

Lejing Wang¹, Rui Zou¹, Simon Weidert (M.D.)², Juergen Landes (M.D.)², Ekkehard Euler (M.D.)², Darius Burschka³, and Nassir Navab¹

¹ Chair for Computer Aided Medical Procedures (CAMP). TU Munich. Germany
 ² Trauma Surgery Department. Klinikum Innenstadt. LMU Munich. Germany
 ³ Chair for Robotics and Embedded Systems, TU Munich, Germany

Presented by Lejing Wang

Positioning Mobile C-arm

- Maneuvering mobile C-arms into the best viewing position in regard to the anatomy, is a routine surgical task
 - C-arm repositioning
 - Down-beam C-arm positioning¹
- For advanced X-ray imaging techniques
 - Parallax-free X-ray stitching²
 - Cone-beam CT³
- It generally requires
 - Experiences
 - Time
 - Many X-ray shots
- 1. Navab et al. MICCAI 06.

Wang et al. Medical Image Analysis 2010
 Matthaus et al. Advanced Robotics 2007

Standard 5DOF Mobile C-arm

- X-ray source is controlled by a complex kinematic chain of the five joints,
 - Vertical, along Z₁
 - *Wigwag*, around *Z*₂
 - Horizontal, along Z₃
 - Angular, around Z₄
 - **Orbital**, around Z_5
- Kinematic Analysis for Carm positioning^{1,2}

Navab et al. MICCAI 06.
 Matthaus et al. Advanced Robotics 2007

Limitation of **5DOF**

- In 3D Cartesian space, 6 DOF are required for a motion
- X-ray source is certainly restricted in terms of reaching an arbitrary position and orientation

Related Work

Reduce the 3D Cartesian space to five DOF¹

- rotating X-ray images around the principle point as a missing rotation DOF
- the limited DOF could impose some functional constraints, e.g. obstacle avoidance, physical limited joint range, and singularity avoidance
- Parallax-free X-ray image stitching²
 - moving operating table as an additional DOF to enable a pure rotation of X-ray source relative to the table

It did not include this DOF into the formulation

Matthaus et al. Advanced Robotics 2007
 Wang et al. Medical Image Analysis 2010

Concept of 6DOF C-arm Modeling

- Integrate a forward-backward translational movement of the patient's table into the 5DOF C-arm's kinematics
- The X-ray source can be positioned relative to the patient's table with six DOF

5DOF C-arm Kinematic Model

• Coordinate frames assigned for the 5DOF C-arm according to the Denavit-Hartenberg (DH) rules and its link parameters table (*variable)

6DOF C-arm Kinematic Modeling

- The coordinate frame 0 is assigned to the table
- ⁶*H*₀ from C-arm pose estimation
- ¹H₆ is obtained from the 5DOF C-arm kinematic model

•
$${}^{1}H_{0} = {}^{1}H_{6} \cdot {}^{6}H_{0}$$

6DOF C-arm Kinematic Modeling

- re-assign the coordinate frame 1 in order to satisfy the DH rules
 - X_1 should be orthogonal to and intersects with both axes Z_0 and Z_1
- With a known ¹*H*₀, we look for two points on axes *Z*₀ and *Z*₁, which define a minimum distance between them.

6DOF C-arm Kinematic Modeling

		a (Tx)	d (Tz)	α (Rx)	θ(Rz)
	0	Dist(Z ₀ ,Z ₁)	$d_0^* +$ Dist(X ₀ ,X ₁)	Ang(Z ₀ ,Z ₁)	Ang(X ₀ ,X ₁)
X_5 X_2, X_3 X_2, X_3	1	0	d ₁ * + Dist(X ₁ ,X ₂)	0	Ang(X ₁ ,X ₂)
$Q_1 O_5 Z_5 Z_3, Z_4 O_4$	2	0	0	-pi/2	θ 2*
X, 'O,	3	0	d ₃ *	0	-pi/2
↑X ₈	4	0	length_of fset	pi/2	θ_4^{*}
	5	- orbital_off set	0	0	$oldsymbol{ heta}_5^{*}$
		Dist(A,B Ang(A,B) – distance) – angle be	between axes tween axes A a	A and B; and B;

• Coordinate frames assigned for the 6DOF C-arm according to the Denavit-Hartenberg (DH) rules and its link parameters table (*variable)

Controlling of C-arm X-ray Source

- Controlling of the C-arm requires finding the required joint values *q* to position the C-arm X-ray source to a desired pose *T*. *--Inverse Kinematics Problem*.
- Newton iterative method of using pseudo-inverse Jacobian¹

$$q_{n+1} = q_n + J^+(q_n)\Delta(F(q_n) - T)$$

$$\uparrow$$

pseudo inverse

where:

$$T = \begin{bmatrix} n_1 & o_1 & a_1 & p_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{ and } F(q_n) = \begin{bmatrix} n_2 & o_2 & a_2 & p_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\triangle (F(q_n) - T) = \begin{bmatrix} p_1 - p_2 \\ \frac{1}{2}(n_1 \times n_2 + o_1 \times o_2 + a_1 \times a_2) \end{bmatrix}$$

^{1.} Chiaverini et al.: Control of robotic systems through singularities. In: Advanced Robot Control. Springer Berlin / Heidelberg (1991)

6DOF C-arm System Implementation

 C-arm pose estimation employs a Camera Augmented Mobile C-arm (CAMC) system^{1,2} and a visual marker pattern

1. Navab et al. IEEE and ACM Int'l Workshop on Augmented Reality,1999. 2. Navab et al.:TMI 2010.

6DOF C-arm System Implementation

 C-arm pose estimation employs a Camera Augmented Mobile C-arm (CAMC) system^{1,2} and a visual marker pattern

no radiation

CAMP

- obtaining ⁶H₀ for building
 6DOF C-arm model
- Continues feedback for supporting moving each joint
 - solving inverse kinematics for each estimated C-arm pose

1. Navab et al. IEEE and ACM Int'l Workshop on Augmented Reality,1999. 2. Navab et al.:TMI 2010.

C-arm Repositioning Experiment

- During the intervention, the C-arm often has to be moved back to acquire the second X-ray image from the same viewing point as the first one
- For one repositioning experiment,
 - C-arm was first positioned to a reference pose to acquire a reference X-ray image
 - the operating table was translated and C-arm was moved to a starting pose
 - at the starting pose, 6DOF C-arm kinematic model was built
 - move the C-arm to the pre-defined reference position with continues feedback

Experiment Results

Actual moved	Kinematic	natidComputed joint movement values for repositioning: trans-								
joints	model	lation(mm	difference:							
			Mean(pixels)							
		table	vertical	wigwag	horizontal	angular	orbital			
table, angular	6DOF	102.15	-1.01	-0.13	0.81	5.52	0.32	7.35		
	5DOF	non	-1.53	3.45	-1.38	3.89	0.03	70.16		
table, wigwag	6DOF	62.07	-0.39	-6.48	-1.00	-0.16	-0.07	5.78		
	5DOF	non	-0.45	-4.31	-5.10	-1.16	-0.5	64.40		
table, orbital	6DOF	-73.22	-0.49	-0.001	-2.59	-0.06	-9.69	1.38		
	5DOF	non	-0.64	-2.70	1.63	1.27	-9.60	59.99		
table, horizontal,	6DOF	31.04	43.15	-7.34	39.89	15.40	-16.05	5.18		
vertical, angular,	5DOF	non	41.70	-6.17	38.58	14.69	-15.41	56.43		
orbital, wigwag										
vertical, angular,	6DOF	8.61	42.13	-6.10	67.97	15.12	-7.25	7.41		
horizontal,	5DOF	non	41.84	-5.79	67.98	14.99	-7.33	8.21		
orbital, wigwag										

- Five pairs of C-arm repositioning.
- Each pair (the same starting and reference positions) consists of two repositioning procedures using 5DOF and 6DOF C-arm model
- Image differences are computed from corners of 4 X-ray square markers

Discussion and Conclusion

- 6DOF C-arm model was proposed and implemented,
 - paves the way for many computer assisted clinical applications
 - automatic C-arm positioning for parallax-free X-ray stitching
 - accurately positioning C-arm w.r.t. patient for smooth transform of the CT-based preoperative planning into OR
- The C-arm repositioning task was chosen to
 - evaluate our developed 6DOF C-arm system
 - show the improved accuracy of using the 6DOF model over the 5DOF model
- C-arm systems with known relative pose information
 - external tracking or X-ray marker pattern

Acknowledgement

- Thanks to Trauma Surgery Department, Klinikum Innenstadt, LMU Munich
- Our colleagues at NARVIS lab

Thank you for your attention

• CAMC system has been developed with partial support from Siemens Healthcare

END OF PRESENTATION