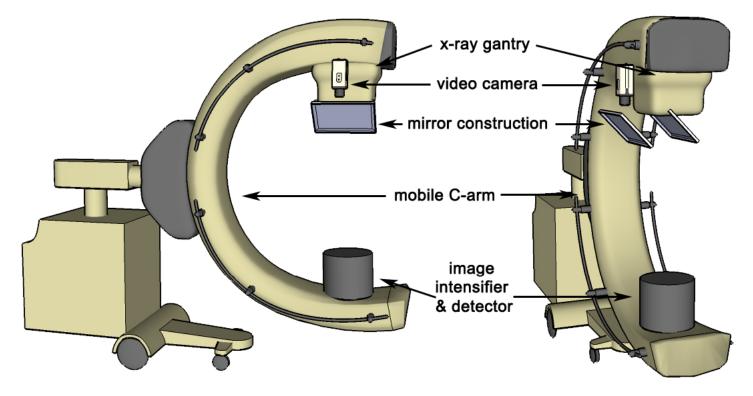
First Animal Cadaver Study for Interlocking of Intramedullary Nails under Camera Augmented Mobile C-arm

A Surgical Workflow Based Preclinical Evaluation

Lejing Wang¹. Juergen Landes (M.D.)². Simon Weidert (M.D.)². Tobias Blum¹. Anna von der Heide². Ekkehard Euler (M.D.)². and Nassir Navab¹

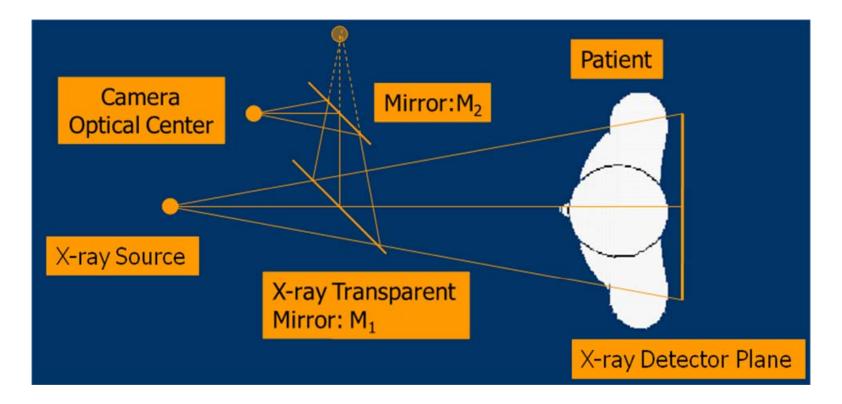

¹ Chair for Computer Aided Medical Procedures (CAMP). TU Munich. Germany ² Trauma Surgery Department. Klinikum Innenstadt. LMU Munich. Germany

Presented by Lejing Wang

Camera Augmented Mobile C-arm (CamC)

• The Camera Augmented Mobile C-arm (CamC)^{1,2} system augments a regular mobile C-arm by a video camera and mirror construction

CAMP



1. Navab et al. IWAR 1999.

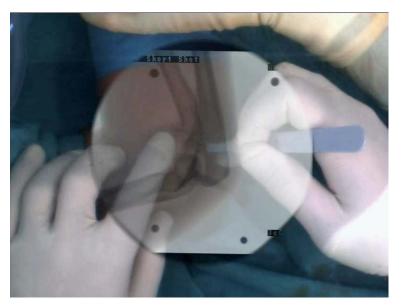
2. Navab et al. IEEE TMI 2010

Camera Augmented Mobile C-arm (CamC)

• Construction concept ^{1,2}

ПΠ

CAMP


1. Navab et al. IWAR 1999.

2. Navab et al. IEEE TMI 2010

X-ray and Video Image Overlay

• X-ray images are co-registered with video images without any further calibration or registration during the intervention.

First Applications:

- needle guidance¹
- Trauma: interlocking of intramedullary nails²
- Spine: pedicle screw placement³
- Implant/Foreign-body removal
- Joint fractures
- X-ray positioning
 - 1. Mitschke et al. MICCAI 00.
 - 2. Heining et al. CAOS 2006
 - 3. Heining et al. IGCARS. 2006
 - 4. Navab et al. IEEE TMI 2010

CamC is expected to reduce radiation ⁴

Previous Work of CamC Evaluation

- Technical system properties
 - Accuracy of the overlay ¹
 - Absorbed and scattered radiation of the mirror ²
- Pre-clinical study, CamC vs. CT for vertebroplasty using spine phantoms³
 - one surgeon and five samples
 - no significant result
- In this work,
 - workflow based comparison method is presented
 - evaluate the clinical impacts of the CamC system
- 1. Navab et al. IEEE TMI 2010
- 2. Wang et al. BVM 2009
- 3. Traub et al. AMIARCS 2008

- Clinical evaluation is an important phase in the development of IGS systems
 - Practicability, efficiency and clinical suitability need to be confirmed
- An assessment framework with six levels from technical system properties to social and legal impacts¹
- We present a workflow based comparison of a novel IGS solution with a conventional solution, which
 - identifies the advantages and disadvantages on single step
 - easily generalizes results for single workflow steps
 - improves communication between technical researchers and surgeons

^{1.} Jannin. P., Korb. W.: Image-Guided Interventions - Technology and Applications. Volume chapter 18. Springer (2008)

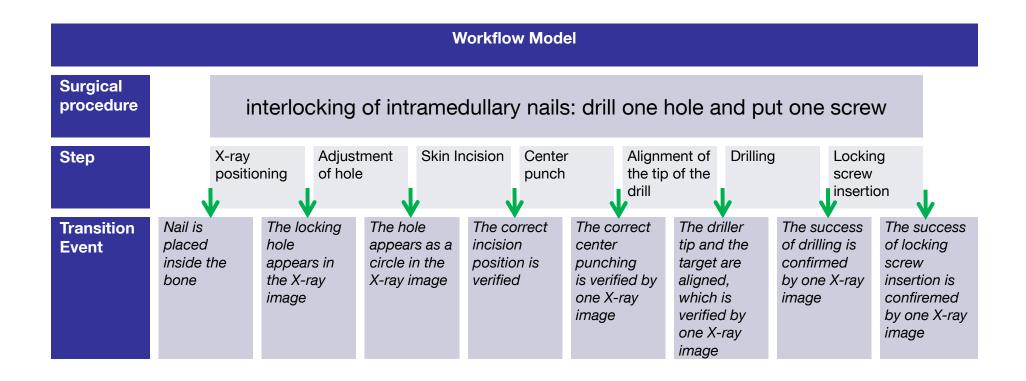
Surgical Workow Based Evaluation

- The workflow based comparison method consists of the following steps
 - 1. Initializing the assessment objective surgical strategy and performance¹
 - 2. Modeling the workflow choosing surgical procedures, analyzing the workflow
 - 3. Defining evaluation criteria measurement parameters,
 - 4. Performing experiments and acquiring measurement parameters video or live observations, same setup for novel and conventional solution
 - 5. Comparing results statistical analysis
- 1. Jannin. P. & Korb. W.: Image-Guided Interventions Technology and Applications. Volume chapter 18. Springer (2008)

Interlocking of Intramedullary Nails

- Several computer assisted solutions were developed
 - miniature robot ¹
 - optical tracking ²
- A clinical study of interlocking: navigation vs. C-arm ³
- We focus on evaluating the clinical impact of CamC by perfoming interlocking (not for interlocking)

Because interlocking

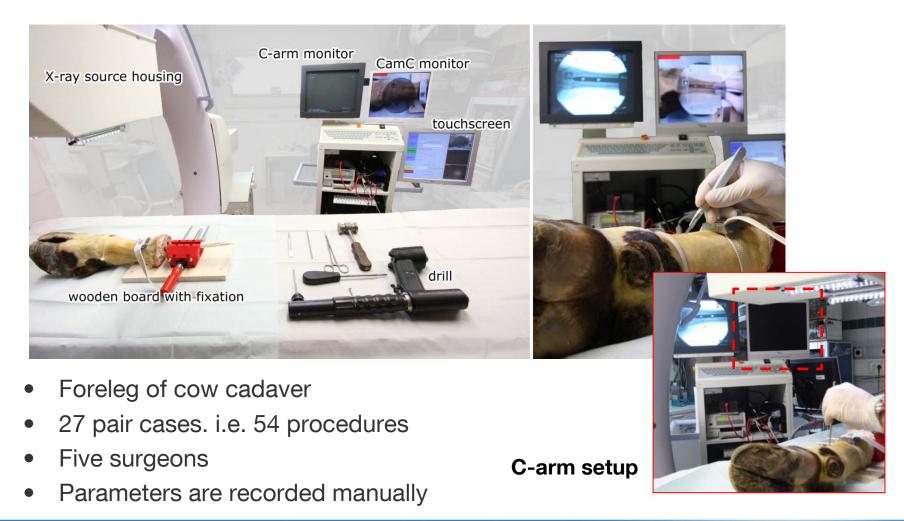

- is commonly used in fracture reduction surgery
- uses mobile C-arms
- requires skill and a large number of X-ray shots
- involves various common surgical tasks. e.g. Xray positioning, targeting, and drilling

Yaniv & Joskowicz IEEE TMI 2005
Leloup et al. IEEE TMI 2008
Suhm et aL. Injury 2004

Workflow Model of Interlocking

assessment objective -> modeling the workflow -> defining evaluation criteria -> performing experiments -> comparing results

Defining Evaluation Criteria


- Evaluation criteria
 - The amount of applied radiation exposure
 - The performance of the surgical procedure
- Measurement parameters
 - the number of X-ray shots
 - operation time
 - quality of drilling (assessed by surgeons giving scores1, 2, 3, or 5)¹
- Measures of statistics
 - Mean
 - STD
 - P-value (paired t-test)

1. Suhm et al. Injury 2004

CamC setup

CAMP

Comparing Results

	X-ray Positioning	Adjustment of hole	Skin incision	Center punch	Alignment of the tip of the drill	Drilling	Locking screw insertion	Overall
The number of X-ray shots (mean \pm STD)								
CamC group	1.04 <u>+</u> 0.19	2.96 <u>+</u> 1.56	0.04 <u>+</u> 0.19	2.56 <u>+</u> 2.38	1.59 <u>+</u> 1.34	1.22 <i>±</i> 0.64	1.00 <i>±</i> 0.00	10.41 ± 3.59
C-arm group	1.44 ± 0.70	2.85 ± 1.51	2.67 ± 1.21	4.63 ± 2.62	2.51 ± 1.56	2.89 ± 0.64	1.00 <i>±</i> 0.00	17.63 ± 4.65
P-value	0.0052	0.71	< 0.0001	0.00057	0.10	0.0033	1.00	< 0.0001
Operation time (mean \pm STD) in second								
CamC group	21.96 <u>+</u> 7.16	24.63 <u>+</u> 18.85	20.22 <u>+</u> 7.13	62.41 <i>±</i> 50.04	26.70 <u>+</u> 18.52	148.52 <u>+</u> 105.55	53.22 <u>+</u> 48.72	357.67 <u>+</u> 157.64
C-arm group	24.85 <u>+</u> 9.93	21.22 ± 12.94	28.56 <u>+</u> 9.89	58.74 ± 33.70	25.89 ± 23.82	151.59 <u>+</u> 90.21	39.56 ± 20.24	350.41 <u>+</u> 108.73
P-value	0.16	0.40	0.00099	0.67	0.88	0.88	0.079	0.77

assessment objective -> modeling the workflow -> defining evaluation criteria -> performing experiments -> comparing results

Discussion & Conclusion

- Evaluate the clinical impact of the CamC system
 - surgical workflow based evaluation
 - Interlocking on cow cadaver forelegs
- Surgeons performed surgical tasks more confidently when using CamC
- Overall results
 - significantly less radiation exposure
 - similar operation time and similar drilling quality
- CamC has its main positive impact in the following surgical tasks
 - X-ray positioning, skin incision, center punch, and drilling
 - they are also common in different surgical procedures

Acknowledgement

- Thanks to Trauma Surgery Department, Klinikum Innenstadt, LMU Munich
- Our colleagues at NARVIS lab

Thank you for your attention

• CAMC system has been developed with partial support from Siemens Heathcare

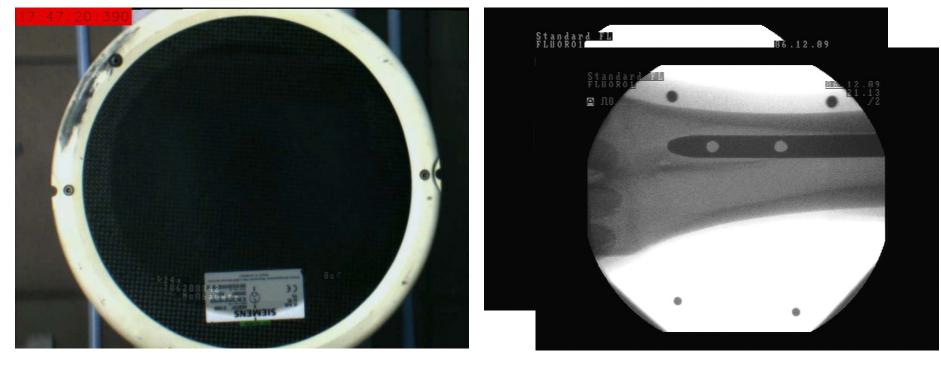
Ongoing...

- Continue pre-clinical study
 - foriegn body removal
 - learning curve analysis
- Workflow based comparison for clinical study
 - first 43 surgries were carried out using CamC
 - complete 43 surgries using C-arm for matching pairs

AM

Two Clinical Distal Interlocking

- Humerus
- Femur


X-ray Positioning

ПП

CAMP

• Intuitive video-based guidance for moving C-arm

Skin Incision

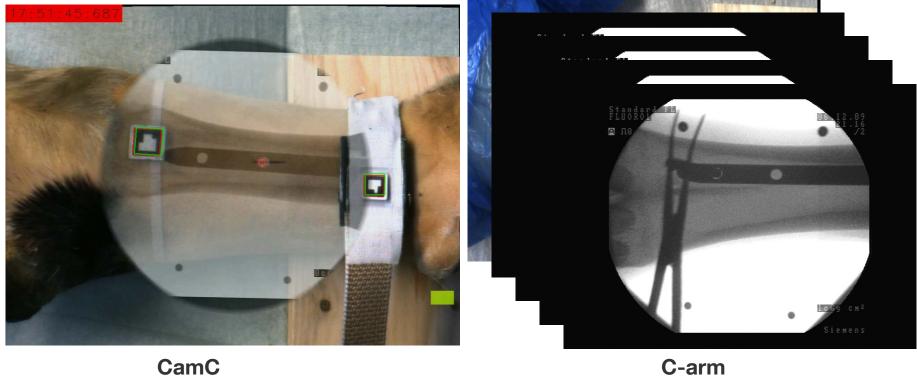


ТШ

CAMP

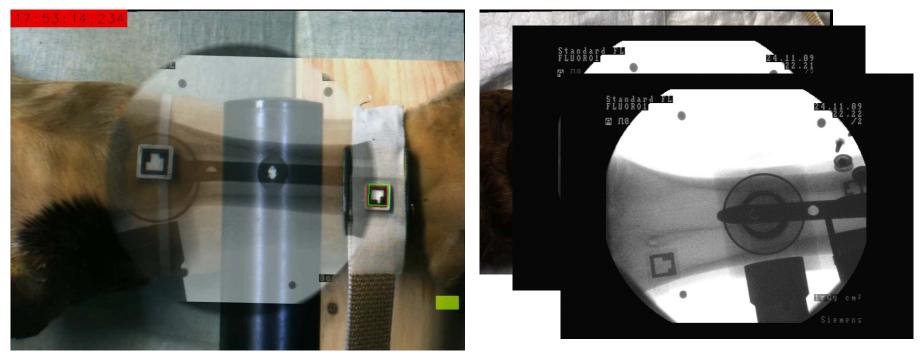
>

• Find the target place for skin incision using the guidance of the video with an aligned X-ray image


Center Punch

ПШ

CAMP


Easily identify the location for center punch

Drilling

• The overlay of X-ray and video image can support the control of drilling axis

C-arm

ТΠ

CAMP

END OF PRESENTATION