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1. Introduction

The goal of this work is to reduce the order of state space models describing biological or
chemical networks. The state equations are assumed to be (generally) nonlinear, time-invariant,
ordinary differential equations which build a modular structure together. This structure should
be preserved during reduction, which can be achieved by applying existing reduction methods
to modular parts of the whole system.

Remark that the investigated methods here are linear which means that the transformation
and projection are linear operations. However, applying them to nonlinear systems most likely
produces nonlinear systems again. There exist also nonlinear methods for nonlinear systems
but they are computationally difficult and not investigated here.

Model reduction via proper orthogonal decomposition (POD), also known as Karhunen-
Loève expansion or principal component analysis, does not take the input-output behavior into
account but rather focuses on the most energetic dynamics of the state space. In our case the
I/O behavior should be approximated and therefore balanced truncation seems to be a suitable
reduction method.

But first, we start with a review of methods for model reduction via balancing transformations
(for linear systems as well as for nonlinear systems) without focusing on modular systems.

2. Model reduction via balancing techniques

Model reduction is often being carried out in two major steps:

1. Find a transformation of the state space so that the new basis allows an identification of
the important (i.e. in terms of the input-output behavior) subspace.

2. Project the system (by singular perturbation or simple truncation) onto this important
subspace.

The first step transforms a system1

ẋ(t) = f
(
x(t), u(t)

)
y(t) = g

(
x(t)

) (1)

by z(t) = Tx(t) to
ż(t) = f̂

(
z(t), u(t)

)
:= Tf

(
T−1z(t), u(t)

)
y(t) = ĝ

(
z(t)

)
:= g

(
T−1z(t)

)
,

(2)

1Note that throughout this document any direct throughput from u to y is left out of consideration since it
would not be affected by state space transformations and model reduction.
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where u(t) ∈ Rp is the input function, x(t) ∈ Rn and z(t) ∈ Rn are the original and transformed
state variables, respectively, y(t) ∈ Rq is the output, and T ∈ Rn×n is a non-singular linear
transformation.

Since the reduced order model should approximate the input-output behavior of the system,
one searches a state space realization reflecting the grade of contribution to the I/O behavior.
Such a system realization is the “balanced realization”. A balanced system has states that
are “as good to control as to observe”. That means that any vector of the state space always
has the same magnitude of controllability and observability which can be measured using the
corresponding gramians.

2.1. Gramians for linear, time-invariant systems

Calculation of those gramians is explained for linear systems (A,B,C, 0) first, where

f
(
x(t), u(t)

)
= Ax(t) +Bu(t)

g
(
x(t)

)
= Cx(t)

has to be set in equations (1) and (2).
Note that vectors and matrices have real coefficients throughout this document and that the

conjugate complex transpose is used even if the transpose would produce the same result.

Definition 1 (Controllability gramian) Given a pair (A,B), the positive semidefinite ma-
trix

Xt =
∫ t

0
eAτBB∗eA∗τ dτ

is called the controllability gramian of the pair (A,B) at time t.

Theorem 2 The set of reachable states is given by

R := imXt = im
(
B AB . . . An−1B

)
,

and is therefore constant for all t > 0.
The input function with minimal energy ‖u‖ needed to drive a system (A,B) to a desired

state xt from the set of reachable states R (assuming zero initial values) can be determined by
calculating the solution v to

Xtv = xt,

and setting
u(τ) = B∗eA∗(t−τ)v, for 0 ≤ τ ≤ t.

The squared norm of this input function is then

‖u‖2 =
∫ t

0
u∗(τ)u(τ) dτ = v∗Xtv.

When speaking of the controllability gramian, one normally refers to the following version of
the gramian, because it allows a judgment over controllability without a limited time horizon:
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Theorem 3 (Limit of the controllability gramian and the Lyapunov equation) Let A
be Hurwitz (all eigenvalues have negative real parts), then the limit of the controllability gramian

X∞ =
∫ ∞

0
eAtBB∗eA∗t dt (3)

is the unique solution to the Lyapunov equation

AX∞ +X∞A
∗ = −BB∗. (4)

If BB∗ is positive definite, then X∞ is also positive definite.

Corollary 4 If and only if (A,B) is controllable, then the controllability gramian Xt is positive
definite (and therefore invertible), R = Rn, and the energy needed to drive the system to a
reachable state xt at time t is given by

‖u‖2 = x∗tX
−1
t xt.

Corollary 4 also applies to the infinite version of the controllability gramian. Thus the
minimum squared energy of an input function u needed to reach a given state x∞ in infinite
time (which could be as steady state) is x∗∞X−1

∞ x∞ (assuming a controllable pair (A,B)). That
means that state vectors corresponding to big singular values of X−1

∞ need a high energy input
function to be reached. The same states correspond to the reciprocal (and therefore small)
singular values of X∞. (If (A,B) is not controllable, the unreachable states correspond to zero
singular values of the controllability gramian.)

Therefore, we can say that states corresponding to small (or zero) singular values of X∞ are
“hard to reach” and contribute little to the input-to-state behavior of the system.

Remark. Equation (3) is never used to compute the controllability gramian since one would have to
calculate the limit of the integral for that. The Lyapunov equation (4) is essentially a linear equation
for the entries of the controllability gramian and can therefore be used to calculate the gramian. But
instead of using the Gauß-Algorithm, singular value and Schur decompositions are normally applied to
solve it (taking advantage of the symmetry of X∞ and without performing the multiplication BB∗).

After having examined the input-to-state behavior using the controllability gramian, it is a
logical consequence to examine the state-to-output behavior using an observability gramian.

Definition 5 (Observability gramian) Given a pair (C,A), the positive semidefinite matrix

Yt =
∫ t

0
eA∗τC∗CeAτ dτ

is called the observability gramian of the pair (C,A) at time t.

Theorem 3 also applies in a dual sense (A ↔ A∗, C ↔ B∗) to the observability gramian,
where the infinite version solves the Lyapunov equation

A∗Y∞ + Y∞A = −C∗C,

the set of observable states is given by

O := imYt = im
(
C∗ A∗C∗ . . . (A∗)n−1C∗

)
=

ker


C
CA
...

CAn−1



⊥

,
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and the squared energy of the output function y produced by a given initial state x0 and zero
input is

‖y‖2 =
∫ ∞

0
y∗(t)y(t) dt =

∫ ∞

0
x∗0e

A∗tC∗CeAtx0 dt = x∗0Y∞x0.

That means that state vectors corresponding to small singular values of Y∞ produce low energy
output functions. (If (C,A) is not observable, the unobservable states correspond to zero
singular values of the observability gramian.)

Therefore, we can say that states corresponding to small (or zero) singular values of Y∞ are
“weakly observable” and contribute little to the state-to-output behavior of the system.

2.2. Empirical gramians for nonlinear systems

Since nonlinear systems cannot be balanced by calculating linear gramians, the paper [6] pro-
poses an empirical way of calculating the subspace of interest and to proceed then by calculating
a linear transformation in the same way as for balancing linear systems. The empirical coun-
terparts to linear systems’ gramians are based on data that is gained from experiments or (like
in our case) from simulations.

For the definitions of the empirical gramians, we need a set {T1, . . . , Tr} of orthogonal test
matrices and a set {c1, . . . , cs} of positive scalar constants. The choice for those two sets is
normally different for the calculation of the two gramians (especially because the dimensions
of the set of test matrices have to correspond to the dimension of the input and state space,
respectively). Therefore, we will refer to them as TX / CX , and TY / CY , for the empirical
controllability and observability gramian, respectively. Furthermore denote the ith unit vector
with ei and define the mean value of a function v(t) by

v̄ := lim
t→∞

1
t

∫ t

0
v(τ) dτ .

Definition 6 (Empirical controllability gramian) Define the empirical controllability gram-
ian by

X =
1
rs

r∑
l=1

s∑
m=1

1
c2m

p∑
i=1

∫ ∞

0
Φilm(t) dt,

where Φilm(t) ∈ Rn×n is given by

Φilm(t) :=
(
xilm(t)− x̄ilm

) (
xilm(t)− x̄ilm

)∗
,

and xilm(t) is the state of the system (1) corresponding to the impulsive input u(t) = cmTleiδ(t).

Definition 7 (Empirical observability gramian) Define the empirical observability gram-
ian by

Y =
1
rs

r∑
l=1

s∑
m=1

1
c2m
Tl

∫ ∞

0
Ψlm(t) dt T ∗l ,

where Ψlm(t) ∈ Rn×n is given by

Ψlm
ij (t) :=

(
yilm(t)− ȳilm

)∗ (
yjlm(t)− ȳjlm

)
,

and yilm(t) is the output of the system (1) corresponding to the initial condition x(0) = cmTlei
with u ≡ 0.
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Remark. Measuring the state-to-output behavior by setting initial values for the states is the same as
injecting corresponding δ signals into the state equations (cf. [7]).

Notice, that both definitions contain the simple averaging part 1
rs

∑r
l=1

∑s
m=1. Its purpose

is to build a mean gramian from the individual gramians, calculated for some test matrix and
test magnitude. Thus, one has to perform r ·s ·p and r ·s ·n simulations during the computation
of the empirical controllability and observability gramian, respectively.

For linear systems, the empirical controllability and observability gramians are equal to the
usual controllability and observability gramian, respectively (see [6]).

In practice, the integration for the computation of the empirical gramians is finite, but this
is not a big problem, since too short integration intervals lead to less separated Hankel singular
values, whereas the transformation matrix may still be good enough for model reduction.

The set of orthogonal matrices Tl should be chosen in a way that reflects the “natural oper-
ating region” of the system. For the controllability gramian, this means that the columns of
those matrices reflect typical directions of input, whereas for the observability gramian, they
should reflect typical state vectors. Similar suggestions apply to the set of constants cm: They
should render typical magnitudes of input signals and state values.

Definition 7 proposes to use zero input for computing the observability gramian (following
the construction of the gramians for linear systems in [7]). Furthermore, the system excitations
in both Definition 6 and Definition 7 are performed around zero. This may not be suitable
for some systems, since the operating region defined by this setting may significantly differ
from the natural operation region. This may even render the resulting transformation useless.
Therefore, we recommend to apply system excitations around some “point of interest” (as
proposed in [5]). This can be easily achieved by choosing a typical constant input uss (or more
of them), calculating the corresponding steady state xss, and then performing the input and
state excitations around those values. So, we propose to substitute

u(t) = cmTleiδ(t) by u(t) = cmTleiδ(t) + uss (5)

in Definition 6. The initial state values (upon which nothing is said in [6]) should be set to the
corresponding steady state xss then. Accordingly, one should replace

x(0) = cmTlei with x(0) = cmTlei + xss

and
u ≡ 0 with u ≡ uss

(6)

in Definition 7.
Another improvement may be to choose other input test functions when calculating the

controllability gramian. Instead of using the Dirac impulse, one could apply functions like a
step, sine, or whatever is more typical to the input. But one has to pay more attention to the
resulting gramians then. The controllability gramian may have much more distinct singular
values than the observability gramian and therefore the controllability is emphasized during the
calculation of a balancing transformation. (Notice, however, that a pure scaling of a gramian
has no effect on the calculated balancing transformation.)
Remark. The paper [5] is focused on applying a sequence of system excitations to compute the em-
pirical gramians. Therefore, a sequence of steady state values (corresponding to the excitations) is
used instead of mean values in both definitions of the empirical gramians. But instead of performing
a sequence of excitations, one can also apply only one excitation at each simulation run and add the
resulting gramians then. Both approaches seem to be appropriate, but the latter one is easier to state
using the definitions from [6].
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2.3. Calculating the balancing transformation

For reducing a system, we now want to have a transformation that does two jobs: First, it should
“balance” a system which means that all state vectors have equal magnitudes of controllability
and observability. This is achieved by transformations producing equal controllability and
observability gramians. Second, the gramians should be in diagonal from, making it easy to
decide which states could be eliminated.

In fact, both steps are achieved in one transformation z(t) = Tx(t) which can be computed as
follows: Let X be the controllability gramian (Xt, X∞, or X ) and Y the observability gramian
(Yt, Y∞, or Y). Then

1. compute the Cholesky factorization of the controllability gramian

X = LL∗,

where L is a lower left triangular matrix,

2. compute the singular value decomposition of L∗Y L

L∗Y L = UΣ2U∗,

where U is an orthogonal matrix and Σ is a diagonal matrix having the positive values
σ1 ≥ . . . ≥ σn (called Hankel singular values) on its main diagonal,

3. and set the transformation matrix to

T := Σ
1
2U∗L−1.

The transformation T is then used to obtain system (2).
In the linear case, the resulting system realization

Â = TAT−1, B̂ = TB, Ĉ = CT−1

is called “principal axis balanced” and its controllability and observability gramian both equal
Σ:

X̂ =
∫ ∞

0
eÂtB̂B̂∗eÂ∗t dt = TXT ∗

=
(
Σ

1
2U∗L−1

)
(LL∗)

(
L−∗UΣ

1
2

)
= Σ

Ŷ =
∫ ∞

0
eÂ∗tĈ∗ĈeÂt dt = T−∗Y T−1

=
(
Σ−

1
2U−1L∗

)
Y

(
LU−∗Σ−

1
2

)
= Σ−

1
2U−1UΣ2U∗U−∗Σ−

1
2 = Σ

Since Σ consists only of the sorted Hankel singular values on the main diagonal, this allows
an easy decision which states to delete from the system because of low influence on the I/O
behavior: Those are the states zl (i.e. the rows of T ) corresponding to (relatively) “small”
entries σl in the new gramians, because they need a high (squared) input energy of σ−1

l to be
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reached and also produce a low output energy of σl. One should observe that it’s important
to perform the truncation between two distinct eigenvalues of Σ. Otherwise, stability of the
reduced system is not guaranteed.

In the nonlinear case, the transformation and truncation are performed in the same way, but
it has to be observed that, generally,

• the Hankel singular values are not invariants under state space transformations,

• the empirical gramians of the transformed system are not equal or diagonal, and

• there is no proposition about the stability of the truncated system (even when truncating
between distinct singular values).

Remark. There exist some other algorithms to calculate the balancing transformation but they all
produce the same result and the computation always requires positive definite gramians (e.g., for com-
puting the Cholesky factorization). For linear systems, this means that (A,B,C) has to be controllable
and observable. If this is not the case, the uncontrollable as well as the unobservable states have to be
removed in a first step. This can be achieved by calculating the so-called Kalman decomposition where
the new states are sorted into 4 groups:

• controllable and observable states

• controllable and unobservable states

• uncontrollable and observable states

• uncontrollable and unobservable states

In this form, states that are either uncontrollable or unobservable can be easily removed to obtain a
minimal realization. For nonlinear systems, however, this is not as clear. But it must also be assured
that the empirical gramians are positive definite to be able to calculate a “balancing” transformation.

2.4. Model reduction

There are two main possibilities to eliminate the now identified unimportant states: Either

• truncate the system by simple deletion or

• use the method of singular perturbation to calculate the values of the unimportant states.

The first method exactly matches the original system at ω = ∞ and gives a better approxi-
mation for high frequencies whereas the second method matches the original system at ω = 0
(which means matching DC gains) and gives a better approximation for low frequencies (cf. [8,
chapter 1]).

However, the nth order state space will now be divided into r “important” and n− r “unim-
portant” states by the two Galerkin projections P and Q,

P =
(
Ir Or,n−r

)
∈ Rr×n

Q =
(
On−r,r In−r

)
∈ R(n−r)×n

(where In is the n × n identity matrix and On1,n2 is the n1 × n2 zero matrix) so that we get
the following partitioning of the (transformed) state vector

z(t) =
(
z̃(t)
ze(t)

)

8



where z̃(t) := Pz(t) ∈ Rr are the states to be kept for the reduced order model and ze(t) :=
Qz(t) ∈ Rn−r are the states to be eliminated. Therefore we can rewrite the transformed
system (2) in the following form:

˙̃z(t) = P f̂

((
z̃(t)
ze(t)

)
, u(t)

)
(7a)

że(t) = Qf̂

((
z̃(t)
ze(t)

)
, u(t)

)
(7b)

y(t) = ĝ

((
z̃(t)
ze(t)

))
. (7c)

2.4.1. Reduction by truncation

One can reduce a system by simply cutting off all unimportant states:

ze(t)
!= 0

⇒
(
z̃(t)
ze(t)

)
=

(
z̃(t)
0

)
= P ∗z̃(t)

Substituting that into (7a) and (7c), we obtain

˙̃z(t) = f̃
(
z̃(t), u(t)

)
:= P f̂

(
P ∗z̃(t), u(t)

)
= PTf

(
T−1P ∗z̃(t), u(t)

)
y(t) = g̃

(
z̃(t)

)
:= ĝ

(
P ∗z̃(t)

)
= g

(
T−1P ∗z̃(t)

)
,

and for linear systems (A,B,C, 0) this leads to

Ã = PTAT−1P ∗, B̃ = PTB, C̃ = CT−1P ∗.

2.4.2. Reduction by singular perturbation

The other method is based on singular perturbation: One can assume that the unimportant
states are much faster than the others and set że(t) = 0 in equation (7b):

Qf̂

((
z̃(t)
ze(t)

)
, u(t)

)
= QTf

(
T−1

(
z̃(t)
ze(t)

)
, u(t)

)
= 0 (8)

Assuming that (8) is resolvable for ze(t), one obtains the quasi steady state values of ze(t) as

ze(t) = ψ
(
z̃(t), u(t)

)
(9)

with some function ψ, depending on z̃(t). (For linear systems, ψ exists if and only if QÂQ∗ is
invertible.) This can be substituted into (7a) and (7c) to obtain the reduced order system

˙̃z(t) = f̃
(
z̃(t), u(t)

)
:= P f̂

((
z̃(t)

ψ
(
z̃(t)

)) , u(t)
)

= PTf

(
T−1

(
z̃(t)

ψ
(
z̃(t)

)) , u(t)
)

y(t) = g̃
(
z̃(t)

)
:= ĝ

((
z̃(t)

ψ
(
z̃(t)

)))
= g

(
T−1

(
z̃(t)

ψ
(
z̃(t)

)))
.
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2.4.3. Comparison

In general, the method of truncation is considered to be superior because it always leads to
a low order ODE system which can be solved faster than the original system. It also better
approximates the system for high input frequencies.

On the other hand, singular perturbation better approximates “slow systems” but has the
disadvantage that it is only practicable in special cases like linear systems, e.g., where it is
possible to find an analytic solution (9) to (8). Generally, this will be impossible and ze(t) has
to be calculated numerically for every time step. Then, the reduction of a nonlinear system
using singular perturbation leads to the following differential algebraic equation system which
is more complex to solve than the full order ODE system:( ˙̃z(t)

0

)
= f̂

((
z̃(t)
ze(t)

)
, u(t)

)

3. Problems and solutions specific to the application to modular
systems

There may be a pitfall when trying to reduce a modular system: The straightforward way
of reducing such a system would be to split it into its modules (defining the modules’ inputs
and outputs in a way that they can be “plugged” together to the whole system again) and
to apply balanced reduction to each module separately in order to avoid a destruction of the
modular structure. This may emphasize the importance of states which are only relevant for
the input-output behavior of the module but unimportant for the whole system.

This problem is illustrated by a small linear example which is rather artificial but serves well
for demonstration purposes. It does not look modular, because it is only of order 4, but sth.
like that could also appear in a bigger context.

Remark. The following linear systems are given in the form(
ẋ
y

)
=

(
A B
C

) (
x
u

)
,

which is equivalent to

ẋ = Ax+Bu

y = Cx.

Entries of matrices which are zero per definition are not printed. This should make it easier to under-
stand the connection structure of the modules (which are separated by dashed lines).

The value “0” indicates an entry which was calculated to be exactly zero, and “0.000” means that the
entry is greater than zero but rounded to 4 digits after the decimal point.

Time dependency should be clear from the context and is omitted from now on.

The system 
ẋ1

ẋ2

ẋ3

ẋ4

y

 =


−1 0.1 1
0.1 −1 10

1 −1
−0.1 −1

1




x1

x2

x3

x4

u
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can be divided into the two modules
ẋ1

ẋ2

c1
c2

 =


−1 0.1 1
0.1 −1 1

1
−0.1




x1

x2

u
c3


and

ẋ3

ẋ4

y
c3

 =


−1 1

−1 1
1

10




x3

x4

c1
c2


with the connections c1, c2, and c3.

Obviously, the two most important states for the input-output behavior of the whole system
are x1 (which receives the input) and x3 (which is the output). Those two states are directly
connected by the entry in position (3, 1) and the other state couplings are either very small
(entries “±0.1”) or they are not directly related to the “important” states (entry “10”). This also
results by balancing the whole system, where one gets the Hankel and transformation matrices

Σ =


0.6068

0.1042
0.0001

0.0000

 and T =


−0.5952 −0.0280 −0.8381 −0.1751

0.5949 0.0482 −0.8417 0.4453
−0.0201 0.4904 −0.0416 10.1576
−0.0043 −0.4920 0.0886 10.1659

 ,

respectively. Note that the first two Hankel singular values (being significantly bigger than the
third and forth ones) correspond to rows of the transformation matrix which project the system
mainly onto the states x3, x1, and x4 (in decreasing order of importance).

This situation changes after cutting the system into two modules as shown above. Combining
the “local” Hankel and transformation matrices of the two modules2, one gets

Σloc =


0.5071

0.0556
5.0000

0.5000

 and Tloc =


−0.9954 −0.0524
−0.0505 0.3329

0 3.1623
1.0000 0

 .

The problem is, that a truncation of the two modules to one state each would now completely
reject the state x3, because only the first and third row of Tloc would be preserved. This
contradicts the results of the global input-output analysis, where x3 was considered to be the
most important state. The reason for such different results is, that the importance of x4 is
raised by the “connecting” output of c3 in the second module. In fact, truncation cannot be
used here at all, because it deletes the state x3 which subsequently sets the system’s output to
zero. The only solution in this case would be to reduce the module by singular perturbation (see
section 2.4.2) which would preserve the steady state value of x3, but still poorly approximate
the dynamic behavior.

A much better approximation (regardless of the method used to eliminate the unimportant
states) can be achieved by using global I/O analysis and then projecting the obtained gramians

2The matrices of the modules are combined for easier comparison. Moreover, it is possible to proceed by
transforming the whole system with the combined transformation matrix Tloc without mixing states of
different modules and then suppress the unimportant states as indicated by Σloc.
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onto the modules. The resulting matrices

Σglo =


0.3563

0.0002
0.3546

0.0002

 and Tglo =


−0.8407 −0.0437
−0.0255 0.6361

−1.1874 −0.1184
0.0840 16.1596


suggest a projection onto x1 and x3 mainly, when truncating each module to one state. They
are obtained by the following procedure:

1. Calculate the controllability and observability gramian of the whole system, X and Y
respectively, using standard formulas or empirical balancing. (This also has the advantage
that one does not have to figure out which inputs and initial conditions are “natural” for
each module. That has only to be done once for the whole system.)

2. Prevent state transformations that would mix states of different modules by projecting
the gramians onto their “local parts” only to obtain

Xglo =

 P1XP
∗
1

. . .
PmXP

∗
m

 and Yglo =

 P1Y P
∗
1

. . .
PmY P

∗
m

 ,

where Pi is the Galerkin projection onto the states of the ith module.

3. Proceed by calculating the balancing transformation for each module separately3.

This procedure may be justified with the argumentation, that only the local effects of a
system excitation should be measured by the corresponding parts of the gramians. This is
what happens if one carries out the multiplications PiXP ∗i and PiYP ∗i in Definition 6 and
Definition 7, respectively.

Another advantage of this method is, that it always produces the same results, no matter
how the connections of the split system are built. In contrast, it makes a big difference for
“totally local” balancing, where the factor 10 is placed in our example. If it would be placed in
the input matrix of the first module instead of placing it in the output matrix of the second one,
the results would not be the same. The proposed “global” I/O analysis, however, is invariant
to this choice.

4. Comparison of different reduction methods with an example
system

In general, it is very difficult to rate the quality of approximations for a nonlinear system
because tools like Bode diagrams are limited to linear systems. Therefore, we created an ODE
system that has a typical structure for our applications. Systems like the one presented below
could be models of metabolic processes where the states are concentrations of metabolites, e.g.

3This corresponds to calculating the balancing transformation for the whole system using the projected gram-
ians Xglo and Yglo with one exception: The SVD has to be done separately for each module.
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4.1. System description

We will consider a positive ODE system which is based on flows of the type

ϕα(x) : (−1,∞) → (−∞, 1), x 7→ xα

1 + xα

with a parameter α ∈ {1, 3, 5, . . .}. This flow function is increasing for all x ∈ (−1,∞) and
ϕα(0) = 0 holds true. Therefore, it is positive if and only if the concentration is positive so
that it can be used to construct a positive system, and we will consider ϕα for the nonnegative
axis R+ := [0,∞) only. For big values of α, ϕα has a switching point at ϕα(1) = 1

2 . This shape
gets sharper for increasing α and leads to an approximation of the step function:

lim
α→∞

ϕα(x) = σ(x− 1)

Remark. Usually, the switching point of such flows is not always at x = 1, but we prevented introducing
another parameter here, because there are already enough parameters to obtain a system that does not
have very special properties and is complicated enough for testing empirical reduction methods.

Fixing the parameter α and multiplying the function with a nonnegative constant leads to
the definition of the flow matrix

F : Rn
+ → Rn×n

+ , Fij(x) := µij · ϕα(xj),

where Fij(x) is the flow from xj to xi, depending only on xj . µ ∈ Rn×n
+ is a parameter matrix

holding all the inflow coefficients, but since flows from an element to itself do not make any
sense, its diagonal equals zero:

µii = 0 ⇒ Fii ≡ 0, 1 ≤ i ≤ n

Remark. Note that it’s not necessary to take this precaution, because a flow from an element to itself
always vanishes. Therefore we will not use this assumption in the following.

Using the flow matrix, we can now build the compartmental nth-order system

ẋ1 =
∑n

k=1

(
−Fk1(x) + F1k(x)

)
− λx1 + u := f1(x, u),

ẋi =
∑n

k=1

(
−Fki(x) + Fik(x)

)
− λxi := fi(x, u), for 2 ≤ i ≤ n− 1,

ẋn =
∑n

k=1

(
−Fkn(x) + Fnk(x)

)
− λxn − ϕα(xn) := fn(x, u),

y = ϕα(xn),

where the input u is an inflow to x1 and the output y = ϕα(xn) is an outflow of xn. The
mortality parameter λ ∈ R+ is introduced in addition to the parameters µ ∈ Rn×n

+ and α ∈
{1, 3, 5, . . .}.

Remark. It may be disturbing at first sight, that the flow matrix entry Fij determines the flow from
xj to xi. The reason for “swapping” the indices is, that F then reflects the form of the Jacobian of the
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Figure 1: The input function u(t) = ϕα

(
sin

(
π
10 t

)
+ 1

)
for α = 10.

right hand side function f(x, u):

∂f(x, u)
∂x

=



−
∑
k 6=1

F ′
k1(x)− λ F ′

12(x) · · · F ′
1n(x)

F ′
21(x) −

∑
k 6=2

F ′
k2(x)− λ · · · F ′

2n(x)

...
...

. . .
...

F ′
n1(x) F ′

n2(x) · · · −
∑

k 6=n

F ′
kn(x)− λ− ϕ′α(xn)


,

with F ′
ij(x) := ∂Fij(x)

∂xj
.

We fix the parameter values α = 10, λ = 0.03,

µ =



1.23
1.05 1.13
0.76 0.75
1.10 1.25

1.24 0.92 1.01
1 1.19

0.84 1.16
1.01 1.20
0.97 0.82

0.93 1.29 0.77


, (10)

and use the input function u(t) = ϕα

(
sin

(
π
10 t

)
+ 1

)
for all simulations (see Figure 1). According

to (10), we defined a 10th order system that consists of two modules with 5 states each. The
states are strongly coupled within the two modules but the modules are connected to each other
through µ6,5 only. This means that there is only one flow from module 1 to module 2 and no
flow in the reverse direction.

4.2. Importance of the model reduction parameters

For the time being, we try to reduce the entire system without considering its modular structure.
If one uses Definition 6 and Definition 7 without the adjustments (5) and (6), respectively,

the resulting gramians for this system are not usable at all: The controllability gramian has
non-zero entries for the first 4 states only, because the rest of the system does not profit from
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(a) TX = {I1}, TY = {I10}
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(b) TX = {I1,−I1}, TY = {I10,−I10}

Figure 2: Original and reduced (order 2) systems. The input test function used for calculating the
empirical controllability gramian was δ(t), CX = {0.5}, and CY = {0.5}.

the input (due to the rather steep flow functions). The observability gramian even equals zero
in all entries. Therefore, we define our “point of interest” for

uss = 0.5 (11)

which results in the steady state

xss ≈
(
0.93 0.88 0.89 0.94 0.95 0.88 0.87 0.85 0.86 0.89

)T
. (12)

As a first try, we reduce the system to order 2 by truncation and singular perturbation, using
the approximate Dirac impulse δ as input test signal, TX = {I1}, TY = {I10}, CX = {0.5}, and
CY = {0.5}. The simulation results for the original system and the two reduced systems are
plotted in Figure 2(a).

Obviously, the system which was reduced using singular perturbation approximates the orig-
inal system much better. Unfortunately, solving this DAE system takes much more time than
solving the original 10th order system. But, to show the power of this method, we will continue
to plot its results in some of the following attempts.

Figure 2(b) shows a slight improvement of the truncated approximation for small output
values and the steep parts of the simulation. This was achieved using different test matrices
which should exploit the operating region into both the positive and the negative direction. On
the other hand, the approximation gets a little bit worse at the peak values of y.

Another parameter which was suggested to be adjusted is the input test function used during
computation of the empirical controllability gramian. In order to use a more “natural” input
test signal, we set this function to a constant excitation of 0.5 which lasts for the first 2
seconds and to an ongoing constant excitation of 0.5 (see Figures 3(a) and 3(b), respectively).
Note, that the simulation of the DAE systems could not be completed, because the solver was
not able to calculate solutions within the given error bounds.4 But the resulting truncated
models are now even better approximations (at least for the steep parts and small values of the
output in Figure 3(b)). It should also be observed, that the empirical controllability gramian

4Therefore, we will not continue to plot systems reduced by singular perturbation.
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(a) The input test function was a constant excitation
of magnitude 0.5 during the first 2 seconds.
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(b) The input test function was a constant excitation
of magnitude 0.5.

Figure 3: Original and reduced (order 2) systems. The parameters were TX = {I1,−I1}, TY =
{I10,−I10}, CX = {1}, and CY = {0.5}.

corresponding to Figure 3(b) has much bigger entries and also much more varying singular
values than before (which is not a problem in this case).

4.3. Comparison with “linear” gramians

Figure 4 is used to compare our result (which is repeated in Figure 4(a)) with another possibility
to obtain the gramians around some point of interest: Linearize the system around the steady
state defined by (11) and (12), and calculate the usual gramians for the linear system. Then
proceed as before by calculating a balancing transformation and reducing the nonlinear system
using this transformation. In Figure 4(b), we used the gramians of the linearized system only.
Comparing Figures 4(a) and 4(b), one wishes to obtain some kind of mean solution which
incorporates the best features of both. Therefore, we built a mean gramian in Figure 4(c)
and tried to further improve the result by weighting the two versions of the gramians 4:1 in
Figure 4(d).

Building such an average from several calculated gramians seems to be a reasonable method,
since it is also done inside the definitions of the empirical gramians. In fact, one might wonder
if the (time consuming) calculation of the empirical gramians is really necessary, or if it would
be sufficient to linearize a system around several points of interest and build a mean gramian
then. This method may be practicable for improving the empirical gramians. But in general,
it will be very difficult to find a good “mixture” of linear gramians and using the empirical
gramians is a better starting point.

Comparing Figures 4(a) and 4(b) it even seems as if calculating the gramians for one lin-
earization would be enough. That may be true for α = 10, but for more nonlinear systems, the
empirical gramians clearly outperform the linear ones (see Figure 5, where α was increased to
100 and the order of the reduced systems was increased to 3).
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(b) Using the gramians of the linearized system only.
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(c) Building the mean of the empirical and “usual”
gramians.
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(d) Using a weighted average (4:1) of the empirical
and “usual” gramians.

Figure 4: Original and truncated (order 2) systems. The parameters for obtaining the empirical
gramians were the same as in Figure 3(b).
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(a) Good approximation using empirical gramians.
The parameters for obtaining the empirical gram-
ians were the same as in Figure 3(b).
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(b) Unacceptable reduced model using gramians of
the linearized system.

Figure 5: Original and truncated (order 3) systems for α = 100.

4.4. Comparison of methods for modular reduction

After having examined how to reduce the entire system, we now want to preserve the example’s
modular structure and reduce each module separately. This will mean a loss of degrees of
freedom, as we are no longer allowed to transform the full 10-dimensional state space, but are
restricted to the two 5-dimensional state spaces. Therefore, we expect the approximations to
be worse. We now set α = 50 in order to get distinguishable results for the following three
reduction methods:

• Calculate the empirical gramians globally (for the full system) and perform a global
transformation of the full state space (see Figure 6(a)).

• Calculate the empirical gramians locally (for each module separately) and perform a local
transformation of the two modules’ state spaces (see Figure 6(b)).

• Calculate the empirical gramians globally (for the full system) but perform a local trans-
formation of the two modules’ state spaces (see Figure 6(c)).

Surprisingly, the first method produces a rather bad result, whereas the two methods with
local transformations perform very well. Among them, the mixed method which uses global
gramians gives a better approximation. It is difficult to find an explanation for these results,
but one could imagine that the quality of the projected gramians is better than the quality of
the other two versions of gramians. However, the reason for this is quite unclear.

Remark. Using the mixed method, the full vector of Hankel singular values gives a hint of how im-
portant a module is for the whole system: If the module’s Hankel singular values are small compared
to the others, many of the modules states may be reduced.

5. Conclusion

The most important parameters when calculating the empirical gramians seem to be a reason-
able point of interest, as well as good magnitude coefficients CX and CY and test matrices TX
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(a) Global gramians and global transformation.
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(b) Local gramians and local transformation.
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(c) Global gramians but local transformation.

Figure 6: Comparison of different global/local combinations for α = 50. The full system was
always truncated to 2 states, where modules were truncated to 1 state each when a local
transformation was used. The parameters for obtaining the empirical gramians were the
same as in Figure 3(b) (for the full system as well as for the two modules).
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and TY , in order to exploit the system’s operating region.
A change of the input test signal might also improve the results, but often the Dirac impulse

δ will already do its job.
One can try to improve the approximation in some regions of the state space by linearizing

the system in this region and adding the linear gramians to the empirical ones. In doing so, a
weighting factor has to be found because the singular values of the empirical gramians might
have bigger order of magnitudes than the linear ones.

The empirical gramians are much better suited for highly nonlinear systems than the gramians
of a linearization.

Modular reduction may even work better than reducing the full system for systems which
really have a modular structure. To improve the reduction results and to circumvent having to
choose input test signals for every inter-modular connection, one should consider to compute
the empirical gramians for the full system and project them onto the modules as described in
section 3.

To summarize: Model reduction for nonlinear and modular systems using empirical gramians
is much more experimental than the reduction of linear systems, because the quality of the
approximation cannot be determined without simulations and many parameters have to be
considered and adjusted.

A. Description of the Matlab functions

This appendix contains a documentation of the Matlab functions which were used to obtain
the results of section 4. There exists a short (technical) help text for every function and script
file which is available via Matlab’s help command. The code is also well documented so that
having a look with Matlab’s edit command should explain the functionalities. More abstract
descriptions are provided below.

A.1. Core functions

[sigma, T] = calcbal(X, Y)
calculates the Hankel singular values sigma and a balancing transformation T from given
gramians. The algorithm is based on a Cholesky factorization and a singular value de-
composition as described in section 2.3.

The gramians X and Y must be positive definite, which means that the system realization
has to be minimal.

[sigma, T] = calclocbal(X, Y, m)
calculates the Hankel singular values and a balancing transformation from given gramians.
The calculated transformation has a block-diagonal shape so that a system’s modular
structure is preserved during transformation. The modules’ sizes must be passed as a
vector to parameter m.

X and Y are projected onto the modules and the balancing transformation is then calcu-
lated (using calcbal) for each module separately. After that, the solutions are concate-
nated to obtain the full vector of Hankel singular values sigma and the whole balancing
transformation T.
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It has to be observed, that the Hankel singular values are only sorted within each module,
so that one has to reduce the system in a modular way, too.

[X, t, x] = empctrb(rhsfct, testfct, c, T, tsim, xss, uss)
computes the empirical controllability gramian. In addition to the gramian X, the function
also returns the simulation data, that was generated to compute the gramian. If one is
not interested in this additional data, only the gramian may be requested by entering
X = empctrb(...) on the command line.

The function has to be called once for every test matrix T or test magnitude c and a mean
gramian has to be build according to Definition 6.

[Y, t, x, y] = empobsv(rhsfct, outfct, c, T, tsim, xss, uss)
computes the empirical observability gramian. In addition to the gramian Y, the function
also returns the simulation data, that was generated to compute the gramian. But this
function can also be called by entering Y = empobsv(...).

The function has to be called once for every test matrix T or test magnitude c and a mean
gramian has to be build according to Definition 7.

A.2. Functions for the example system

The example system of section 4 consists of three functions containing the right hand side of
the differential equations, the nonlinear flow function ϕα, and the output function, respectively,
as well as the data file exparams.mat. This data file contains the parameters ALPHA ∈ R (non-
linearity), MU1 ∈ R5×5, MU2 ∈ R5×5, MUfull ∈ R10×10 (flow coefficients for module 1, module
2, and the full system, respectively), and LAMBDA ∈ R (mortality).

y = exout(x)
Nonlinear output for the example system. This returns ϕα(xn).

result = exphi(x, alpha)
Nonlinear flow function ϕα. The parameter alpha is passed to this function instead of
using the global variable ALPHA, because it should be easily possible to use this function
without the requirement of having defined a global variable.

dxdt = exrhs(t, x, u)
Nonlinear RHS for the example system which consists of input, flows, mortality, and
output. Be aware, that this function has the parameter u in addition to the parameters t
and x, which are required by the Matlab solvers in this order. Since u(t) may be a function
not only depending on time, but also on an arbitrary number of additional parameters
(what actually happens when calculating the empirical controllability gramian), it would
be difficult to pass those parameters to the right hand side if the right hand side also
needs additional parameters. To handle this problem in a consistent and general way, one
can use the wrapper function applyinputfct which is explained below. This saves the
user from evaluating the input function in his differential equations and the right hand
side only takes a scalar input u.

Furthermore, the derivative ϕ′α of the flow function and the Jacobian are provided for calculating
a linearized system:
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result = exdphi(x, alpha)
Derivative ϕ′α(x) of the nonlinear flow function.

J = exjac(x)
Jacobian ∂f(x,u)

∂x for the RHS of the example system.

A.3. Helper functions

result = applyinputfct(t, x, rhsfct, inputfct, inputargs, varargin)
is used as a wrapper for other functions which depend on a time-dependent input function
and should be simulated using Matlab’s ODE or DAE solvers. Instead of passing the right
hand side of a ODE or DAE system to those solvers (which would make it impossible to
apply the input function), one can pass applyinputfct to the solvers and the right hand
side and input function in turn are given as parameters to applyinputfct.

delta = impulsefct(t)
generates an approximate Dirac impulse. This function has the properties that its support
is very small (determined by the local variable base) and the integral of it equals one.
One has to observe, that the initial step size of ODE solvers has to be set smaller than the
length of the support in oder to really integrate over the impulse. This can be achieved
by the option 'InitialStep' which was chosen to be 10−6 for a support of 10−3.

ss = steadystate(rhsfct, uss, ssguess, maxtime)
calculates the steady state corresponding to the constant input uss. First, the system
(specified by the right hand side rhsfct) is simulated using the initial values ssguess,
and then an optimization is run to minimize the norm of the residual. The function tries
to find the solution within maxtime seconds (approximately).

B. Example work flow

The m-files workflow1, workflow2, and workflow3 are not functions but script files containing
sequences of Matlab commands as they would be entered on the command line. They look rather
big, but the greater part of them is used for defining parameters or displaying information to
the user. The contents of those three files explain the necessary steps during model reduction
and they could be copied and modified in order to work with different systems or parameters.

B.1. Calculation of the empirical gramians (workflow1.m)

This script file is used to calculate empirical gramians for the example systems. All parameters
are set in the first section of the file and can simply be modified when treating other models.

In the file’s second section, the gramians are calculated by calling empctrb and empobsv for
all combinations of given test matrices and test coefficients.

B.2. Calculation of the Hankel singular values and the balancing
transformation (workflow2.m)

This script file relies on already defined gramians and calculates the balancing transformation
T and the Hankel singular values sigma. Furthermore, it sets the Galerkin projection matrix
P. The user may choose global or local balancing by modifying the comments.
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B.3. Simulation and plot of original and reduced systems for comparison
(workflow3.m)

To simulate the original system as well as reduced systems, one may use this file, which has
the least functionality but is the most complicated.

The top section again contains some parameters like the simulation time or the input function,
e.g.

After that, the original system as well as two reduced (by truncation and singular perturba-
tion) systems are simulated. In order to apply the input function during simulation, the helper
function applyinputfct has to be used again. The reduced models are generated from the
original system by applying the transformation and Galerkin projection which were calculated
in workflow2.

The last part plots the input function, the simulated outputs, and the error functions includ-
ing legends and titles.

This file is should be considered to act as a template and the user may want to comment
out the parts concerning the system reduced by singular perturbation, because this simulation
often cannot be completed.
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