correction, γP , with CO2 correction, γc

P .
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5.4 Discussion

In the high frequency band, the synchronization curve exhibits high values with two dis-

tinct peaks, the first at a scale corresponding to 0.25Hz, the second at a frequency of around

0.08Hz, being slightly different from the result of Latka et al. (2005), which are 0.33Hz

and 0.1Hz respectively. Latka et al. (Latka et al. (2005)) suggested that the higher fre-

quency peak originated to respiration. Normal respiratory rates reported from healthy

adults varies from source to source: between 12 to 20 breaths per minute (Schimelpfenig
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and Lindsey (2000)). Since both 0.25Hz and 0.33Hz (15 and 20 breaths per minute) are in

the normal range, their difference may be just due to different subject groups. The low

frequency peak could correspond to the Mayer Wave peak and it has been suggested that

the peak frequency will shift to lower frequencies during head-up tilt compared to supine

(Rowley et al. (2007)).

In the low frequency region, the instantaneous phase difference between ABP and CBFV

has an almost uniform distribution, reflected by a low value of synchronization index,

which is consistent with the result of Latka et al. (2005). However, the lack of synchroniza-

tion between ABP and CBFV at those frequencies does not necessarily lead to the con-

clusion that cerebral autoregulation system is nonstationary. Instead, our current study

illustrates that the observed low synchronization index between ABP and CBFV can be

attributed to unmeasured variability.

As is well known, ABP is not the only determinant of CBFV variability, other parameters

such as CO2 having a vasodilatory effect on cerebral vessels and thus influencing blood

flow, known as CO2 reactivity. A number of studies have investigated the dynamic char-

acteristics of the CO2 − CBFV relationship through measuring both the CBFV response

to a step change in end-tidal CO2 (Poulin et al. (1996, 1998)) and the continuous record-

ings of breath-by-breath spontaneous fluctuations in CO2 (Mitsis et al. (2004b); Panerai

et al. (2000), Chapter 4). Mitsis et al. (Mitsis et al. (2004b)) found that the CO2 term and

the interaction term between ABP and CO2 can contribute significantly to the observed

CBFV variability in the low frequency band. Peng et al. (Chapter 4) further point out

that the observed low values of univariate coherence at low frequencies is partly due to

CO2 variability not being considered, and the transfer function between ABP and CBFV

at those frequencies can be modified by the fluctuation of other variables such as CO2, no

longer representing pressure autoregulation. In a similar way, the phase relationship be-

tween ABP and CBFV in the low frequency band is also modified by CO2 reactivity. An

observed low value of synchronization index does not mean that the ABP and CBFV are

not physiologically related, but that their phase relationship in that frequency region has
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been distorted by another parameter, CO2. In fact, we have proposed a modified phase syn-

chronization method to correct this phase distortion and thus to estimate the true phase

shift of ABP −CBFV system. With the correction term which eliminates the effect of CO2,

the synchronization index is significantly increased in the low frequency band, suggesting

a underlying relationship between ABP and CBFV even at low frequencies.

The phase shift between ABP and CBFV is an important parameter in the assessment

of cerebral autoregulation status. Previous studies (Diehl et al. (1995); Birch et al. (1995))

have studied the CBFV response to slow oscillations in ABP by adopting slow breath-

ing and periodic squatting/standing up cycles respectively. Both of these studies showed

a phase lead of CBFV to ABP in individuals at low frequencies and the phase difference

were found to be highly correlated to PaCO2 level: a phase difference increase was found

with hypocapnia while a decrease with hypercapnia (Birch et al. (1995)), suggesting differ-

ing autoregulation status. Moreover, a recent paper (Liu et al. (2003)) used an ARX model

to analyse the phase difference between CBFV and ABP spontaneous fluctuations during

thigh cuff test and lower body negative pressure test. A consistent positive phase shift was

found for all data sets and again, the phase lead was also found to decrease in the hyper-

capnia condition. Besides time-averaged phase relationship assessed by Fourier analysis,

instantaneous phase difference can now be extracted by a phase dynamics method, based

on wavelet analysis, which sheds new light on the nature of cerebral hemodynamics (Latka

et al. (2005)). Though the circular mean phase difference is shown to be positive here,

which is consistent with former studies, the instantaneous phase difference slowly evolves

over time and tends to have a uniform distribution, with both positive and negative val-

ues (Figure 5.5(b)). Latka et al Latka et al. (2005) suggested that the zero or negative

phase difference for a short time can be due to intermittent autoregulatory failure even

in normal subjects. However, with the CO2 correction term, the instantaneous phase shift

(Figure 5.5(c)) shows a more positive value over time, which illustrates the previous peri-

odical zero and negative phase can be partly attributed to the effect of CO2.

Multivariate transfer function analysis was used in the present study to estimate the CO2
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correction term. Compared to univariate transfer function analysis, it has been shown to be

more valid in analysing the dynamics of cerebral autoregulation in the low frequency band,

as suggested by the significantly increased value for multiple coherence at those frequen-

cies (Chapter 4). The same data-set used here and in Chapter 4 is from normal subjects, the

stationary assumption is acceptable. However, under certain physiological conditions, such

as exercise or tilting, the measurements are expected to be highly nonstationary which will

invalidate the necessary assumption for time-invariant transfer function analysis. More-

over, for very high frequencies where there is little ABP and CO2 power, the transfer

function analysis is not very robust. Thus more robust techniques such as time-varying

transfer function analysis (Zhao et al. (2005)) and wavelet cross-correlation analysis (Row-

ley et al. (2007); Mizuno-Matsumoto et al. (2005)) will need to replace current techniques

to get a better estimation of the dynamics of the cerebral autoregulation system. This will

be the subject of future work.

5.5 Conclusion

In this paper, we demonstrate that the fluctuations in CO2 distort the phase relationship

between ABP and CBFV in the low frequency region, corresponding to a low value of syn-

chronization index between the two variables. A modified phase synchronization method

has been proposed to eliminate the effect of CO2 and to estimate the true phase shift of

ABP −CBFV system. This new method has been applied to both synthetic data and phys-

iological data and has been proved successful, resulting in a significantly increased value

of synchronization index between ABP and CBFV at low frequencies.



6
The effects of age on the spontaneous

low-frequency oscillations in cerebral and

systemic cardiovascular dynamics

Although the effects of ageing on cardiovascular control and particularly the re-

sponse to orthostatic stress have been the subject of many studies, the interaction

between the cardiovascular and cerebral regulation mechanisms is still not fully

understood. Wavelet cross-correlation is used here to assess the coupling and

synchronization between low-frequency oscillations (LFOs) observed in cerebral

hemodynamics, as measured using cerebral blood flow velocity (CBFV ) and cere-

bral oxygenation (O2Hb), and systemic cardiovascular dynamics, as measured

using heart rate (HR) and arterial blood pressure (ABP ), in both old and young

healthy subjects undergoing head-up tilt table testing. Statistically significant

increases in correlation values are found in the interaction of cerebral and car-

diovascular LFOs for young subjects (P ¡ 0.01 for HRABP , P ¡ 0.001 for HRO2Hb

and ABPO2Hb), but not in old subjects under orthostatic stress. The coupling

between the cerebrovascular and wider cardiovascular systems in response to

orthostatic stress thus appears to be impaired with ageing1.
1This study has been published as Peng et al. (2008a)
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6.1 Introduction

Any postural change induces a transient change in mean arterial blood pressure (ABP)

which is detected by the baroreceptors and then minimised by the cardiovascular auto-

nomic regulation mechanisms (Priebe (1999)). Changes in ABP are further compensated

by the protective mechanism of the brain, cerebral autoregulation, which maintains a rel-

atively constant cerebral blood flow (CBF) despite variations in pressure (Panerai (1998)).

These two mechanisms collectively ensure adequate CBF in the brain during postural

changes. However, both the cardiovascular response and the cerebral autoregulation can

become impaired with ageing, possibly resulting in orthostatic hypotension and related

cerebral symptoms, such as light-headedness, dizziness, falls, or even syncope in old peo-

ple (Jansen et al. (1989); Lipsitz (1989); Raiha et al. (1995)). These symptoms can occur

when cerebral perfusion and hence oxygen supply become compromised as a result of re-

duced cerebral blood flow in response to postural change, which indicates either impaired

cerebral autoregulation or impaired cardiovascular regulation with ageing (Laitinen et al.

(2004); Mehagnoul-Schipper et al. (2000, 2001)), or possibly both.

Numerous previous studies have attempted to quantify the effects of posture changes on

both cerebral and cardiovascular hemodynamics by measuring absolute changes in heart

rate (HR), ABP, CBF and frontal cerebral oxygen hemoglobin concentration (O2Hb, mea-

sured by near-infrared spectroscopy) (Smith et al. (1987); Laitinen et al. (2004); Levine

et al. (1994); Lagi et al. (1994)). However, the noise that is inherent in the data means

that many repetitions are required for a single patient, which is problematic in the case

of patients with an impaired autonomic nervous system (Panerai (1998)). Other studies

have thus investigated the posture dependence of spontaneous oscillations in cardiovascu-

lar and cerebrovascular variables and found that the oscillatory changes in ABP and O2Hb

increased significantly from the supine to the upright position (Tachtsidis et al. (2004)).

Spontaneous low-frequency oscillations (LFOs) at frequencies around 0.1 Hz in cerebral

hemodynamics have been observed under a wide range of experimental conditions. They
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can be distinguished by spectral analysis from other fluctuation components, such as very

low-frequency oscillation (VLFOs) centered at 0.02Hz and high-frequency oscillations (in-

cluding the cardiac cycle at approximately 1Hz and the respiratory cycle at approximately

0.2-0.3 Hz). Although the origin of LFOs is still unclear, these oscillations have been found

to be modulated by pharmacological and pathological conditions, or by neural activation

(Obrig et al. (2000)). Within the same frequency band, high variability in ABP and HR

is also found. These oscillations, called ”Mayer waves” (Mayer (1876)), originate from the

action of the baroreflex in the systemic regulation of the cardiovascular system, and can

be ascribed to sympathetic nervous activity (Nilsson and Aalkjaer (2003)). Since the cere-

brovascular system is a part of the systemic circulation, it is mediated by both central

sympathetic activation and local myogenic or metabolic mechanisms (Priebe, 2000). It is

thus very unlikely that LFOs found in cerebral hemodynamic variables are completely in-

dependent of their cardiovascular counterparts. Indeed, it has been shown that one third

of cerebrovascular oscillations in the range of 0.04-0.15 Hz can be tracked back to the sys-

temic cardiovascular fluctuations (HR and ABP) in the same frequency band (Katura et

al., 2006). Fluctuations in HR (<0.1 Hz) have also recently been identified as an important

source of variance in the resting-state fMRI BOLD signal (Shmueli et al. (2007)).

The bivariate relationship between LFOs in ABP and cerebral blood flow velocity (CBFV),

measured using transcranial Doppler ultrasound (TCD), can be used as an assessment of

cerebral autoregulation status (Zhang et al. (1998a,b); Panerai et al. (2001, 1999)). Within

this framework, cerebral autoregulation is considered to be a high-pass filter, with ABP as

the input and CBFV as the output, whose parameters (gain and phase) can be identified

from experimental data using a system identification technique which essentially involves

division of the power spectra of the two time series. However, this Fourier spectral analysis

makes the assumption of stationarity, which might not be valid for clinical measurements

of older individuals or patients with an impaired sympathetic regulation system. It also

requires a relatively long recording time as its accuracy is dependent on the amount of

spontaneous power in the low frequency range (Panerai et al., 1998; Zhang et al., 1998b).
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Wavelet analysis thus provides an alternative framework, which allows for the identifica-

tion of time-varying frequency and phase and for the characterization of the nonstationary

effects of cerebral dynamics, thus overcoming the restriction of earlier methods (Latka

et al. (2005); Rowley et al. (2007)). Wavelet cross-correlation, in particular, has been shown

to be more effective than transfer function estimation techniques when used with time se-

ries that are obtained from a short duration head-up tilt table test (Rowley et al. (2007)),

as it is a measure of the level of similarity of two signals and does not depend on the power

of those signals.

The aim of the present study was thus to investigate the effects of ageing on both the cere-

brovascular hemodynamic and systemic cardiovascular responses to posture changes using

wavelet cross-correlation. O2Hb was chosen in addition to CBFV to represent cerebrovascu-

lar hemodynamics as it provides a direct measurement of changes in cerebral oxygenation

at the cerebral cortical tissue level (Schroeter et al., 2004) and its LFOs have been found to

be more pronounced than other variables measured by near-infrared spectroscopy (NIRS)

(Obrig et al. (2000)).

6.2 Methods

6.2.1 Subjects

A total of 33 healthy subjects were studied: 18 young and 15 old. Participants were in-

cluded if they were normotensive (< 140/90mmHg), non-smokers, and free of overt chronic

diseases, as assessed by detailed medical history, physical examination and 12-lead ECG.

None of the participants were taking any medication or had any history of syncope. The

study was approved by the Local Ethical Committee, and written informed consent was

obtained.
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6.2.2 Experimental design

Subjects were instructed to abstain from exercise, alcohol and caffeine 12h prior, and not to

eat a heavy meal within 4 hours prior to experimental testing. Subjects attended the labo-

ratory on two occasions. The first occasion was used to familiarize the subjects with the tilt

table and related experimental apparatus. During the second visit, the main experimental

testing was conducted.

6.2.3 Measurements of CBF velocity, cerebral oxygenation, arterial blood
pressure and end-tidal gases

During each session CBF velocity, cerebral oxygenation, ABP, end-tidal carbon dioxide

(PETCO2) and oxygen (PETO2) partial pressures and electrocardiography (ECG) were

recorded continuously. Blood flow velocity in the right middle cerebral artery (MCAv) was

measured using a 2 MHz pulsed Doppler ultrasound system (DWL Doppler, Sterling VA,

USA). Cerebral oxygenation was measured using a commercially available near infrared

spectroscopy (NIRS) system (NIRO-200; Hamamatsu Photonics KK; Hamamatsu, Japan).

A probe holder containing an emission probe and detection probe was attached at the right

side of the forehead with a distance of 5 cm between the probes as previously described

(Nollert et al. (1995)). Beat-to-beat BP was measured by finger photoplethysmography

that uses a height correction system (Finometer, TPD Biomedical Instruments, Nether-

lands). Any changes in vertical displacement of the finger cuff relative to the heart are

corrected for by a reference probe placed on the chest at heart level. Participants breathed

through a respiratory mask (Hans-Rudolph 8980, Kansas City, MO) attached to a one-way

non-rebreathing valve (Hans-Rudolph 2700). PETCO2 and PETO2 were sampled contin-

uously and measured using a gas analyser (model CD-3A, AEI Technologies, Pittsburgh,

PA). HR was also recorded using 3-lead electrocardiogram via a Bio Amp (Model ML132,

ADInstruments, Colorado Springs, CO, USA). All data were sampled continuously at 200

Hz using an analog-digital converter (Powerlab/16SP ML795; ADInstruments) interfaced

with a computer and displayed in real time during testing. Following supine rest for at
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least 15 minutes, subjects were then tilted to 60◦ for fifteen minutes.

6.2.4 Maximal overlap discrete wavelet packet decomposition

The recently developed maximal overlap discrete wavelet packet transform using Hilbert

wavelet pair filters (MODHWPT) (Selesnick, 2002; Selesnick et al., 2005; Whitcher et al.,

2005; Whitcher and Craigmille, 2004) was used to decompose all the time series into sets

of wavelet coefficients at different levels, associated with different frequency bands, as

shown in Figure 6.1. For a time series X = (X0, X1, ...,XN−1), the jth level MODHWPT

coefficients, WX
j,n,t, can be calculated by a recursive scheme for which we assume that we

already have the level j − 1 coefficients (Percival and Walden (2000)):

WX
j−1,n,t =

L−1�

l=0

�un,lW
X
j−1,[n

2 ],t−2j−1lmodN
,

t = 0, 1, ..., N − 1
n = 0, 1, ..., 2j − 1 . (6.1)

The recursion starts with WX
0,0,t = Xt. The wavelet packet filter �un,l is then defined as:

�un,l =
�

�gl, if n mod 4 is 0 or 3;
�hl, if n mod 4 is 1 or 2;

(6.2)

where �hland �gl are the unit scale analytic wavelet (high-pass) filter and scaling (low-

pass) filter with discrete transfer function �G(k/N) and �H(k/N) respectively (Percival and

Walden, 2006). They are designed to be approximate Hilbert transforms of each other,

like sine and cosine waves, but with compact support (Whitcher et al., 2005; Whitcher and

Craigmille, 2004). The coefficients from one filter of the pair form the real part of the

transform and the coefficients from the other filter form the imaginary part (Whitcher and

Craigmille, 2004). Due to the approximate Hilbert relationship at each node between the

real and imaginary components of the MODHWPT coefficients, Wj,n,t is a complex number

approximately encoding the magnitude and phase of the signal at that frequency.

It is not possible to design a pair of wavelet filters that are exact Hilbert transforms; how-

ever approximate Hilbert wavelet pairs can be designed via spectral factorization. The de-

tailed procedure of designing filter coefficients was outlined elsewhere (Selesnick (2002)).

In practice, Equation 6.1 be replaced by filtering the level (j − 1) coefficients with the cir-

cular filter having discrete transfer function �G(2j−1k/N) and �H(2j−1k/N). These filters
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can be obtained by inserting 2j−1 − 1 zeros between the elements of �gl and �hl (Olhede and

Walden (2004)).

Since all the signals are sampled at 1 Hz in the preprocessing step, the frequency content

of the MODHWPT coefficient time series WX
j,n are localized in a frequency band:

λj,n = [(−n + 1
2j+1

,− n

2j+1
)
�

(
n

2j+1
,
n + 1
2j+1

)], (6.3)

in which WX
3,1, in particular, is associated with frequency interval [0.0625-0.125]Hz, the

specific frequency intervals of our interest, LFOs. WX
3,1 is a complex number encoding the

magnitude and phase of the signal in that frequency band.

The raw MODHWPT coefficients can not be related to the original time series directly, as

a circular time shift needs to be applied on the coefficients. By using a ‘center of energy’

strategy (Whitcher and Craigmille (2004); Percival and Walden (2000)), the time shifts of

Hilbert wavelet filters can be obtained and the shifted MODHWPT coefficients can now be

associated with the same times as the original time series.

Figure 6.1 MODHWPT tree
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6.2.5 Discrete wavelet cross-correlation

Similar to the definition of continuous wavelet cross-correlation (Grinsted et al. (2004);

Rowley et al. (2007)), the normalized discrete wavelet cross-correlation is defined as:

WCCj,n =

���RX,Y (WX
j,n, W Y

j,n, τ)
���

����RX,X(WX
j,n, 0) • RY,Y (W Y

j,n, 0)
���
, (6.4)

in which RX,Y (WX
j,n, W Y

j,n, τ) denotes the cross-correlation of the MODHWPT coefficients of

two time series X and Y (WX
j,n and W Y

j,n respectively) for a relative time shift τ ; RX,X(WX
j,n, 0)

thus denotes the auto-correlation of the time series X for zero time shift.

WCCj,n represents the cross-spectral power in the two time series (shifted relative to each

other by τ ) as a fraction of the total power in the two time series. WCCj,n = 1 would

indicate that the coefficients of the two wavelet transforms were related to each other by a

simple scaling factor, suggesting very strong synchronization in that frequency band.

In contrast to the continuous wavelet transform used by Grinsted et al. (2004) and Rowley

et al. (2007), the maximal overlap discrete wavelet packet transform (MODWPT) is adopted

here to decompose the original signals into wavelet coefficients of a series of frequency

bands rather than a single frequency. Thus, the discrete wavelet correlation is not only

much faster than the continuous equivalent, thus allowing for instantaneous analysis, but

it is also ideal for assessing the coupling and synchronization between oscillations found

in different variables in different frequency bands.

6.2.6 Statistical analysis

The characteristics of the different subject groups were compared by the student t-test

(Rice (1995)). The baseline values were defined as the 3 minute averaged values in the

supine position. The paired t-test was applied to examine the mean changes in HR, ABP,

CBFV and O2Hb for all subjects after tilt, which were calculated for a 10 minute average in

the prolonged head-up position compared to the baseline value. The measurements in the



6.3 Results 129

first two minutes after posture change were excluded in the averaging process to allow all

the variables to reach a stable level. The age dependence of average postural changes was

examined by the two-way repeated measures ANOVA test. Similarly, the maximum value

of wavelet cross-correlation of LFOs and low frequency power spectra were also tested for

posture effects using paired t-test and their age dependence was further examined by two-

way repeated measures ANOVA.

6.3 Results

6.3.1 Subject characteristics

The characteristics of the 15 healthy elderly subjects and the 18 healthy young subjects

are shown in Table 6.1, represented by grouped-averaged baseline values and inter-subject

standard deviation. Older subjects had lower HR (12%) and CBFV (32%) in the resting

state than young subjects.

Table 6.1 Subject characteristics (expressed as mean±SD)
Elderly subjects Young subjects P between Groups

Age, y 65±5 27±4 P<0.001
HR, b min-1 58±7 66±9 P<0.01
ABP, mm Hg 89±10 83±7 0.0542
CBFV, cm s-1 48±10 70±7 P<0.001

6.3.2 Postural changes in cerebral and systemic cardiovascular dynam-
ics

Table 6.2 shows the postural changes in HR, ABP, CBFV and O2Hb in both the healthy

old and young subject groups. In response to orthostatic stress induced by head-up tilt,

all subjects showed an increase in HR (P<0.001) and a decrease in both CBFV (P<0.001)

and O2Hb (P<0.001 for older and P<0.01 for young subjects). However, the change of

HR for older subjects was considerably smaller than in young subjects (P<0.001), which

is consistent with previous findings (Kawaguchi et al. (2001); Laitinen et al. (2004)). No

marked difference was found in other variables between groups.
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Table 6.2 Postural changes in cerebral and systemic cardiovascular dynamics in the head-
up positions versus supine positions (expressed as mean±SD); *P<0.01, **P<0.001, indi-
cates the variables in which statistically significant postural changes were found.)

Elderly subjects Young subjects P between Groups
HR, b min-1 8.1±4.1** 18.4±8.2** P<0.001
ABP, mm Hg -4.0±8.28 -2.9±4.4 0.6208
CBFV, cm s-1 -9.5±5.7** -12.2±5.7** 0.1825
O2Hb, µmolar -3.4±2.9** -3.1±3.5* 0.8086

6.3.3 Wavelet cross-correlation

Figure 6.2 shows an example of the MODHWPT decomposition (levelsj ≤ 3), applied to

the heart rate time series for a typical subject. The zero level MODHWPT coefficients W0,0

shown at the top are simply the original time series X. Other MODHWPT coefficient vec-

tors W3,0, W3,1, W2,1, W1,1 are also displayed, corresponding to time-varying decompositions

in the frequency intervals [0-0.0625] Hz, [0.0625-0.125] Hz, [0.125-0.25] Hz and [0.25-0.5]

Hz, respectively. Since the frequency interval [0.0625-0.125] Hz is associated with low fre-

quency oscillations, the dynamic relationship between the values of W3,1 for different time

series was the major target of this study. The vertical lines shown in the figure indicate

sharp changes in the original signal which can easily be traced across several frequency

bands (since sharp changes contain information across a wide range of frequencies). This

shows that the MODHWPT coefficients can be very well associated with the original time

series after the circularly shifting correction applied here.

The group-averaged wavelet cross-correlation of low frequency oscillations, WCC3,1, for

each pair of HR, ABP, CBFV and O2Hb time series over all subjects over a range of delay

time is shown in Figure 3, with the maximum correlation marked. As the coefficient sig-

nals are restricted to the frequency band [0.065-0.125] Hz, a maximum time delay of ±8

seconds was chosen for correlation, referred to the 16-second period of the lowest frequency

oscillation components. The multiple peaks shown in the correlation function are a result

of the signals being periodic in nature. Occasionally maximum correlation is found at dif-

ferent peaks for the two groups (Figure 6.3(a), HR- O2Hb; Figure 6.3(b), CBFV- O2Hb).

This is likely to be due to the effects of measurement noise.
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Figure 6.2 MODHWPT decomposition of the heart rate time series. W3,1 corresponds to
LFOs.

0 100 200 300 400 500 600
−10

0

10

W
0,

0=X

0 100 200 300 400 500 600
−10

0

10

W
3,

0

0 100 200 300 400 500 600
−5

0

5

W
3,

1

0 100 200 300 400 500 600
−2

0

2

W
2,

1

0 100 200 300 400 500 600
−2

0

2

t [sec]

W
1,

1



6.3 Results 132

Figure 6.3 Group averaged wavelet cross-correlation of LFOs of each pair of HR, ABP,
CBFV and O2Hb for old (blue solid line) and young subjects (green dashed line) during
supine rest and head-up tilt. Error bars represent standard deviation and spots indicate
the maximum wavelet cross-correlations of each group.
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In the supine position, there is no clear difference between old and young subjects, illus-

trated by the similar shapes of blue and green curves and their overlapping error bars

(Figure 6.3(a))). In contrast, in the head-up position, mean wavelet correlation curves for

the young subjects consistently have higher peak values than the corresponding values

for elderly subjects, particularly for the paired time series of HR-ABP, HR-CBFV and HR-

O2Hb (Figure 6.3(b))). This difference is illustrated more clearly in Figure 6.4, which shows

the value of the maximum wavelet cross-correlation for each paired time series in both the

supine and head-up positions.

Figure 6.4 Maximum wavelet cross-correlation of LFOs for each pair of HR, ABP, CBFV
and O2Hb time series for both old and young subjects during supine rest and head-up
tilt. *P<0.01, **P<0.001, indicates the variables in which statistically significant postural
changes were found. The age effect was also tested and statistically significant values
are shown in red brackets. P-value refers to age*posture interaction effect tested by the
two-way repeated measures ANOVA test.

The wavelet cross-correlation values in the head-up tilt position for all young subjects are

greater than 0.5, which indicates strong linear interactions in the low frequency oscilla-

tions in all cardiovascular and cerebrovascular variables. The cardiovascular and cerebral

hemodynamic regulation systems thus seem to be working to compensate for the effect of

orthostatic stress. However, this is not the same for elderly subjects, in which the cor-
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relations between cerebral (CBFV and O2Hb) and systemic cardiovascular (HR and ABP)

dynamics are found to be significantly lower (P<0.01 for HR-CBFV and HR-O2Hb, P<0.05

for ABP-CBFV). This difference is only found in the head-up tilt period but not at supine

rest, where the results for two groups are not significantly different.

The two-way repeated measures ANOVA shows the effects of posture illustrates that the

response to orthostatic stress is different for old and young subjects: young subjects showed

an increased correlation between cardiac rate and cerebrovascular variables (P<0.001 for

HR-O2Hb) while elderly subjects showed an inverse trend with decreased correlation val-

ues (P<0.01 for HR-CBFV), with posture*age interaction effect found to be significant for

all pairs except ABP-O2Hb. The coupling between HR and ABP, which represents the

behaviour of the cardiac baroreflex system, is also different for the two groups, with a

decreased mean correlation value for elderly subjects but an increase for young subjects.

However, the relationship between ABP and O2Hb was found to be quite similar, with an

increased correlation value in the upright position (though a statistical significance was

only found in young subjects).

Figure 6.5 shows the maximum value of WCC0,0, which is simply the common temporal

cross-correlation. The correlation values are mostly lower than 0.5. The much lower value

of correlation compared to Figure 6.4 is due to the fact that those variables are less corre-

lated in other frequency bands such as the very low frequency band [0-0.0625] Hz (results

not shown here). This clearly shows the advantage of the wavelet cross-correlation tech-

nique detecting an underlying relationship between two variables in a specific frequency

interval, even though the overall correlation shows that the two variables are not strongly

correlated over all frequencies.

6.3.4 Power spectral analysis

Figure 6.6 shows the group statistics for low frequency (LF) spectral power ([0.0625-0.125]Hz).

HR LF power is found to increase on head-up tilt in young subjects, but to decrease in el-
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Figure 6.5 Maximum correlation for each pair of HR, ABP, CBFV and O2Hb original time
series for both old and young subjects during supine rest and head-up tilt.
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derly subjects (though a statistically significant result was not found, which might be due

to large inter-subject variability), consistent with previous findings (Lipsitz et al., 1990).

LF power spectra in other variables show similar posture dependence in that they increase

upon head-up tilt for all subjects. In particular, O2Hb LF power shows a statistically sig-

nificant change for both old and young subject groups, in agreement with the results of

Tachtsidis et al. (2004). As for other variables, however, statistically significant changes

were only found in the young subjects.

6.4 Discussion

Wavelet cross-correlation between LFOs in each pair of HR, ABP, CBFV and O2Hb has

shown that for young healthy subjects passive head-up increases the wavelet cross-correlation

for all pairs of parameters (statistically significant for HR-ABP, HR-O2Hb, ABP-O2Hb and

CBFV-O2Hb). This stronger linear interaction between these variables indicates a func-

tioning cardiovascular and cerebral autonomic regulation system in response to orthostatic

stress. However, elderly subjects show an inverse trend, with declining correlation values
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Figure 6.6 Group statistical analysis of low frequency ([0.0625-0.125] Hz) spectral power
in HR, ABP, CBFV and O2Hb. Error bars represent standard deviation. *P<0.01,
**P<0.001, indicates the variables in which statistically significant postural changes were
found. The age effect was also tested and statistically significant values are shown in red
brackets. P-value refers to age*posture interaction effect tested by the two-way repeated
measures ANOVA test.
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in the upright position compared to the supine position for most pairs of parameters ex-

cept ABP- O2Hb (a non-significant increase was found). As a result, though the correlation

values are comparable for the two groups in the supine rest position, lower correlation val-

ues of LFOs in cerebral hemodynamics and systemic cardiovascular dynamics are found

in elderly subjects in the head-up position, especially for the coupling between heart rate

and cerebrovascular variability (P<0.001 for both HR-CBFV and HR-O2Hb). This wavelet

cross-correlation analysis of LFOs has clearly shown that different cardiovascular and

cerebrovascular responses occur for young and elderly subjects, using just one postural

manoeuvre for each participant.

Power spectral analysis showed that increases in low frequency power O2Hb could be ob-

served in both old and young subjects on assuming the upright posture, in agreement

with Tachtsidis et al. (2004). Statistically significant changes were also observed in LF

HR/ABP/CBFV power in young subjects but not in elderly subjects. Since LF oscillations

could be a marker of sympathetic activity (Preiss and Polosa (1974)), these posture-related

changes may be related to the degree of sympathetic simulation (Tachtsidis et al. (2004)).

Such posture dependence was not found in most variables for elderly subjects, which might

suggest an impaired ability to transmit a pre-existing elevation in sympathetic activation

into vascular resistance when facing the challenge of orthostatic stress. This could also

explain why the effects of age were found to be more prominent in the tilt period.

The baroreceptor reflex is very sensitive to the decrease in mean arterial blood pressure

that occurs immediately after passive tilt and is thus able to restore blood pressure within

several seconds (Guyton (1980)). Baroreflex sensitivity is known to be impaired with age-

ing (Byrne et al. (1996); Colosimo et al. (1997); Laitinen et al. (2004)). Previous studies

have attempted to evaluate baroreflex sensitivity on the basis of the interrelations be-

tween low frequency oscillations (Mayer wave) in blood pressure and heart rate (Watkins

et al. (1995); Linden and Diehl (1996); Oka et al. (2003)). In particular, Linden and Diehl

(1996) estimated baroreflex sensitivity using transfer function analysis and found a re-

duced coherence between HR and ABP for elderly subjects compared to young subjects, in-
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dicating an impaired arterial baroreflex function associated with ageing. The same result

was found here, showing a reduced correlation between HR and ABP for healthy elderly

subjects. Moreover, this age dependency was only found for the tilted position. Again, this

is consistent with previous findings of Linden and Diehl (1996).

Spontaneous low-frequency oscillations have also been observed in cerebral hemodynamics

and metabolism in a number of experimental modalities, including functional near-infrared

spectroscopy (Obrig et al. (2000); Mehagnoul-Schipper et al. (2000, 2001)), transcranial

Doppler-sonography (Zhang et al. (1998a,b); Panerai et al. (2001, 1999)) and functional

magnetic resonance imaging (Biswal et al. (1997, 1995); Shmueli et al. (2007)). There

are a wide range of mechanisms which are thought to lead to these oscillations. Nils-

son and Aalkjaer (2003) and Haddock and Hill (2005) both suggested that they can be

attributed to spontaneous vasomotion of cerebral vessels which may become spatially en-

trained throughout the vasculature, possibly reflecting some underlying stimulus. More-

over, Schroeter et al. (2004) suggested that a reduction of LFOs observed in the ageing

brain indicated a declining spontaneous activity in microvascular smooth muscle cells, in

conjunction with increased vessel stiffness with ageing. Although the mean value of LF

O2Hb power was found to decline with age, no statistically significant difference was found

in our study, which could be due to the short duration of measurements taken in the supine

position.

Other literature has related cerebrovascular LFOs to the ‘Mayer Wave’ cardiovascular os-

cillations from their spectral features. Katura et al. (2006) investigated the causal rela-

tionship between them using information transfer analysis and found that about one third

of the low frequency oscillations in O2Hb originated from oscillations in HR and ABP. This

is confirmed here since considerable wavelet cross-correlation values between HR/ABP and

O2Hb (young subject group-averaged values of about 0.5) are found in the supine position.

In addition, our study has found that the correlation significantly increased in the head-

up tilt period for young subjects. Though the correlation cannot reveal the direction of

causality, it does indicate a stronger coupling between cerebral hemodynamics and sys-



6.4 Discussion 139

temic regulation of the cardiovascular system when the body faces orthostatic challenge.

Thus, it is possible that the increased LFOs in a posture-activated brain, identified both

here and by Tachtsidis et al. (2004), can be attributed to increased systemic drive. Apply-

ing the information transfer method used in Katura et al. (2006) to the measurements of

both postures might demonstrate whether this causal relation becomes more significant.

This will be the subject of further investigation.

The effects of sympathetic activation on the cerebral circulation have always been a contro-

versial topic. It is generally agreed that cerebral autoregulation is due to cooperative action

of both sympathetically mediated and local myogenic or metabolic mechanisms (Priebe,

2000). Under normal conditions, the sympathetic tone of cerebral arteries is probably min-

imal, but under conditions of cerebrovascular stress induced by large pressure changes,

cerebral sympathetic activation is thought to become more dominant (Harper et al., 1972;

Branston, 1995). In particular Panerai et al., (2001) investigated the CBFV response to

ABP fluctuations occurring spontaneously and using thigh cuff, Valsalva, cold pressor,

lower body negative pressure and hand grip tests. They found that the instantaneous ABP-

CBFV relationship was dependent on the type of maneuver, which could reflect different

degrees of sympathetic activation. Our study showed that a weaker ABP-CBFV coupling

relationship in elderly subjects compared to young subjects was found in upright positions,

which might indicate an altered cerebral autoregulation status with ageing (Paulson et al.

(1990)). In previous studies, high correlation was observed in patients with head injury

(Giller (1990); Czosnyka et al. (1996)), thus being interpreted as impaired autoregulation

with a pressure-dependent flow (Czosnyka et al. (2008)). However, this traditional inter-

pretation clearly cannot applied to current study which has identified an increased corre-

lation in young healthy subject. It is also worth to point out that this age effect could only

be found when certain sympathetic mechanisms were activated by orthostatic challenge,

which makes it hard to predict orthostatic hypotension for elderly subjects based on the

cerebral autoregulation status identified from measurements of spontaneous fluctuations

at rest.
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In contrast to the age-correlated difference found in ABP-CBFV relationship, a stronger

ABP-O2Hb coupling relationship was found after posture change in both old and young

subject groups. This could be due to the different cerebral region in which O2Hb is mea-

sured by NIRS compared to that perfused by the middle cerebral artery (Harms et al.

(2000)), since NIRS is sensitive to the microvascular territory (Schroeter et al. (2006)),

whereas CBFV (as measured in the middle cerebral artery) represents larger vessels. An-

other possible reason is that the diameter of the middle cerebral artery may change due to

sympathetic simulation, thus the changes in CBFV may not necessarily reflect the changes

in CBF.

Wavelet cross-correlation has previously been used in Rowley et al. (2007) to investigate

the low frequency synchronization between ABP and O2Hb for both healthy control subjects

and autonomic failure patients. It has been shown that the frequency at which most syn-

chronization occurs has a statistically significant difference between patients and controls.

In this study, instead of using the continuous wavelet transform, as before, the maximal

overlap discrete wavelet packet transform was adopted to decompose the original signals

into wavelet coefficients of a series of frequency bands rather than a single frequency, in

which the frequency interval around 0.1Hz, representing LFOs, has been our focus. The

wavelet cross-correlation values have been used to assess the degree of synchronization of

cerebral hemodynamics (CBFV and O2Hb) and systemic cardiovascular changes (HR and

ABP), which is easier to interpret as the coupling of cerebral circulation and cardiovascular

systemic regulation systems may become weak even in healthy elderly subjects.



7
Quantification of the effects of CO2 on the

resting BOLD signal

7.1 Introduction

Physiological fluctuations in the blood oxygen level-dependent (BOLD) signal are signif-

icant components of noise in functional magnetic resonance imaging (fMRI) studies. In

contrast to system and thermal noise, the noise arising from physiological sources depends

on the total BOLD signal strength and therefore becomes a larger fraction of the total

noise as the signal increases (Krüger et al. (2001); Krüger and Glover (2001); Triantafyllou

et al. (2005)), for example with increased magnetic field strength. They become partic-

ularly problematic when their spectral characteristics overlap with those of task-related

signals, as conventional noise reduction strategies, such as fixed bandwidth band-rejection

filtering, are unable to distinguish them from the signal of interest (Biswal et al. (1996)).

Several physiological noise sources have been identified, including cardiac (Dagli et al.

(1999); Bhattacharyya and Lowe (2004)) and respiratory cycles (Birn et al. (2006)) as well

as uncharacterized low-frequency fluctuations (Biswal et al. (1996)). Though their pre-

cise physiolgoical origin is unclear, these low-frequency fluctuations observed in cerebral

BOLD signals are likely to arise from haemodynamic and metabolic oscillations (Wise et al.
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(2004); Triantafyllou et al. (2005)). Besides BOLD-fMRI, these spontaneous low-frequency

variations in cerebral blood flow and oxygenation can also be observed by Transcranial

Doppler Ultrasound (TCD) and near infrared spectroscopy (NIRS). A comprehensive re-

view can be found in Obrig et al. (2000). They are of great interest as they may reveal

autoregulatory mechanisms of the brain vasculature and are altered by pathological condi-

tions (Diehl et al. (1995); Hu et al. (1999)). This physiological noise not only negatively af-

fects conventional task-based fMRI experiments, but also leads to low-frequency variations

in the resting BOLD signal in the absence of external stimuli, given the correlations found

between BOLD and flow signals (Biswal et al. (1997); Lowe et al. (1998)). Fluctuations

of neuronal origin are also demonstrated by the evidence that the underlying fluctuations

are correlated with modulations of cortical electrical activity detected by EEG (Goldman

et al. (2002); Moosmann et al. (2003)). It is still uncertain whether the fluctuations in

resting fMRIs signal are a direct consequence of neuronal activity or dominated by physi-

ological variations (De Luca et al. (2006)). In this study, we thus investigate one source of

widespread low frequency BOLD signal variations related to carbon dioxide.

Carbon dioxide (CO2) in arterial blood is a potent vasodilator which can modulate global

cerebral blood flow (CBF) (Grubb et al. (1974); Hoge et al. (1999a,b)). The CBF increase

induced by hypercapnia will lead to dilution of venous deoxyhemoglobin and increase the

global BOLD signal, whereas the CBF decrease due to hypocapnia reduces the BOLD sig-

nal (Cohen et al. (2002); Bandettini and Wong (1997); Corfield et al. (2001); Posse et al.

(2001); Kemna and Posse (2001); Vesely et al. (2001)). Significant regional variability has

been found for both the magnitude and the time course of the BOLD signal response to

changes in PaCO2 (Kastrup et al. (1999); Rostrup et al. (2000)).

At rest, changes in PaCO2 can be represented by changes in the end-tidal partial pressure

of carbon dioxide (PETCO2) (Robbins et al. (1990); Young et al. (1991)). Fluctuations in

resting PETCO2 have been observed principally in the range 0-0.05Hz (Modarreszadeh and

Bruce (1994)). The source of such fluctuations may be the feedback control of breathing

via chemoreflexes seeking to maintain optimal blood gas levels (Wise et al. (2004)). These
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low-frequency fluctuations in PETCO2 have been associated with fluctuations in CBF ve-

locity measured in the middle cerebral artery (MCA) (Mitsis et al. (2002, 2004b); Panerai

et al. (2000)) and have been used to explain CBFV variability in the same frequency range

(Chapter 4). The effects of PaCO2 fluctuations on cerebral oxygenation and metabolism

were investigated in Wise et al. (2004) by calculating the regression coefficients between

breath-to-breath PETCO2 and resting BOLD time series on a voxel-to-voxel basis. Again,

these PETCO2-related BOLD signal fluctuations showed regional differences, suggesting

variability of the responsiveness to carbon dioxide at rest (Wise et al. (2004)). However, the

linear regression analysis (equivalent to correlation coefficient) used in Wise et al. (2004)

makes an additional assumption of the data, stationarity, which might not hold for PETCO2

and resting BOLD time series.

It is also well known that the relationship between CO2 and CBF is strongly frequency de-

pendent, in which CO2 effects are concentrated in the low frequency range 0-0.05Hz (Mitsis

et al. (2004b), Chapter 4). We therefore hypothesize that the effects of CO2 on the resting

state BOLD signal are also restricted within low frequencies. Wavelet cross-correlation

analysis (both continuous and discrete wavelet methods) will be used to assess the cou-

pling of the two time series at different frequencies, in contrast to ordinary correlation

which is the average value over the whole frequency spectrum. In addition, a physiological

based model relating the BOLD signal to CO2 changes will be used to help to interpret the

clinical results.

7.2 Methods

The procedures performed in this study were approved by the Cardiff Clinical Research

Ethics Committee. All volunteers gave informed consent before taking part.
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7.2.1 Measurements

Eleven healthy volunteers underwent functional MRI testing. Imaging was performed at

3T with an Oxford Magnet Technology, 1m bore magnet driven by a Varian Unity Inova

console. Gradient-echo echo-plannar imaging (EPI) was performed giving T ∗2 weighting for

BOLD contrast (image matrix: 64×64; 3×4 mm pixels; echo time (TE=30ms)).

Each volunteer underwent two fMRI scans of 20-min duration, instructed to keep their

eyes closed during one scan and open during the other. Each scan was performed with 24

contiguous axial slices of 6 mm thickness covering the whole brain with a flip angle of 90◦

and repetition time TR=3s. For each subject, a T1-weighted structural scan (64 contiguous

3-mm axial slices; in-plane field of view 256 mm, 1×1 mm pixels) was acquired and used

to assist in placing individual subjects’s data into a common stereotactic space.

While lying supine in the MRI scanner, subjects wore a nasal cannula through which

respired gases were sampled by an MR compatible patient monitor, incorporating a capno-

graph (Multigas 9500, MR Equipment Corp., Bay Shore, NY) situated outside the magnet

room. The capnograph measured the PCO2 in the expirate by exploiting the infrared ab-

sorption spectrum of CO2. The partial pressure of CO2 was logged at 10ms intervals using

in-house software (CCARM, FMRIB Centre, Oxford University, UK) and PETCO2 was calcu-

lated for each breath. The combined gas transport delay and dispersion along the sample

tube was factored into the analysis of the CO2 recordings. Subjects wore an MR compati-

ble respiratory monitor (MR Equipment Corp.) consisting of bellows around the chest, the

internal pressure of which encoded the chest position and hence the phase of the breathing

cycle. Triggers for each scanner volume acquired were logged in synchrony with physiolog-

ical quantities to allow accurate synchronization with fMRI data.

7.2.2 Image analysis

Image analysis to reveal significant PETCO2-related changes in the BOLD signal was per-

formed on each subject’s data using the FEAT software (FMRIB Expert Analysis Tool,



7.2 Methods 145

v5, http://www.fmrib.ox.ac.uk/fsl, Oxford University, UK) (Smith et al. (2001)). Prepro-

cessing steps were applied to each subject’s time series of fMRI volumes: motion correc-

tion (Bannister and Jenkinson (2001); Jenkinson and Smith (2001)); spatial smoothing

using a Gaussian kernel of full-width-half-maximum 5 mm; high-pass temporal filtering

(Gaussian-weighted least squares straight line fitting, with a high-pass filter cut-off of 100

s) and subtraction of the mean of each voxel time-course from that time course.

Linear models were constructed to describe the fMRI data on a voxel by voxel basis, with

local autocorrection correction (Woolrich et al. (2001)). The main covariate of interest was

the PETCO2 time series high-passed by the same temporal filter applied previously to the

BOLD signal. First-level regession analysis was used to determine the effect of CO2 on

the fMRI signal at each image voxel; regression coefficients (equivalent to correlation co-

efficients) of which were subsequently transformed to z statistics1 indicting the statistical

significance of the PETCO2-related BOLD signal change. Regions of grey and white mat-

ter were segmented from the high-quality T1-weighted structure image for each subject.

Regional differences in the PETCO2-related BOLD signal change were decided by coreg-

istration of the low spatial-resolution image with the high spatial-resolution segmented

image.

7.2.3 Data analysis

Power spectral analysis

Power spectral densities were calculated for each of the post-processed time series (after

high-pass filtering removing low frequency variation with a period longer than 90s) with

the Welch technique (Welch (1967)) with a 128-point (384 s) Hanning window with an

overlap of 56 points.

Wavelet cross-correlation analysis
1The z statistic has a normal distribution with a mean of zero and a standard deviation of one. Therefore,

if we know the mean and standard deviation for a population, we can identify a z-score given the raw score.
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Wavelet cross-correlation was defined as the cross-correlation between the wavelet coeffi-

cients of two time series X and Y for a relative time shift τ :

WCC(τ) =
��RX,Y (WX , W Y , τ)

��
�

|RX,X(WX , 0) • RY,Y (W Y , 0)|
, (7.1)

where the wavelet coefficients, WX and W Y , were computed by the continuous complex

Morlet wavelet transform using the MATLAB (Mathworks Natick, MA) wavelet toolbox

function cwt. This gave two complex time series, WX(a, t) and W Y (a, t), thus wavelet cross-

correlation WCC(a, τ) represents the cross-spectral power in the two time series (shifted

relative to each other by τ ) as a fraction of the total power in the two time series. At a

given wavelet scale WCC(a, τ) = 1 would indicate that the coefficients of the two wavelet

transforms were related to each other by a simple scaling factor, suggesting strong synchro-

nization at this frequency. For a more detailed explanation of wavelet cross-correlation see

Grinsted et al. (2004) and Rowley et al. (2007).

The maximal overlap discrete wavelet packet transform (MODWPT) described in Chap-

ter 6 was also used here to decompose the original signals into wavelet coefficients of

a series of frequency bands rather than a single frequency. Thus, the discrete wavelet

cross-correlation can be calculated through cross-correlation of these discrete wavelet co-

efficients. This is not only much faster than the continuous equivalent, thus allowing for

instantaneous analysis, but it is also ideal for assessing the coupling and synchronization

between oscillations found in different variables in different frequency bands.

7.2.4 Model simulation

Synthetic data was also generated using a linear time-invariant model. The system com-

prises two transfer functions for u−BOLD and PETCO2−BOLD, which are linear approxi-

mations of the physiologically-based model described in Section 3.2. The linearisation pro-

cedure can be found in Section 3.4.3. Measured PETCO2 data of a single subject were used

as a sample of one model input. In the eyeopen condition, random data are also generated

to mimic the baseline neural activity, u, which will be added as the second model input. No
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such simulated neural activity is used in the eyeshut case. Essentially, the model hypoth-

esizes that the eyeopen and eyeshut cases are associated with different levels of neural

activity, but the system behaviour is identical.

Discrete wavelet cross-correlation method was used to analyse the coupling and synchro-

nization between one model input, PETCO2 , and the model output, BOLD, with or without

another model input, u. The simulation results then help to interpret the different experi-

mental results obtained in the eyes open and shut cases.

7.3 Results

7.3.1 Power spectra of PETCO2 and BOLD fluctuations

Figure 7.1(a) shows the power spectra of the PETCO2 time course, averaged over all sub-

jects in each condition. The figure shows that most of PETCO2 variations occur at very low

frequencies (< 0.1Hz) and that there are no distinct frequency peaks in the averaged spec-

tra. Compared to the PETCO2 power spectra which are concentrated at low frequencies,

the BOLD signals are broadband, with power spread over all frequencies (0 to sampling

frequency/2), as shown in Figure 7.1(b).

Figure 7.1 (a) Group-averaged power spectra of PETCO2 variations in both eyes open and
shut cases. (b) Power spectra of BOLD fluctuations of a typical voxel.
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7.3.2 Linear regression analysis

Figure 7.2 illustrates the regional distribution of PETCO2-related BOLD signal fluctuations

in both the eyes open and shut cases for a single subject, identified from the first-level

linear regression analysis. In the eyeshut condition, the significant regions of BOLD fluc-

tuations are widespread whereas fewer regions are found to be correlated with PETCO2 in

the eyeopen case. The BOLD time series in voxel (46,28,22) in both conditions are plotted

on the right, together with the predicted BOLD response, scaled from PETCO2 . For this

particular voxel, the correlation coefficients between the PETCO2 and BOLD timeseries are

found to be quite different in the two conditions: R = 0.1243 in the eyeopen and R = 0.3768

in the eyeshut cases, with a statistically significant correlation found in the eyeshut but

not in the eyeopen case.

The first-level linear regression analysis was then applied to all subjects. The fraction of

voxels whose BOLD signals showed a statistically significant regression with PETCO2 for

each subject is shown in Table 7.1. The percentage of voxels showing significantly PETCO2-

related BOLD are found to be quite similar for grey and white matters for each subject. The

group-averaged results suggest that the effect of CO2 on the baseline BOLD fluctuations

with eyes closed are slightly larger than that with eyeopen. However, due to the large

cross-subject variability, statistical significance was not achieved.

7.3.3 Cross-correlation analysis

Cross-correlation analysis was then performed to look for correlations between the PETCO2

and BOLD signals for each voxel for all possible temporal shifts (both positive and nega-

tive) within 7TR (21 sec). The maximum correlation and time shift corresponding to the

maximum correlation value were calculated for each voxel, thus generating a correlation

map (Figure 7.3) and a time shift map (Figure 7.4). Both the correlation map and the

time shift map for each subject are then registrated to the segmented grey and white mat-

ter from the structure image. Mean correlation averaged over grey and white matter are
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Figure 7.2 Left: Z-maps of regression between BOLD and PETCO2 (PETCO2-related signal
changes) in both eyeopen (a) and eyeshut (c) conditions for a single subject (a cluster in
the black square being picked for wavelet cross-correlation presented below). Significant
regions are displayed with a threshold of Z > 2.3 and with a cluster probability threshold
applied of P < 0.05 superimposed upon the volume-averaged EPI image. Right: BOLD time
series in voxel (46,28,22) in (b) eyeopen and (d) eyeshut case. Predicted BOLD responses
using PETCO2 time series are also plotted for comparison.
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Table 7.1 Mean percentage of voxels showing significant PETCO2 regression
Subject Eyeopen (%) Eyeshut (%)

Grey matter White matter Grey matter White Matter
1 15.1 16.5 54.7 59.7
2 3.2 2.9 1.7 1.9
3 0 0 37.3 30.1
4 19.6 22.6 16.1 17.5
5 0 0 0.4 0.4
6 16.5 19.6 43.2 40.4
7 1.3 1.2 26.7 26.2
8 2.7 2.8 1.9 2.2
9 51.9 50.8 2.3 1.9
10 12.6 12.7 7.1 6.9
11 0 0 3.3 2.6
Mean 11.2±15.4 11.7±15.5 17.7±19.6 17.3±19.7

summarised in Table 7.2, suggesting a slightly stronger coupling between these two fluc-

tuations in grey matter compared to white matter for both the eyes open and shut cases

2. A quicker BOLD response is also found in grey matter than in white matter, with sta-

tistical significance achieved in the eyeshut condition. These findings concerning regional

difference agree well with the literature (Rostrup et al. (2000); Wise et al. (2004)).Besides

the regional difference, time lags in eyeopen case are consistently larger than eyeshut case,

which partly contributes to the different regression result (correlation at zero time shift)

between the two cases.

Table 7.2 Group statistics of maximum cross-correlation and corresponding time shifts
between PETCO2 and BOLD fluctuations. Significantly stronger correlation and shorter
time delay were found in the grey matter than white matter, indicated by a two-tailed
paired Student’s t test at ∗P < 0.05. Significantly longer time delay were found in eyeopen
than eyeshut condition, indicated by a two-tailed Student t test at +P < 0.05.

Maximum cross-correlation Time delay [sec]
Condition Eyesopen Eyesshut Eyesopen Eyesshut
Grey matter 0.17 ± 0.08∗ 0.18 ± 0.07∗ 8.9 ± 2.3+ 6.7 ± 3.0∗

White matter 0.16 ± 0.07 0.17 ± 0.06 9.1 ± 2.1+ 7.3 ± 3.2

2During to the large cross-subject variability, this regional trend may not be very obvious, but paired t-test
does show a statistical significant increases in correlation in grey matter than in white matter.
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Figure 7.3 Maximum correlation map between BOLD and PETCO2 (PETCO2-related sig-
nal changes) across all possible time delay (0-21 sec) in both (a) eyeopen and (b) eyeshut
conditions for a single subject.
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Figure 7.4 Time shift map between BOLD and PETCO2 in both (a) eyeopen and (b) eyeshut
conditions for a single subject.
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7.3.4 Wavelet cross-correlation analysis

A cluster with 90 voxels in the parietal lobe was chosen, illustrated by the black square

in Figure 7.2, where BOLD fluctuations were found to be correlated with PETCO2 changes

by the previous regression analysis in the eyeshut but not in the eyeopen case. Cluster-

averaged continuous wavelet cross-correlation between the two time series, Figure 7.5,

illustrates that relatively high values of correlation were found at low frequencies (scales

7-30, equivalent to 0.01-0.05Hz, sampling time, 3s), suggesting a stronger coupling in that

frequency range. Given the previous findings that the effects of CO2 on CBF variations

are concentrated in the low frequency range (Chapter 4), it is not surprising that the con-

tribution of CO2 to the BOLD signal is also restricted within the low frequency region.

Differences between the eyeopen and shut cases are reflected in: 1) Peak value at scale 10

(0.033Hz) in the eyes shut but not open case; 2) Slightly larger time delay in the eyeopen

compared to the eyeshut case.

Figure 7.5 Cluster-averaged continuous wavelet cross-correlation between BOLD and
PETCO2 (PETCO2-related signal changes) in both eyeopen (a) and eyeshut (b) conditions
for a single subject.
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Discrete wavelet cross-correlation was also used to investigate the frequency-dependent

coupling between the PETCO2 and BOLD time series. Figure 7.6 (top left) shows the

cluster-averaged zero-level wavelet cross-correlation, which is equivalent to ordinary cross-

correlation, over a range of time delay, with the correlation coefficients at zero time delay
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marked. Although the maximum values of cross-correlation are similar for the eyes open

and shut cases, the correlation coefficents are significantly different, which is primarily

due to a change in the time delay between the two conditions. Wavelet cross-correlation

values for the low frequency oscillations (0-0.04Hz, where most PETCO2 power is concen-

trated for this subject) between the two time series (top right) are significantly higher than

for ordinary correlation (P < 0.01 with eyes both open and shut). The overlapped error-

bar illustrates similar trends were now found for both eye conditions (P = 0.17 for maxi-

mum wavelet correlation values), in constrast to the significantly different PETCO2-related

BOLD signal change between the two cases previously identified by regression analysis.

The correlation curve for the other frequency band, i.e. 0.04-0.08Hz, clearly illustrates the

different temporal dynamics of PETCO2 related BOLD response between the two conditions.

Correlation for high frequencies, 0.08-0.16Hz, collapses since there is no PETCO2 power in

that high frequency range.

Figure 7.6 Cluster-averaged wavelet cross-correlation between PETCO2 and BOLD fluctu-
ations across different frequency bands. Error bars represent standard deviation.
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Figure 7.7(a) plots the cross-correlation between model input, measured PETCO2 , and model
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output, simulated BOLD response, with and without another model input, simulated neu-

ral activity. In the simulated eyeshut case, the maximum cross-correlation (marked with

the blue colour box) is close to the theoretical value, 1, with a time delay of 6 s. This 6 s

time delay predicted by the model is consistent with findings in Wise et al. (2004). In the

simulated eyeopen case, the correlation values reduce, due to the effects of the additional

disturbing input that resembles neural activity. However, the 6 s time delay remains.

The discrete wavelet transform was used to decompose the signals into different frequency

bands and wavelet cross-correlation provides an assessment of the coupling associated with

a particular frequency band, 0-0.04Hz being chosen here as it contains most of the PETCO2

power. As shown in Figure 7.7(b), maximum wavelet cross-correlation value is higher than

the corresponding ordinary cross-correlation in eyeopen case, suggesting that it is less in-

fluenced by unmeasured variability. In contrast, the coupling between PETCO2 and BOLD

of other frequency band, for example, [0.08-0.17]Hz, is completely destroyed by the dis-

turbing neural activity input, (Figure 7.7(c)), the power of which now become dominant at

those frequencies.

Figure 7.7 a) Cross-correlation between PETCO2 and model simulated BOLD response
in both eyeopen and shut conditions. b) Wavelet cross-correlation between their low fre-
quency oscillations in the range of 0-0.04Hz. c) Wavelet cross-correlation between higher
frequency oscillations in the range of 0.08-0.17Hz. Spots indicate the maximum wavelet
cross-correlations.
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7.4 Discussion

The data presented here suggest that spontaneous fluctuations in arterial CO2 level cause

BOLD signal fluctuations at a level that is detectable and significant, consistent with pre-

vious findings of Wise et al. (2004). It is well known that carbon dioxide has a potent va-

sodilatory effect which produces increases in CBF and CBV (Grubb et al. (1974)). With the

recent development of techniques used to measure cerebral blood flow and oxygenation and

to delicately control blood gas level, numerous studies have investigated the time course of

the vascular response to CO2, including both forced CO2 challenges such as hypercapnia or

hypocapnia (Poulin et al. (1996, 1998); Posse et al. (1997); Cohen et al. (2002)), and sponta-

neous PETCO2 fluctuations (Panerai et al. (2000); Mitsis et al. (2004b); Wise et al. (2004)).

The delay time between PETCO2 and changes in cerebrovascular dynamics would consist of

both the transport delay of blood from the lungs to the brain and the time for the vascula-

ture to respond. This is estimated to be approximately 6s measured using TCD ultrasound

(Poulin et al. (1996)) and 5-10s during BOLD contrast fMRI (Posse et al. (1997)), depending

on the different methodology. The estimated time delay in the present study, 7s in eyeshut

and 9s in the eyeopen, are both in broad agreement with the previous literature.

The coupling of spontaneous PETCO2 fluctuations and the resting BOLD signal was signif-

icantly larger in the grey matter than in the white matter. This is likely to reflect differ-

ences in metabolic activity, vascular regulation and capillary density (Wise et al. (2004)).

The white matter has a lower blood volume and metabolic activity than the cortical grey

matter. Regional differences are also found in the time course of the vascular response:

BOLD signal changes take place slower in the white matter than in the grey matter to

hypercapnia challenge (Rostrup et al. (2000)), again supported by the present study which

shows the same trend. The differences in temporal dynamics may suggest tissue specific

differences in the biochemical mechanisms responsible for metabolic activity and vascular

regulation. A major influence is likely to be the resting values of cerebral blood volume and

regional microvascular anatomy (Bandettini and Wong (1997)). For example, the transit
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time for red blood cells are found to be different between grey and white matter (Bereczki

et al. (1993)), which must be a factor in determining the time required for changing the

local capillary or venular oxygenation.

It is also worth noticing that the time delay of the BOLD signal change is found to be

consistently larger in the eyeopen than in the eyeshut case, for both grey and white matter.

A possible reason is that the relation between BOLD and PETCO2 may be blurred by the

presence of a concomitant change in neuronal activity and that the eyes open and shut

cases are associated with different degree of this disturbance. In this study, the effect of

neuronal activity has been investigated using a physiological-based model which includes

both PETCO2 and simulated neuronal activity as inputs. A reduced correlation between

PETCO2 and BOLD due to neural activity was observed, but not an altered time delay. This

could be due to the fact that the simulated neuronal activity used here, random noise, may

not be a good representation of real neural activity. Nevertheless, the model simulations

demonstrates that wavelet cross-correlation is a powerful tool to assess the frequency-

dependent coupling between two variables in the presence of additional variability.

Besides PETCO2 fluctuations, other sources have also been suggested to account for low-

frequency BOLD oscillations, including fluctuations of neuronal, metabolic and vascular

origin (Elwell et al. (1999); Hudetz et al. (1998); Obrig et al. (2000)). Vascular fluctuations

were observed in TCD measured CBF velocity with a frequency of 0.008-0.05Hz, known

as B waves (Lundberg (1960)), which are thought to be caused by changes in blood ves-

sel diameter (Diehl et al. (1991)). Cardiovascular oscillations, Mayer waves in heart rate

and systemic arterial blood pressure around 0.1Hz also create fluctuations at the same

frequency in cerebral dynamics. A recent study, Shmueli et al. (2007), quantify the low-

frquency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI

BOLD.
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7.5 Conclusion

The results demonstrate that PETCO2 fluctuations are an important source of low-frequency

variations in resting-state BOLD fMRI data. The time delay between the PETCO2 and

BOLD signals was found to be significantly shorter in the eyeshut than in the eyeopen

case. This difference in temporal dynamics would contribute to the observed large vari-

ability of the percentage of voxels which show significant PETCO2-related BOLD signal

changes between the two cases, based on linear regression analysis which is equivalent to

correlation at zero time shift. A varied time shift should be carefully compensated for in

such analysis.

Wavelet cross-correlation was also used to assess the frequency-dependence of the PETCO2-

BOLD coupling, which illustrates that the effects of PETCO2 are concentrated in the low

frequency band 0-0.08Hz. Simulation results of a physiologically-based model demonstrate

that wavelet cross-correlation is robust in identifying the coupling of two variables in the

presence of additional disturbing variability.



8
Conclusion

8.1 Summary

This thesis has presented a combined analysis which involves both physiological modelling

and signal processing as well as the analysis of clinical data concerning the regulation

of cerebral blood flow. A physiologically-based model, described in Chapter 3, is able to

predict the response of the cerebral vasculature to arterial blood pressure, arterial CO2

concentration and neural activation. This combined haemodynamic circuit makes it pos-

sible to investigate the interaction between pressure autoregulation, CO2 reactivity and

functional activation, which are often assumed to be separate pathways. The derived lin-

ear version of the model has reduced freedom in the model parameters, which can thus be

related to the impulse or step response directly estimated from experimental data, provd-

ing an effective way to validate the model. The model approach used here is not only

able to test the hypotheses made about the regulation mechanisms, but also to provide a

simulation tool to test the signal processing techniques and to help explain experimental

observations. A series of these studies are presented in Chapters 4 5 and 7.

Chapter 4 uses a standard statistical technique to demonstrate that including experimen-

tally measured blood gas concentrations as additional inputs of the system can give in-
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creased confidence (as measured by the coherence function) in the results obtained from

system identification of cerebral autoregulation at low frequencies (0-0.05Hz). This demon-

strates the important role that CO2 plays in the control of cerebral blood flow, and the need

to include its measurement to assess correctly the coherence of transfer function analysis

in clinical autoregulation studies. High values of multiple coherence suggests that mul-

tivariate system identification on fluctuations in TCD-measured CBFV, ABP, PETCO2 and

PETO2 recorded from healthy human subjects allows approximate recovery of the dynam-

ics of cerebral autoregulation. A signficant limitation of transfer function estimation is,

however, its averaging of the system dynamics over time.

The second study, described in Chapter 5, thus showed how the continuous wavelet trans-

form could be used to study the time-varying phase dynamics of the relationship between

ABP and CBFV, without making the assumption of stationarity. It was found, in the same

data-set as in Chapter 4, that the wavelet recovered instantaneous phase relationship was

modulated by PETCO2 fluctuations. The multivariate system identification techniques de-

scribed in Chapter 4 were used to derive a correction term that can remove the effects of

PETCO2 variations. The corrected phase relationship between ABP and CBFV is found to

vary less with time, as suggested by the increased synchronization index. This illustrates

that some of the apparent nonstationarity can be attributed to the unmeasured variability.

Chapter 6 showed how wavelet cross-correlation could be used to assess the degree of cou-

pling between two time series associated with different frequency bands. Compared to

the continuous wavelet transform used in Chapter 5, the maximal overlap wavelet packet

transform used here provides a more efficient way for time-frequency decomposition of sig-

nals. The correlation between the low frequency oscillations in cerebral haemodynamics

and systemic cardiovascular changes in young subjects are found to be significantly higher

than that of old subjects in head-up tilt, but not in the supine position. The coupling

between the cerebrovascular and wider cardiovascular systems in response to orthostatic

stress thus appears to be impaired with ageing.
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In Chapter 7 it was demonstrated how the wavelet phase synchronization algorithm used

in Chapter 5 and the wavelet cross-correlation described in Chapter 6 can provide an alter-

native method to link resting BOLD fluctuations to spontaneous fluctuations in PETCO2 , be-

sides the classic correlation coefficient and regression analysis methods. Though regression

analysis found signficantly different PETCO2 correlated changes in baseline BOLD signal

between the eyeopen and eyeshut cases by regression analysis, wavelet cross-correlation

analysis shows that there appears to be no major difference apart from the time shift (i.e.

there appears to be no amplitude variation). This suggests that the time shift between

PETCO2 and BOLD is a critical variable which should be carefully compensated for in re-

gresion analysis.

The conclusions of this thesis based upon the results of both simulation studies and de-

tailed analysis of experimental data are thus:

1. Model simulations show that pressure autoregulation and CO2 reactivity have a large

effect on the response of the cerebral vasculature to functional activation, suggesting that it

is extremely important to consider systemic changes when performing functional imaging

studies, in particular for patient groups who have impaired cerebral behaviour.

2. Functional activation and CO2 reactivity will have a large influence on the results of

existing analysis techniques which attempt to assess autoregulation status by considering

only pressure and flow changes.

3. Wavelet-based techniques (i.e cross-correlation and phase synchronization) provide a ro-

bust assessment of cerebral and systemic coupling in the presence of a multivariate and

time-varying system.

8.2 Limitations and Future work

In Chapter 5, the phase synchronization method only make use of the phase information

of ABP and CBFV measurements. In contrast, wavelet cross-correlation used in Rowley

et al. (2007) and Chapter 6 incoporated the phase as well as amplitude information. For
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a narrowbind signal, instantaneous phase would be an ideal representation, thus circu-

lar mean phase and synchronization index over time are better indices of coupling than

correlation for this particular problem. Unfortunately, most signals are not narrowband

sinusoids. The real relationship between correlation and synchronization need further in-

vestigation.

The phase synchronization method was used to analyse the phase dynamics of cerebral au-

toregulation in the presence of additional variability in Chapter 5. The correction term ac-

couting for CO2 effects is derived by multivariate transfer function analysis, which makes

an assumption of stationarity on the CO2 − CBFV relationship. However, this station-

arity assumption may not be valid under certain physiological or pathological conditions,

such as physical exercise or tilting. In order accurately to estimate the correlation term,

a time-varying transfer function is required to replace the time-invariant algorithm used

currently. A very promising time-varying system identification algorithm was proposed in

Rowley et al. (2007), which uses the maximal overlap discrete wavelet packet transform

based on Hilbert wavelet pairs to estimate both auto and cross power spectra. This could

have the potential to resolve current conflicts and to lead to a better estimator of the dy-

namics of cerebral autoregulation.

Both Chapters 6 and 7 adopted the Maximal Overlap Wavelet Packet Transform based on

Hilbert wavelet pair filters, which are designed via spectral factorization to form an ap-

proximate Hilbert relationship (Selesnick (2002)). Since the wavelet filters do not form a

perfect Hilbert relationship 1, the approximation of Hilbert relationship of the real and

imaginary component of wavelet coefficients becomes worse with increasing level of de-

composition. In order to control the effects of this approximation, it is important to avoid

splitting a frequency band when not required. A very promising optimization algorithm for

decomposition was proposed in Olhede and Walden (2004), which uses an FFT based esti-

mate of bandwidth for each node of the wavelet packet transfrom and seeks optimized band
1It is not possible to design a pair of wavelet filters that are exact Hilbert transforms because of the finite

length of real filters.
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splitting with monocomponent signals in each band. This would minimize total bandwidth

over the wavelet packet tree yet result in better representation of of the system dynamics.

In Chapter 6, MODHWPT was used to provide a series band-pass filters which decompose

original signal to a series of signal associated with different frequency bands. Compared

to conventional overlapped FFT method, MODHWPT served as an adaptive way automat-

ically determining the time window for frequency decomposition, which is a big advantage.

However, the potential of wavelet has not been fully explored here as the signal we ap-

plied in this chapter has already reached a stable level, while wavelet is known to be most

capable dealing with time-varying signal, e.g. the signal representing transient changes

from supine to tilt-up position. As a result, our next step will be investigating the age-

dependence of trasient cardiovascular response and autoregulation to orthostatic challenge

by exploring this trasient signal measured right after tilt-up position using MODHWPT.

As a complex wavelet transform, MODHWPT incoporates magnitude as well as instanta-

neous phase of a signal. Its application for investigating phase dynamics was first proposed

in Whitcher et al. (2005) for the analysis of electromyographic (EMG) data, which was later

introduced into the cerebral autoregulation field by Rowley et al. (2007). In particular,

Rowley et al. (2007) extended its application from dealing with univariate systems to the

estimation of bivariate phase relationship of two signals in a multivariate coupled system,

i.e. in the presence of additional disturbing signals, which is very common in real physi-

ological systems of biomedical engineering. This new approach would be ideal to examine

various physiological sources potentially corresponding to variations in the resting BOLD

signal, including EEG which represents neural activity, PETCO2 variations and cardiac rate

and will be a target of future work.
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Krüger, G. and Glover, G. H. (2001) Physiological noise in oxygenation-sensitive
magnetic resonance imaging. Magnetic Resonance in Medicine, 46, 631–637.
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