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Outline – Two-View Geometry 

• Epipolar Geometry 

• Fundamental Matrix Computation 

• 3D Reconstruction 
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(i) Correspondence geometry: Given an image point x in 

the first image, how does this constrain the position of the 

corresponding point x’ in the second image? 

 

(ii) Camera geometry (motion): Given a set of corresponding 

image points {xi ↔x’i}, i=1,…,n, what are the cameras P and 

P’ for the two views? 

 

(iii) Scene geometry (structure): Given corresponding image 

points xi ↔x’i  and cameras P, P’, what is the position of 

(their pre-image) X in space? 

 

Reminder – Three Questions 
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Algebraic representation of Epipolar Geometry:  

l'x 

 We will see that mapping is (singular) correlation 

(i.e. projective mapping from points to lines) 

represented by the fundamental matrix F. 

The Fundamental Matrix F 
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• Line joining two points 

The line through two points    and     is  x][x'x'[x]x'xl xx x x'

Points From Lines and Vice-versa 

llll xx ]'['][l'lx 

• Intersections of lines  

The intersection of two lines   and    is  l l'

Example 
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xHx' π

x'e'l'    FxxHe' π  

mapping from 2-D to 1-D family (rank 2) 

The Fundamental Matrix F – Geometric Derivation 
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Algebraic derivation: 

  xλPλ)C1(λX   IPP 

  

 PP'e'F

xPP'CP'l 

(note: doesn’t work for C=C’  F=0) 

xP

 λX

The Fundamental Matrix F 
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Correspondence condition: 

0Fxx'T 

 The fundamental matrix satisfies the condition 

that for any pair of corresponding points x↔x’ in 

the two images: 

 0l'x'T 

The Fundamental Matrix F 
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F is the unique 3x3 rank 2 matrix that satisfies x’TFx=0 for all x↔x’.  

(i) Transpose: if F is fundamental matrix for (P,P’),  

then FT is fundamental matrix for (P’,P) 

(ii) Epipolar lines: l’=Fx & l=FTx’ 

(iii) Epipoles: on all epipolar lines, thus e’TFx=0, x 

e’TF=0, similarly Fe=0 

(iv) F has 7 d.o.f. , i.e. 3x3-1(homogeneous)-1(rank2) 

(v) F is a correlation, projective mapping from a point x to 

a line l’=Fx (not a proper correlation, i.e. not invertible) 

The Fundamental Matrix F 
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Epipolar Geometry 



1. Computable from corresponding points 

2. Simplifies matching 

3. Allows to detect wrong matches 

4. Related to calibration 

Canonical representation: 

  ]λe'|ve'F][[e'   P'0]|[IP T 

Epipolar Geometry 
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0Fxx'T 

... separate knowns from unknowns: 

0'''''' 333231232221131211  fyfxffyyfyxfyfxyfxxfx

   0,,,,,,,,1,,,',',',',','
T

333231232221131211 fffffffffyxyyyxyxyxxx

(data) (unknowns) 

(linear) 

Epipolar Geometry – Basic Equations 
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Epipolar Geometry – Basic Equations 
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0Fe'T  0Fe  0detF  2Frank 
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The Singularity Constraint 
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Non singular F Forcing singularity using the 

SVD method 

The Singularity Constraint 

16 3D Computer Vision II - Two View Geometry 



0f
1''''''

1''''''

777777777777

111111111111
















yxyyyxyxyxxx

yxyyyxyxyxxx



  T

9x9717x9 V0,0,σ,...,σdiagUA 

9x298 0]VA[V  

1...70,)xλFF(x 21

T
 iii

One parameter family of solutions 

But F1+lF2 not automatically rank 2 

The Minimum Case – 7 Point Correspondences 
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F1 F2 

F 

3 

F7pts 

0λλλ)λFFdet( 01

2

2
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321  aaaa

(obtain 1 or 3 solutions) 

(cubic equation) 

One or three solutions (only real solutions are acceptable) 

The Minimum Case – Impose Rank 2 
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The 8-Point Algorithm 
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Orders of magnitude difference 

between columns of data matrix 

 least-squares yields poor results 

The Unnormalized 8-Point Algorithm 
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The Normalized 8-Point Algorithm 

Transform image to ~[-1,1]x[-1,1] 

(0,0) 

(700,500) 

(700,0) 

(0,500) 

(1,-1) 

(0,0) 

(1,1) (-1,1) 

(-1,-1) 



























1

1
500

2

10
700

2

Least squares yields good results (Hartley, PAMI´97) 
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Symmetric Epipolar Error 
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Maximum Likelihood Estimation 

    
i

iiii dd
22

'x̂,x'x̂,x

(= least-squares for Gaussian noise) 

0x̂F'x̂  subject to T 

iXt],|[MP'0],|[IP 

Parameterize: 

Initialize: normalized 8-point, (P,P‘) from F, reconstruct Xi 

iiii XP'x̂,PXx̂ 

Minimize cost using Levenberg-Marquardt 

(preferably sparse LM, see book) 

(overparametrized) 

Gold Standard 

25 3D Computer Vision II - Two View Geometry 



Alternative, minimal parametrization (with a=1) 

(note (x,y,1) and (x‘,y‘,1) are 

epipoles) 
problems:   

• a=0  pick largest of a,b,c,d to fix 

• epipole at infinity  pick largest of x,y,w and of x’,y’,w’ 

4x3x3=36 parametrizations! 

reparametrize at every iteration, to be sure 

Gold Standard 
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(problem if some x is located at epipole) 

advantage: no subsidiary variables required 

First-order Geometric Error (Sampson Error) 
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Recommendations 

• Do not use unnormalized algorithms 

• Quick and easy to implement: 8-point normalized 

• Better: enforce rank-2 constraint during minimization 

• Best: Maximum Likelihood Estimation  

(minimal parameterization, sparse implementation) 
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Special Case 

Enforce constraints for optimal results: 

• Pure translation (2dof): 

 

 

• Planar motion (6dof),  

• Calibrated case (5dof) 

 

 ][e'F
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What happens to an epipolar line if there is noise? 

Monte Carlo 

n=10 n=15 n=25 n=50 

The Envelope of Epipolar Lines 
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Lines give no constraint for two view geometry 

(but will for three and more views) 

 

Curves and surfaces yield some constraints 

related to tangency 

Other Entities 
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(i) Interest points 

(ii) Putative correspondences 

(iii) RANSAC  

(iv)  Non-linear re-estimation of F 

(v) Guided matching 

 

Repeat (iv) and (v) until stable 

Automatic Computation of F 
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Feature Points 

• Extract feature points to relate images 

 

• Required properties: 

– Well-defined  

   (i.e. neigboring points should all be different) 

– Stable across views 

 (i.e. same 3D point should be extracted as feature  

 for neighboring viewpoints) 
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homogeneous 

edge 

corner 

(e.g. Harris & Stephens ‘88; Shi & Tomasi ‘94) 

Find points that differ as much as possible  

from all neighboring points 

Feature Points 
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Feature Points 

Select strongest features (e.g. 1000/image) 
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Feature Matching 

Evaluate NCC for all features with similar coordinates 

Keep mutual best matches 

Still many wrong matches! 

     
10101010

,,´´, e.g. hhww yyxxyx 

? 
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Gives satisfying results  

for small image motions 

Feature Example 
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Wide-baseline Matching 

• Requirement to cope with larger variations between images 

 

– Translation, rotation, scaling 

– Foreshortening 

 

– Non-diffuse reflections 

– Illumination 

 geometric  

transformations 

photometric  

changes 
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Wide-baseline Matching 

 Wide baseline matching for two different region types 

(Tuytelaars and Van Gool BMVC 2000) 
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RANSAC 

Step 1. Extract features 

Step 2. Compute a set of potential matches 

Step 3. do 

  Step 3.1 select minimal sample (i.e. 7 matches) 

  Step 3.2 compute solution(s) for F 

  Step 3.3 determine inliers 

   until (#inliers,#samples)<95%  

  samples#7
)1(1

matches#

inliers#
#inliers 90% 80% 70% 60% 50% 

#samples 5 13 35 106 382 

Step 4. Compute F based on all inliers 

Step 5. Look for additional matches 

Step 6. Refine F based on all correct matches 

generate  

hypothesis 

verify hypothesis 
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 Restrict search range to neighborhood of epipolar line  

   (1.5 pixels) 
 Relax disparity restriction (along epipolar line) 

Finding More Matches 
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Degenerate Cases 

• Degenerate cases 

– Planar scene 

– Pure rotation 

• No unique solution 

– Remaining DOF filled by noise 

– Use simpler model (e.g. homography) 

• Model selection (Torr et al., ICCV´98, Kanatani, Akaike) 

– Compare H and F according to expected residual error 

(compensate for model complexity) 
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More Problems 

• Absence of sufficient features (no texture) 

• Repeated structure ambiguity  

(Schaffalitzky and Zisserman,  

BMVC‘98) 

 

•Robust matcher also finds  

support for wrong hypothesis 

• Solution: detect repetition  
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Two-view Geometry 

Geometric relations between two views are fully  

described by recovered 3x3 matrix F. 
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Simplify stereo matching by warping the images. 

Apply projective transformation so that epipolar lines 

correspond to horizontal scanlines 

e 

e 

map epipole e to infinity (1,0,0) 

try to minimize image distortion 

problem when epipole in (or close to) the image 
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Image Rectification 
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Planar Rectification 

Bring two views  

to standard stereo setup 

(moves epipole to ) 

(not possible when in/close to image) 

~ image size 

(calibrated) 

Distortion minimization 

(uncalibrated) 

(standard approach) 
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Disparity Map 

image I(x,y) image I´(x´,y´) Disparity map D(x,y) 

(x´,y´)=(x+D(x,y),y) 

65 3D Computer Vision II - Two View Geometry 



Hierarchical Stereo Matching 
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Allows faster computation 

Deals with large disparity 

ranges 

(Falkenhagen´97;Van Meerbergen,Vergauwen,Pollefeys,VanGool IJCV‘02) 

66 3D Computer Vision II - Two View Geometry 



Example: Reconstruct Image from Neighboring Images 
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