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Estimation”
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Motivation

t

s • Sensor measurements
– complex motion or noisy data?

• Motion model
– e.g., constant speed:

• Motion prediction
–

• New measurement
– update model “to some extent”

† 

s(t) = v • t

† 

s(t + Dt) = s(t) + v •Dt



Rudolf Emil Kalman

• Born in Budapest, 1930
• B.S., M.S from MIT
• Ph.D. from Columbia U.
• Professor at Stanford U.

and U. Florida
• Many awards
• Seminal paper: “A new Approach to Linear

Filtering and Prediction Problems”, Transactions
ASME, 1960.



Kalman Filter
Optimal data processing algorithm
• Major use: filter out noise of measurement data (but can

also be applied to other fields, e.g. Sensor Fusion)
• Result: Computes an optimal estimation of the state of an

observed system based on measurements

• Iterative
• Optimal: incorporates all information (i.e. measurement

data) that can be provided to it
• Does not need to keep all previous measurement data in

storage!
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Discrete Kalman Filter
- Modeled Process -

• System state vector xk    at time step k
– 1 x n vector
– process noise wk with p(w) ~ N(0,Q) and

n x n covariance matrix Q (often assumed to be constant)
• State transition matrix A

– n x n matrix
– often assumed to be constant

• Control input vector uk    (optional)
– 1 x l vector
– n x l matrix B

• Incremental state change:

† 

xk = Axk-1 + Buk + wk-1
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Discrete Kalman Filter
- Modeled Process -

• Measurement vector zk
– 1 x m vector
– measurement noise vk with p(v) ~ N(0,R) and

m x m covariance matrix R  (often assumed to be
constant)

• Measurement prediction matrix H
– m x n matrix
– often assumed to be constant

• Measurement prediction:

† 

zk = Hxk + vk
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Discrete Kalman Filter
- Computing Model Parameters -
• Procedure:

– use best estimate          of state xk-1 at time step k-1
– predict state         at time step k (“a priori state

estimate”)
– obtain real measurement zk
– compute state update        at time step k (“a

posteriori state estimate”) using gain matrix K

† 

ˆ x k-1
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ˆ x k

† 

ˆ x k = ˆ x k- + K(zk - Hˆ x k- )



Discrete Kalman Filter
- Computing Model Parameters -
• A priori state estimate
• A priori estimate error
• A priori estimate covariance

• A posteriori state estimate
• A posteriori estimate error
• A posteriori estimate covariance

† 

ˆ x k-

† 

ek
- = xk - ˆ x k-
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Pk
- = E ek

-ek
-T[ ]
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ˆ x k

† 

ek = xk - ˆ x k

† 

Pk = E ekek
T[ ]
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Discrete Kalman Filter
- Computing Model Parameters -
Kalman gain

• n x m matrix
• minimizes the a posteriori error covariance

equation

• residual, when R small
• a priori estimate, when      small† 

Pk = E ekek
T[ ]† 

K =
Pk

-HT

HPk
-HT + R

† 

Pk
-

† 

ˆ x k = ˆ x k- + K(zk - Hˆ x k- )
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- Algorithm -
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Discrete Kalman Filter
- Algorithm -

• Time update:
“predict”

• Measurement update:
“correct”

† 

ˆ x k- = Aˆ x k-1 + Buk

Pk
- = APk-1AT + Q

† 

Kk = Pk
-HT (HPk

-HT + R)-1

ˆ x k = ˆ x k- + Kk (zk - Hˆ x k- )
Pk = (I - KkH)Pk

-

Time Update
(“Predict”)

Measurement Update
(“Correct”)



Extended Kalman Filter (EKF)

• Non-linear process model
• Non-linear measurement model

• Linearize estimation around the current estimate
using partial derivatives of the process and
measurement functions

• Fundamental flaw: distributions (densities) of
random variables are no longer normal

• EKF “ad hoc” state estimator that approximates
optimality of Bayes’ rule by linearizations



How to use a Kalman Filter

• Find a state representation
• Find a process model
• Find a measurement model

There are many ways to apply a Kalman
Filter, i.e. it depends on the chosen models!



Kalman Filter for Sensor Fusion
SCAAT (Welch and Bishop)

• State x:   pose and derivatives

• Process model:

• State transition via A:

• System noise:
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Kalman Filter for Sensor Fusion
SCAAT (Welch and Bischop)

• Individual sensor model for sensor i

• Measurement function hi (with Jacobian Hi)

• Measurement noise
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Kalman Filter for Sensor Fusion
SCAAT (Welch and Bishop)

• “Single constraint at a time”
• Asynchronous algorithm
• Each time a new measurement z becomes

available, a new estimate x is computed

Sensor 3

Sensor 1

Sensor 2

Kalman Fusion
Filter



Algorithm:
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