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[ 1terature

 G. Welch and G. Bishop, “An Introduction
to the Kalman Filter”, SIGGRPAPH 2001

Course 8.

e http://www.cs.unc.edu/~welch/kalman

* A. Gelb (editor), “Applied Optimal
Estimation”™
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Motivation

Sensor measurements

— complex motion or noisy data?
Motion model

— e.g., constant speed: s(f) =v et
Motion prediction

— S(t+At)=s(t)+veAt
New measurement

— update model “to some extent”




Rudolf Emil Kalman

Born in Budapest, 1930 a =
B.S., M.S from MIT ‘ ' !
Ph.D. from Columbia U. -
Professor at Stanford U.

and U. Florida i’g t—;

Many awards

Seminal paper: “A new Approach to Linear

Filtering and Prediction Problems”, Transactions
ASME, 1960.




Kalman Filter

Optimal data processing algorithm

e Major use: filter out noise of measurement data (but can
also be applied to other fields, e.g. Sensor Fusion)

e Result: Computes an optimal estimation of the state of an
observed system based on measurements

e Jterative

e Optimal: incorporates all information (i.e. measurement
data) that can be provided to it

* Does not need to keep all previous measurement data in
storage!
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System state vector X, at time step k

— 1 x n vector

— process noise w, with p(w) ~ N(0,Q) and
n X n covariance matrix Q (often assumed to be constant)

State transition matrix A
— N X n matrix

— often assumed to be constant
Control input vector u,  (optional)

— 1 x 1 vector
— n x 1 matrix B

Incremental state change:

x, =Ax, , +Bu_+w__,
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Discrete Kalman Filter
- Modeled Process -

* Measurement vector z,

— 1 x m vector

— measurement noise v, with p(v) ~ N(O,R) and
m X m covariance matrix R (often assumed to be

constant)
e Measurement prediction matrix H

— m X n matrix
— often assumed to be constant

e Measurement prediction: |z, = Hx, + v,
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Discrete Kalman Filter
- Computing Model Parameters -

* Procedure:
— use best estimate X, _, of state x,_, at time step k-1

— predict state X, at time step k (“a priori state
estimate™)

— obtain real measurement z,

— compute state update X, at time step k (“a
posteriori state estimate”) using gain matrix K

%, =% +K(z, - HX))
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Discrete Kalman Filter
- Computing Model Parameters -

Oriori state estimate

priori estimate error

priori estimate covariance

posteriori state estimate

posteriori estimate error

A\ -

Xk
€ = X — Xy

_ I\
P, = E|e,e;" |
Xk

Cx = X — Xy

. . . . T
posteriori estimate covariance P, = E [ekek]



A

Ve
7

Discrete Kalman Filter
- Computing Model Parameters-

* A posteriori estimate X,
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* A posteriori estimate X, is

e linear combination of

e difference between

* measurement Z

| | 1
Ve
||||||
|||||||
|||||




>

Discrete Kalman Filter
- Computing Model Parameters-

* A posteriori estimate X, is
e linear combination of

e difference between

* measurement Z, and

S o+ Ly e measurement prediction HX,,
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Discrete Kalman Filter
- Computing Model Parameters-

* A posteriori estimate X, is
e linear combination of
e difference between

* measurement Z, and

f(k\ o+ Tk  measurement prediction HX
\« Hx, e and a priori state X,
20 X X, =X, +K(z, —Hx})
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Discrete Kalman Filter
- Computing Model Parameters-

* A posteriori estimate X, is
e linear combination of
e difference between

* measurement Z, and

i f(k\ o+ Tk  measurement prediction HX
— s HX, e and a priori state X, residual,
u \ innovation
i P AN Ao ~ ~_ S
ZaRRE Xk Xk = Xy +IT<(Zk - Hx, )
S N T S U A N
Kalman gain, t

blending factor



Discrete Kalman Filter
- Computing Model Parameters -

Kalman gain

P H' A <
X =X, + K(z, —HXx,)
HP.H" +R e : :

e N X M matrix

K =

 minimizes the a posteriori error covariance
. T
equation P =FE [ekek]

e residual, when R small
* a priori estimate, when P_ small



Discrete Kalman Filter

- Algorithm -

Measurements
(observed)

States of the system
(cannot be observed)



Discrete Kalman Filter
- Algorithm -

v
Time Update Measurement Update
(“Predict”) (“Correct”)
?
Z1 Z, Zy 41 Measurements
A A & (observed)

States of the system
(cannot be observed)

S




Discrete Kalman Filter

- Algorithm -
v
Time Update Measurement Update
(““Predict”) (“Correct”)
?
 Time update: X, =AX,_, + Bu,
“predict” P, =AP_A"+Q
e Measurement update: K, =P H'(HP,H' +R)™
correct X, =% +K, (z, -HX))
P, =(I-K, H)P;




Extended Kalman Filter (EKF)

Non-|

inear process model

Non-|

inear measurement model

Linearize estimation around the current estimate

using

partial derivatives of the process and

measurement functions

Fundamental flaw: distributions (densities) of
random variables are no longer normal

EKF “ad hoc” state estimator that approximates
optimality of Bayes’ rule by linearizations



How to use a Kalman Filter

* Find a state representation

* Find a process model

e Find a measurement model

There are many ways to apply a Kalman
Filter, 1.e. it depends on the chosen models!



Kalman Filter for Sensor Fusion
SCAAT (Welch and Bishop)

State x: pose and derivatives

‘i’:(t) = (x9y929a9ﬁ?)lﬂ‘x.:?y?z.ﬂdﬂl‘;’?‘y.)

Process model:
x(t) = A(0t)x(t —ot) + w(ot)
State transition via A:
y(t) = y(t—ot) + y(t)ot;
y(t) = y(t-or);

System noise:

,() = N(0,0,(1))




Kalman Filter for Sensor Fusion
SCAAT (Welch and Bischop)

e Individual sensor model for sensor 1

Z,(6) = B (3(0),b(£),E(2)) +V,(¢)

e Measurement function h, (with Jacobian H.)

) G, B(0). O]

%11

H,(x™(2),b(2),c(t))[k,1] =

e Measurement noise
v,(t) = N(0,R,())



Kalman Filter for Sensor Fusion
SCAAT (Welch and Bishop)

e “Single constraint at a time”
* Asynchronous algorithm

e FEach time a new measurement z becomes
available, a new estimate x 1s computed

Kalman Fusio
Filter

Sensor 1

Sensor 2

Sensor 3




Kalman Filter for Sensor Fusion
SCAAT (Welch and Bishop)

Algorithm:
v _
() = A(8t)x(t - &) #(t) =% () +K |z, -£(t)_
P(£) = APt - 8) AT (56 + O(d1) | |P(0) =1 -KH } P~ (1)
f
1. Predict 2. Correct
P H' _
" HP (OHT + R.(0) Kalman Gain
2(t) = h(X™(2),b(1),c(2)) Predicted measurement |

H =H (x(t),b(1),c(2)) Corresponding Jacobian






