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1. Introduction

This document is a draft. It will be extended step by step whenever I feel that
I learned something new about probability theory.

2. Basics

Probability theory is concerned with describing random phenomena mathemati-
cally. A basic concept is the probabilistic experiment. It is a repeatable experiment
with the property that it is not possible to predict the outcome. Accordingly,
we refer to a random quantity as the outcome of a probabilistic experiment of a
complexity that makes it impossible to predict the outcome. Whether randomness
really exists or not is a more philosophical than mathematical question.

The result of a probabilistic experiment ω is called an elementary event. All
possible elementary events form a set which is called the sample space Ω. Any
subset of Ω is called an event.

Even though we cannot make exact predictions about the outcome of a proba-
bilistic experiment, we can at least define a probability for a certain event. On the
way to define probability we first have to look at the term frequency.

We repeat an experiment for N times and write down the resulting elementary
events ω1, . . . , ωN . The frequency of an event is defined as the number of times
that an event has occurred relative to the total number of repetitions:

hN (A;ω1, . . . , ωN ) =
1
N

N∑
i=1

IA(ωi) .(1)
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An event A occurs if ωi ∈ A. IA is an indicator function that takes value 1 if A
occurred and 0 else.

The more repetitions N we have, the more likely we will receive similar values
for the frequency. All those values will lie around the probability of the event.
Accordingly, the probability can be defined as

P (A) = lim
N→∞

hN (A) .(2)

3. Random Variables

Often it is convenient to describe elementary events by numeric values (natural
numbers, real numbers, etc.). So, instead of writing P (ω1) we can define a random
variable X that takes the value 1 if ω1 occurs and write P (X = 1).

We can think of X as a mapping from the sample space to a number.
E. g., be X a random variable that takes values from 1 to 6 which represent the

number of a dice. X is uniformly distributed and we write

P (X = x) =
1
6

.(3)

In words: the probability that X will have a value x is 1
6 .

It is important to note the difference between X and x: x is a concrete outcome
of a probabilistic experiment, while X is a variable that stands for any possible
outcome. We also say that x is a realization of a random variable.

4. Conditional Probability and Law of Bayes

We are interested in the probability of A given that we know that B has already
occurred.

For our intuitive understanding, we think of elementary events as areas of a size
proportional to their probability. No blank spaces are left in between events. The
probability of A is then the size of the area made up by A’s elementary events
divided by the total size of Ω.

The elementary event that occurred lies within the area defined by B (since we
know that B has already occurred). The question that remains is: how big is the
probability, that it also lies in A?

This depends on the area that A is occupying in B. If A is filling B completely,
then A occurs for sure, and therefore the probability of A given B is equal to one.
If A fills half of B, then the probability is one half.

In general, the probability of A given that B occurred is simply the fraction of
the part of A that lies in B and B:

P (A|B) =
P (A ∧B)
P (B)

.(4)

This formula is a special case of the more general Law of Bayes (not discussed
here).
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5. Conditional Probability and Conditional Expectation

Expectation of random variable A:

E [A] =
∑
i

iP (A = i) .(5)

Conditional Expectation of random A given B:

E [A|B] =
∑
i

iP (A = i|B) .(6)

(which is a function of B). In words: the expectation of A is the mean value of the
probability density function of A. The expectation of A given B is the mean value
of the probability density function of A given B.

6. Properties of Poisson Distributed Random Variables

In this chapter we will look at some for us important properties of Poisson
distributed random variables.

6.1. Sum of Poisson Distributed Random Variables. Given two Poisson dis-
tributed random variables X1 and X2 and its corresponding distribution parameters
λ1 and λ2. Be Y = X1 +X2. What is the probability density function of Y ?

P (Y = n)
(1)
= P (X1 +X2 = n)(7)

(2)
=

n∑
k=0

P (X1 = k)P (X2 = n− k)(8)

(3)
=

n∑
k=0

e−λ1
λk1
k!

e−λ2
λn−k2

(n− k)!
(9)

(4)
= e−(λ1+λ2)

n∑
k=0

1
k!(n− k)!

λk1λ
n−k
2(10)

(5)
=

1
n!

e−(λ1+λ2)
n∑
k=0

n!
k!(n− k)!

λk1λ
n−k
2(11)

(6)
= e−(λ1+λ2)

(λ1 + λ2)n

n!
(12)

From (4) to (5) we multiply the whole equation by n!
n! in order to get the binomial

coefficient inside the sum. From (5) to (6) we use the well known Binomial formula
in order to get rid of the sum.

Finally the result is that the sum of two Poisson distributed random variables is
again Poisson distributed, with the parameter being the sum of the initial param-
eters.

This result can be extended to an unlimited number of random variables (the
derivation is not shown here). So, given X1, . . ., Xn being independent and Poisson
distributed with parameters λ1, . . ., λn, the sum

∑
iXi is also Poisson distributed

with parameter
∑
i λi.
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6.2. Conditional Expectation. Given that X1 and X2 are independent Poisson
distributed random variables with means λ1 and λ2. We are now interested in the
expected value of X1 given that the sum of X1 and X2 is already known (in the
case of ET reconstruction the sum y can be measured):

E [X1 = x|X1 +X2 = y] .(13)

We start with looking at conditional probability P (X1 = x|X1 +X2 = y). If we
knew about the conditional probability density function P (X1 = x|X1 + X2 = y),
then the conditional expectation would just be the expectation of this conditional
probability density.

From Bayes Theorem we know that

P (X1 = x|X1 +X2 = y) =
P (X1 = x ∧X1 +X2 = y)

P (X1 +X2 = y)
.(14)

We will first develop the nominator :

P (X1 = x ∧X1 +X2 = y)(15)

= P (X1 = x ∧ x+X2 = y)(16)

= P (X1 = x ∧X2 = y − x) .(17)

Now, we have the joint probability of two independent Poisson random variables.

P (X1 = x ∧X2 = y − x)(18)

= P (X1 = x)P (X2 = y − x)(19)

= e−λ1
λx1
x!

e−λ2
λy−x2

(y − x)!
(20)

The denominator P (X1 +X2 = y) is the sum of two independently distributed
random variables. We already know that this sum is then also Poisson distributed
with mean λ1 + λ2. So, (14) denotes as
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P (X1 = x ∧X1 +X2 = y)
P (X1 +X2 = y)

(21)

=
e−λ1 λ

x
1
x! e−λ2 λy−x

2
(y−x)!

e−(λ1+λ2) (λ1+λ2)y

y!

(22)

=
y!

x!(y − x)!
λx1λ

y−x
2

(λ1 + λ2)y
(23)

=
(
y

x

)
λx1λ

y−x
2

(λ1 + λ2)y
(24)

=
(
y

x

)
λx1

(λ1 + λ2)x
(λ1 + λ2)xλy−x2

(λ1 + λ2)y
(25)

=
(
y

x

)(
λ1

λ1 + λ2

)x(
λ2

λ1 + λ2

)y−x
(26)

=
(
y

x

)(
λ1

λ1 + λ2

)x(
1− λ1

λ1 + λ2

)y−x
.(27)

So, P (X1 = x|X1+X2 = y) is a binomial distribution with parameters
(
y, λ1

λ1+λ2

)
,

and it is well known that its expectation is y λ1
λ1+λ2

.

7. Maximum Likelihood Parameter Estimation

The goal of Maximum Likelihood (ML) estimation is to find parameters that
maximize the probability of having received certain measurements of a random
variable distributed by some probability density function (p.d.f.). For example, we
look at a random variable Y and a measurement vector y = (y1, ..., yN )T. The
probability of receiving some measurement yi is given by the p.d.f.

p(yi|Θ) ,(28)

where the p.d.f. is governed by the parameterΘ. The probability of having received
the whole series of measurements is then

p(y|Θ) =
N∏
i=1

p(yi|Θ) ,(29)

if the measurements are independent. The likelihood function is defined as a func-
tion of Θ:

L(Θ) = p(y|Θ) .(30)

The ML estimate of Θ is found by maximizing L. Often, it is easier to maximize
the log-likelihood
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logL(Θ) = log p(y|Θ)(31)

= log
N∏
i=1

p(yi|Θ)(32)

=
N∑
i=1

log p(yi|Θ) .(33)

Since the logarithm is a strictly increasing function, the maximum of L and log(L)
is the same.

It is important to note that we do not include any a priori knowledge of the
parameter by calculating the ML estimate. Instead, we assume that each choice of
the parameter vector is equally likely and therefore that the p.d.f. of the parameter
vector is a uniform distribution. If such a prior p.d.f. for the parameter vector is
available then methods of Bayesian parameter estimation should be preferred. In
this tutorial we will only look at ML estimates.

In some cases a closed form can be derived by just setting the derivative with
respect to Θ to zero.
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