Augmented Reality II - Projective Geometry -

Gudrun Klinker April 20, 2004 and April 27, 2004

Part 1: Projective Geometry and Transformations in 2D

Literature

- Richard Hartley and Andrew Zisserman, "Multiple View Geometry in Computer Vision", Cambridge University Press, 2000. (Section 1)
- Illustrations (VRML) at illustrations/ProjGeom2D/

Projective Geometry and Transformations in 2D

- Geometric distortion due to perspective Projection
- Invariant:
 - Straight lines
- Not invariant:
 - Angles
 - Parallel lines

2D Projective Plane

- Points -

• *Inhomogeneous* notation in R²

 Homogeneous notation in P² (projective space)

$$P = \begin{pmatrix} x, & y \end{pmatrix}^{\mathrm{T}}$$

$$\mathbf{x} = (wx, wy, w)^{\mathrm{T}}$$
$$= (x, y, 1)^{\mathrm{T}}, with : w = 1$$

2D Projective Plane - Points -

Examples

 \mathbf{R}^2

$$P_1 = (0.4, 0.3)^{\mathrm{T}}$$

$$P_2 = (0.1, \quad [0.3]^{\mathrm{T}}$$

$$P_3 = (0.5, 0.5)^{\mathrm{T}}$$

$$\mathbf{x_1} = (0.4w, 0.3w, w)^{\mathrm{T}}$$

$$= (0.4, 0.3, 1.0)^{\mathrm{T}}$$

$$= (0.8, 0.6, 2.0)^{\mathrm{T}}$$

$$\mathbf{x_2} = (0.3, [0.9, 3.0)^{\mathrm{T}}$$

 $\mathbf{x_3} = (0.5, 0.5, 1.0)^{\mathrm{T}}$

2D Projective Plane - Lines -

• Line equation:

Line normal:

$$ax + by + c = 0$$

$$\mathbf{n} = (a, b)/|\mathbf{n}|$$

• Homogeneous line notation in P^2 (projective space): $\mathbf{l} = k(a, b, c)^T$

$$w(x, y, 1) \bullet k = 0$$

$$\mathbf{x}^{\mathrm{T}}\mathbf{l} = \mathbf{l}^{\mathrm{T}}\mathbf{x} = 0$$

2D Projective Plane - Lines -

$$\mathbf{l} = k(a, b, c)^{\mathrm{T}}$$

Examples

$$l_1: 2x \square y \square 2 = 0$$

$$l_2: 2x \square y \square 0.5 = 0$$

$$l_3: x \square 3y + 1 = 0$$

$$\mathbf{l}_1 = \begin{pmatrix} 2, & \Box 1, & \Box 2 \end{pmatrix}^{\mathrm{T}}$$
$$= \begin{pmatrix} \Box 1, & 0.5, & 1.0 \end{pmatrix}^{\mathrm{T}}$$

$$\mathbf{l}_2 = \begin{pmatrix} 2, & \Box 1, & \Box 0.5 \end{pmatrix}^{\mathrm{T}}$$
$$= \begin{pmatrix} \Box 4, & 2, & 1 \end{pmatrix}^{\mathrm{T}}$$

$$\mathbf{l}_3 = \begin{pmatrix} 1, & \square 3, & 1 \end{pmatrix}^{\mathrm{T}}$$

2D Projective Plane - Comparison -

 R^2

P

- Degrees of Freedom (*DOF*): 2
- Point P = (x,y)
- Line 1: ax+by+c=0Normal $\mathbf{n}=(a,b)/|\mathbf{n}|$

- Degrees of Freedom(DOF): 2
- Vector $\mathbf{x} = \mathbf{w}(\mathbf{x}, \mathbf{y}, 1)^{\mathrm{T}}$
- Vector $\mathbf{l} = \mathbf{k}(\mathbf{a}, \mathbf{b}, \mathbf{c})^{\mathrm{T}}$
- Duality: $\mathbf{x}^{\mathrm{T}}\mathbf{l} = \mathbf{l}^{\mathrm{T}}\mathbf{x} = 0$

2D Projective Plane

- Intersection of Lines -

- Lines $\mathbf{l_1} = (\mathbf{a_1}, \mathbf{b_1}, \mathbf{c_1})^{\mathrm{T}}$ and $\mathbf{l_2} = (\mathbf{a_2}, \mathbf{b_2}, \mathbf{c_2})^{\mathrm{T}}$ intersect at a point $\mathbf{x} = (\mathbf{x}, \mathbf{y}, \mathbf{w})^{\mathrm{T}}$.
- \mathbf{x} is on $\mathbf{l_1}$ and on $\mathbf{l_2}$: $\mathbf{x}^T \mathbf{l_1} = 0$, $\mathbf{x}^T \mathbf{l_2} = 0$
- \mathbf{x} is perpendicular to $\mathbf{l_1}$ and $\mathbf{l_2}$.
- x is cross product of l_1 and l_2 .

$$\mathbf{x} = \mathbf{l_1} \square \mathbf{l_2} = \begin{vmatrix} i & j & k \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = \begin{bmatrix} b_1 c_2 \square c_1 b_2 \square c_1 \\ c_1 a_2 \square a_1 c_2 \square a_1 c_2 \square a_1 c_2 \square a_1 b_2 \square b_1 a_2 \square a_1 b_2 \square b_1 a_2 \square a_1 b_2 \square$$

Example

$$l_2: 2x \prod y \prod 0.5 = 0$$

$$l_3: x \square 3y + 1 = 0$$

$$P_3 = (0.5 \quad 0.5)^{\mathrm{T}}$$

$$\mathbf{l_2} = ([]4.0, 2.0, 1.0)^{\mathrm{T}}$$

$$\mathbf{l_3} = \begin{pmatrix} 1.0, & \square 3.0, & 1.0 \end{pmatrix}^{\mathrm{T}}$$

$$\mathbf{x_3} = (0.5, 0.5, 1.0)^{\mathrm{T}}$$

2D Projective Plane

- Line through 2 Points -
- Points $\mathbf{x_1} = (x_1, y_1, w_1)^T$ and $\mathbf{x_2} = (x_2, y_2, w_2)^T$ define a line $\mathbf{l} = (a, b, c)^T$.
- I goes through $\mathbf{x_1}$ and $\mathbf{x_2}$: $\mathbf{x_1}^T \mathbf{l} = 0$, $\mathbf{x_2}^T \mathbf{l} = 0$
- I is perpendicular to both vectors.
- I is cross product of x_1 and x_2 .

$$\mathbf{l} = \mathbf{x}_1 \square \mathbf{x}_2$$

Example

$$\mathbb{R}^2$$

$$P_1 = (0.4, 0.3)^{\mathrm{T}}$$

$$P_2 = (0.1, \quad \Box 0.3)^{\mathrm{T}}$$

$$l_2: 2x \Box y \Box 0.5 = 0$$

$$\mathbf{x_1} = (0.4, 0.3, 1.0)^{\mathrm{T}}$$

$$\mathbf{x_2} = (0.1, \quad \Box 0.3, \quad 1.0)^{\mathrm{T}}$$

$$\mathbf{l_2} = (2.0, \quad \Box 1.0, \quad \Box 0.5)^{\mathrm{T}}$$

2D Projective Plane

- Ideal Points -

• Intersection of parallel lines $\mathbf{l_1} = (a,b,c)^T$ and $\mathbf{l_2} = (a,b,c')^T$

$$\mathbf{x} = \mathbf{l_1} \, \Box \mathbf{l_2} = (c' \Box c) \Box a \Box a \Box 0$$

- Parallel lines intersect "at infinity".
- *Ideal points* lie on plane w=0 (*Points at infinity*).

Example

$$\mathbb{R}^2$$

$$l_1: 2x \square y \square 2 = 0$$

$$l_2: 2x \square y \square 0.5 = 0$$

$$\mathbf{l_2} = \begin{pmatrix} 2, & \Box 1, & \Box 2 \end{pmatrix}^{\mathrm{T}}$$

$$\mathbf{l_3} = (2, \quad \Box 1, \quad \Box 0.5)^{\mathrm{T}}$$

2D Projective Plane - Ideal Points -

2D Projective Plane

- Points at Infinity -
- Set of all ideal points (points at infinity):

$$\mathbf{x_{Id_i}} = (\mathbf{x_i, y_i, 0})^{\mathrm{T}}$$
$$= \mathbf{s}(\mathbf{x_i/y_i, 1, 0})^{\mathrm{T}}$$

i.e.: all ideal points lie in plane, w = 0.

Example

$$\mathbb{R}^2$$

$$l_1: 2x \square y \square 2 = 0$$

$$l_2: 2x \square y \square 0.5 = 0$$

$$\mathbf{l_2} = \begin{pmatrix} 2, & \Box 1, & \Box 2 \end{pmatrix}^{\mathrm{T}}$$

$$\mathbf{l_3} = (2, \quad \Box 1, \quad \Box 0.5)^{\mathrm{T}}$$

2D Projective Plane - Line at Infinity -

• Set of all ideal points (points at infinity): $\mathbf{x_{Id}}_{i} = (\mathbf{x}_{i}, \mathbf{y}_{i}, 0)^{T} = \mathbf{s}(\mathbf{x}_{i}/\mathbf{y}_{i}, 1, 0)^{T}$

i.e.: all \bar{i} deal points lie in plane, w = 0.

• The *line at infinity* represents all ideal points.

Normal to the plane w=0.

Set of the directions of all lines in the plane.

Projective Transformations in 2D

Projective Transformations

- 2D projective geometry: Study of properties of the projective plane P² that are invariant under a group of transformations called projectivities.
- Projectivity:
 Invertible mapping h: P² x P² that maps lines to lines: if x₁, x₂, x₃ are collinear, then h(x₁), h(x₂), h(x₃) are also collinear.
- Synomyms for projectivity: collineation, projective transformation, homography.

Projective Transformations

- Algebraic Formulation -
- Homogeneous matrix H:

$$h(\mathbf{x}) = \mathbf{H}\mathbf{x}$$

$$\mathbf{x'} = \mathbf{H}\mathbf{x}$$

$$\begin{bmatrix} x_1' \\ x_2' \\ x_3' \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} x_3 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

• 8 DOF (up to a scale factor)

Projective Transformations

- Central Projection -
- Central projection between 2 planes maps lines to lines.
- Not preserved:
 - Parallel lines
 - Angles

Removing Projective Distortion from a Perspective Image of a Plane

- Distortion due to projective projection H: Parallel lines in 3D converge to a finite point in a projected image.
- Undo distortion by computing H⁻¹.

Removing Projective Distortion from a Perspective Image of a Plane

- Match 4 non-collinear world $(x_{wrld}, y_{wrld}, 1)_{i=1..4}$ and image $(x_{img}, y_{img})_{i=1..4}$ points.
- Set of 8 linear equations:

$$x_{img} = \frac{h_{11}x_{wrld} + h_{12}y_{wrld} + h_{13}}{h_{31}x_{wrld} + h_{32ywrld} + h_{33}}$$
$$h_{21}x_{wrld} + h_{22}y_{wrld} + h_{23}$$

$$y_{img} = \frac{h_{21}x_{wrld} + h_{22}y_{wrld} + h_{23}}{h_{31}x_{wrld} + h_{32}y_{wrld} + h_{33}}$$

• Solve for 8 parameters of H.

Transformation Hierarchy

Hierarchy of Transformations

- Hierarchy:
 Projective, affine, Euclidean (isometry, similarity)
- Properties:Degrees of freedom, invariants

Hierarchy of Transformations - Class I: Isometries -

- Description: rotation followed by a translation; preserves Euclidean distance.
- Transformation matrix: $(//= \pm 1)$

- DOF:
- Invariants: length, angles, area.

Hierarchy of Transformations

- Class II: Similarities -
- Description: isometry plus scaling; preserves shape, *metric structure*.
- Transformation matrix:

- DOF:
- Invariants: angles, parallel lines, ratios of lengths and areas.

Hierarchy of Transformations - Class III: Affinities -

- Description: similarity plus skew (non-isotropic scaling (☐, ☐,)).
- Transformation matrix:

- DOF: 6
- Invariants: parallel lines, ratio of lengths of parallel line segments, ratio of areas.

Hierarchy of Transformations

- Class IV: Projectivities -
- Description: non-singular linear transformation of homogeneous coordinates.
- Transformation matrix:

- DOF:
- Invariants: cross ratio of 4 collinear points (cross ratio of lengths of a line).

Hierarchy of Transformations - Affine vs. Projective -

- For a given affinity,
 - area scaling is the same everywhere
 - orientation of a line is independent of its location in the image
- For a projectivity,
 - area scaling varies with position (distant objects look smaller)
 - orientation depends on location (parallel lines converge at the vanishing point)
 - vector v in third row of H

Hierarchy of Transformations - Affine vs. Projective -

Mapping of an ideal point $(x_1, x_2, 0)^T$:

• The ideal point doesn't stay at infinity! (It becomes a *vanishing point*).

Hierarchy of Transformations

- Decomposition of a Projectivity -
- A projectivity can be decomposed into a chain of transformations:

$$H = H_{S}H_{A}H_{P}$$

$$= \begin{bmatrix} \mathbf{k} \mathbf{R} & \mathbf{t} & \mathbf{0} & \mathbf{I} & \mathbf{0} \\ \mathbf{0}^{T} & \mathbf{1} & \mathbf{0}^{T} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{t} \\ \mathbf{v}^{T} & \mathbf{v} \end{bmatrix} \begin{bmatrix} \mathbf{k} & \mathbf{t} \\ \mathbf{v}^{T} & \mathbf{v} \end{bmatrix}$$

- K is an upper-triangular matrix, normalized as $\det K = 1$.
- Valid if $v \neq 0$, unique if s > 0.

Recovery of Affine and Metric Properties from Images

Recovery of Affine and Metric Properties from Images

- Projectivity: 8 DOF
- Affinity: 6 DOF
- Similarity: 4 DOF

- Go from projectivity to similarity (recover 4 DOF), by using
 - the line at infinity, **l** (2 DOF)
 - two projected right angles (2 DOF)

Recovery of Affine Properties

- The Line at Infinity, I -
- Under projective transformations, 1 is mapped to the vanishing line (connecting several vanishing points).
- Find vanishing points in the image by identifying intersections of projected parallel lines.
- Find H to transform the projected I (horizon line) back to its canonical position, I = (0, 0, 1)

Recovery of Metric Properties

- Projected right angles -
- Under affine projection, angles are not invariant.
- Find two projected right angles in the image and "unskew" them.
- Find H to transform the lines forming the projected right angles back to their canonical position.

Part 2: Projective Geometry and Transformations in 3D

Literature

- Richard Hartley and Andrew Zisserman, "Multiple View Geometry in Computer Vision", Cambridge University Press, 2000. (Sections 2, 3)
- Illustrations (VRML)
 at illustrations/ProjGeom2D/
 and illustrations/ProjGeom3D/

2. Projective Geometry and Transformations in 3D

- Geometric distortion due to perspective Projection
- Invariant:
 - Straight lines
- Not invariant:
 - Angles
 - Parallel lines

Points, lines, and planes

3D Projective Space - Points -

• *Inhomogeneous* notation in R³

 Homogeneous notation in P³ (projective space)

$$P = \begin{pmatrix} x, & y, & z \end{pmatrix}^{\mathrm{T}}$$

$$\mathbf{x} = \begin{pmatrix} wx, & wy, & wz, & w \end{pmatrix}^{\mathrm{T}}$$
$$= w(x, & y, & z, & 1)^{\mathrm{T}}$$

Projective Plane - Points

Examples

 $\mathbf{R}^{:}$

 P^3

$$P_1 = \begin{pmatrix} 2, & 4, & 3 \end{pmatrix}^T$$

$$P_2 = (\Box 1, \quad 2, \quad 3)^{\mathrm{T}}$$

$$P_3 = (2.5, \quad \square 3, \quad \square 3)^{\mathrm{T}}$$

$$\mathbf{x_1} = w(2, \quad \square 4, \quad \square 3, \quad 1.0)^{\mathrm{T}}$$

$$\mathbf{x_2} = w(\Box 1, \Box 2 \quad 3 \quad 1.0)^{\mathrm{T}}$$

$$\mathbf{x_3} = w(2.5, \quad \square 3, \quad \square 3, \quad 1.0)^{\mathrm{T}}$$

3D Projective Space - Planes -

• Plane equation:

Plane normal:

$$ax + by + cz + d = 0$$

$$n = (a, b, c)/|n|$$

• Homogeneous plane notation in P³ (projective space): $\Box = k(a, b, c, d)^T$

$$w(x, y, z, 1) \bullet k \begin{matrix} \Box a \Box \\ \Box b \Box \\ \Box c \Box \\ \Box d \end{matrix} = 0$$

$$\mathbf{x}^{\mathrm{T}} / = / \mathbf{x} = 0$$

REMINIZA Projective Plane
- Lines -

$$\mathbf{l} = k(a, b, c)^{\mathrm{T}}$$

Example

- Points vs. Planes -

• A plane is defined by the join of 3 points.

$$\begin{bmatrix} \mathbf{x}_1^T \\ \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = 0$$

- A point is defined by the intersection of three planes.
- Duality: $\mathbf{x}^{\mathrm{T}} / = / \mathbf{x}^{\mathrm{T}} \mathbf{x} = 0$

- Column Spaces and Nullspaces -
- For 3 points:(3 planes similarly)

3D-column space 1D-nullspace (rank = 3)

3 points

normal to plane

- Column Spaces and Nullspaces -
- 3 collinear points: (linearly dependent) (or 3 planes intersecting in a line)

$$\begin{bmatrix} x_1 & y_1 & z_1 & 1.0 \\ x_2 & y_2 & z_2 & 1.0 \\ x_3 & y_3 & z_3 & 1.0 \end{bmatrix} = 0$$

2D-column space 2D-nullspace (rank =2)

line line

3D Projective Space - Lines -

- Join of two points or Intersection of two planes
- 4 degrees of freedom (DOF) (homogeneous 5-vector)
- Representations:
 - Join of two points (nullspace and span)
 - Intersection of two planes (Plücker matrices)
 - Map between both (Plücker line coordinates)

Projective Transformations

Projective Transformations

- Algebraic Formulation -
- Homogeneous matrix H:

• 15 DOF (up to a scale factor)

Hierarchy of Transformations

- Hierarchy:
 Projective, affine, Euclidean (isometry, similarity)
- Properties:Degrees of freedom, invariants

Hierarchy of Transformations - Class I: Isometries -

- Description: rotation followed by a translation; preserves Euclidean distance.
- Transformation matrix:

$$\begin{bmatrix} \mathbf{R}_{3\mathbf{x}3} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix}$$

- DOF: 6
- Invariants:volume.

Hierarchy of Transformations

- Class II: Similarities -
- Description: isometry plus scaling; preserves shape, *metric structure*.
- Transformation matrix:

$$\begin{bmatrix} \mathbf{s} \mathbf{R}_{3\mathbf{x}3} & \mathbf{t} \\ \mathbf{0}^T & \mathbf{1} \end{bmatrix}$$

- DOF: 7
- Invariants: angles, parallel lines, ratios of lengths and areas, absolute conic.

Hierarchy of Transformations - Class III: Affinities -

- Description: similarity plus skew (non-isotropic scaling (\square, \square_2)).
- Transformation matrix:

$$\begin{bmatrix} A & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix}$$

- DOF: 12
- Invariants: Parallelism of planes, volume ratios, centroids, plane at infinity.

Hierarchy of Transformations

- Class IV: Projectivities -
- Description: non-singular linear transformation of homogeneous coordinates.
- Transformation matrix:

- DOF: 15
- Invariants: Intersection and tangency of surfaces in contact, sign of Gaussian curvature.

- Plane at Infinity -

Projective Plane - Ideal Points -

• Intersection of parallel lines $\mathbf{l_1} = (a,b,c)^T$ and $\mathbf{l_2} = (a,b,c')^T$

$$\mathbf{x} = \mathbf{l_1} \, \Box \mathbf{l_2} = (c' \Box c) \Box a = 0$$

- Parallel lines intersect "at infinity".
- *Ideal points* lie on plane w=0 (*Points at infinity*).

$$2x \square y \square 2 = 0$$

$$l_2:2x \square y \square 0.5 = 0$$

$$\mathbf{l_2} = \begin{pmatrix} 2, & \Box 1, & \Box 2 \end{pmatrix}^{\mathrm{T}}$$

$$\mathbf{l_3} = (2, \quad \Box 1, \quad \Box 0.5)^{\mathrm{T}}$$

REMINDED Projective Plane - Ideal Points -

Projective Plane REMINDE Line at Infinity -

Set of all ideal points (points at infinity):

$$\mathbf{x_{Id_i}} = (x_i, y_i, 0)^T = s(x_i/y_i, 1, 0)^T$$

i.e.: all ideal points lie in plane, w = 0.

• The *line at infinity* represents all ideal points.

Set of the directions of all lines in the plane.

3D Projective Space - Plane at Infinity -

- Two parallel planes intersect along a line at infinity.
- A line is parallel to another line, iff their point of intersection is on a line at infinity.
- Differently oriented planes form (together with parallel planes) different lines at infinity.
- All lines at infinity a coplanar. They lie within the plane at infinity
 at w = 0.
- It is represented by the vector

Hierarchy of Transformations RELATION Affine vs. Projective -

Mapping of an ideal point $(x_1, x_2, 0)^T$:

• Projective: $\begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ v_1 & v_2 & 1 \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 \\ a_{21}x_1 + a_{22}x_2 \\ v_1x_1 + v_2x_2 \end{bmatrix}$

• The ideal point doesn't stay at infinity! (It becomes a *vanishing point*).

Hierarchy of Transformations Decomposition of a Projectivity -

A projectivity can be decomposed into a chain of transformations:

$$H = H_{S}H_{A}H_{P}$$

$$= \begin{bmatrix} \mathbf{J}\mathbf{R} & \mathbf{t} & \mathbf{0} & \mathbf{I} & \mathbf{0} \\ \mathbf{0}^{T} & \mathbf{1} & \mathbf{0}^{T} & \mathbf{1} \end{bmatrix} \quad \mathbf{0} \quad \mathbf{$$

- K is an upper-triangular matrix, normalized as $\det K = 1$.
- Valid if $v \neq 0$, unique if s > 0.

- 2D Projective Transformations -

- 2D Projective Transformations -
- Minimum number of measurements:
 4 points
- Minimal solutions for robust estimation algorithms (RANSAC)
- Approximate solutions for noisy data: minimize a cost function
 - algebraic error
 - geometrical or statistical image distance

- Direct Linear Transformation (DLT)-
 - Given: at least four 2D-to-2D point correspondences
 - Transformation: $\mathbf{x_i'} = \mathbf{H} \mathbf{x_i}$

• Notation:

$$H = \begin{bmatrix} \mathbf{h}^{1T} \\ \mathbf{h}^{2T} \\ \end{bmatrix}$$

$$= \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix}$$

- Direct Linear Transformation (DLT)-
 - Given: at least four 2D-to-2D point correspondences
 - Transformation: $x_i' = Hx_i$
 - Observation: $\mathbf{x_i'} \square \mathbf{H} \mathbf{x_i} = 0$

$$\mathbf{x_i'} = \mathbf{h}^{1T} \mathbf{x_i} = 0$$

$$\mathbf{h}^{2T} \mathbf{x_i} = 0$$

$$\begin{bmatrix} y_i' \mathbf{h}^{3T} \mathbf{x}_i & w_i' \mathbf{h}^{2T} \mathbf{x}_i \\ w_i' \mathbf{h}^{1T} \mathbf{x}_i & x_i' \mathbf{h}^{3T} \mathbf{x}_i \end{bmatrix} = 0$$

$$\begin{bmatrix} x_i' \mathbf{h}^{2T} \mathbf{x}_i & y_i' \mathbf{h}^{1T} \mathbf{x}_i \end{bmatrix} = 0$$

$$\mathbf{x_i'} = \begin{bmatrix} x_i' \\ y_i \\ z_i' \end{bmatrix}$$

- Direct Linear Transformation (DLT)-

- Direct Linear Transformation (DLT)-

- Direct Linear Transformation (DLT)-

Estimation Direct Linear Estimation (DLT)

- 2 equations per point
- 8 unknowns (plus scale factor)
- --> at least four points to solve for H computing the SVD of $A = UDV^{T}$
 - overdetermined case: minimize a suitable cost function, while $h \neq 0$
 - inhomogeneous solution ($h_9 = 1$)
 - degenerate configurations (collinear points)

Estimation Cost Functions

- Algebraic distance: $\|\Delta\|^2 = \|A\mathbf{h}\|^2$ $d_{a \lg}(\mathbf{x_1}, \mathbf{x_2})^2 = a_1^2 + a_2^2$ $\mathbf{a} = (a_1, a_2, a_3) = \mathbf{x_1} \ \mathbf{x_2}$
- Geometric distance: *transfer error*Euclidean distance in 2. image between measured and projected point
- Reprojection error, both images: symmetric transfer error

Robust Estimation

- Outliers versus inliers
 - model fitting (minimization of some cost function)
 - data classification
- Select a "good" set of samples
 - margin of tolerance

Robust Estimation - RANSAC -

RANdom SAmple Consensus

- Select a *random sample* of points to compute an initial estimation of H.
- Compute *support* for this estimation i.e., number of inliers (measurements within tolerance): *consensus set*
- Repeat with several random samples.

Robust Estimation - RANSAC -

- What distance threshold?
 - Assume Gaussian noise
 - Use Chi-Square test (95%)
- How many samples? Ensure that with high probability (99%) at least one of the random samples is free of outliers.
- How large is a consensus set? Similar to the number of inliers "believed" to be in the data set.