
3D Computer Vision II

Reminder
Camera Models

Nassir Navab
based on a course given at UNC by Marc Pollefeys & the book “Multiple View Geometry” by Hartley & Zisserman

October 27, 2009



Outline – Camera Models

• Geometric Parameters of a Finite Camera
• Projective Camera Model

 Camera Center, Principal Plane, Axis Plane, Principal Point, Principal Ray

 Decomposition of Camera Matrix

• Cameras at Infinity
• Other Camera Models (Pushbroom and Line Cameras)
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TT y)(x,Z)Y,(X, 

Pinhole Camera Model

• Mapping between 3D world and 2D image
• Central projection
• Models are described in matrices with particular properties
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Homogeneous Coordinates
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P = diag(f,f,1) I | 0[ ]

Central Projection
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are the coordinates of the principal point

T
yx )p,(p

Principal Point Offset

where

principal point
(perpendicular intersection point of 

principal axis and image plane)

63D Computer Vision II - Camera Models




































=
















+
+

1
Z
Y
X

01
0pf
0pf

Z
ZpfY
ZpfX

y

x

x

x

 

x = K I | 0[ ]X
















=

1
pf
pf

K y

x
is called camera calibration 
matrix

Principal Point Offset

where
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Inhomogeneous 
coordinates

where represents the point in 
world coordinates 

represents the same point in 
camera coordinates 

C~
represents the coordinates of the camera
origin in the world coordinate frame

Camera Rotation and Translation
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x = K I | 0[ ]Xcam

 

x = KR I | − ˜ C [ ]X

4, R∈camXX [ ] camX0|IKx =

Homogeneous
coordinates 

projection to image plane from camera coordinates

projection to image plane from world coordinates

PXx =

Camera Rotation and Translation



 

P = KR I | − ˜ C [ ]
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projection matrix of a general
pinhole camera with 9 DOF 

intrinsic camera parameters with 3 DOF

CR ~, extrinsic camera parameters with each 3 DOF
(camera orientation and position in world coordinates)

PXx =

Extrinsic and Intrinsic Parameters



 

P = K R | t[ ]
= K R | −R ˜ C [ ]
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No explicit 
camera center 

where 

from 

 

x = KR I | − ˜ C [ ]X

Camera Rotation and Translation
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CCD Cameras – Non-Square Pixels

yx m,m number of pixels per unit distance 

4 DOF 

 

P = KR I | − ˜ C [ ] 10 DOF 
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P = KR I | − ˜ C [ ]

Skew Parameter

s skew parameter 

5 DOF 

finite projective camera with 
11 DOF 
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Finite Projective Camera – Summary

projection matrix
11 DOF (5+3+3)
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M = KR

P = KR I | − ˜ C [ ]
P = M I | − ˜ C [ ]

decompose projection matrix P in K,R,C

[ ]4|MP p= 4
1MC~ p−−=

 

K,R[ ] = RQ M( )

Finite Projective Camera – Decomposition of P

non-singular 3x3 matrix (8 DOF)

RQ matrix 
decomposition
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P = KR I | − ˜ C [ ]
= M I | − ˜ C [ ]

Finite Projective Camera – Summary

• Camera matrices P are identical with the set of homogeneous 3x4 
matrices for which the left 3x3 sub-matrix is non-singular

• {finite cameras}={P| det M≠0} ={P| rank(M)=3}
• If rank(P)=3, but rank(M)<3, then camera at infinity
• if rank(P)<3 the matrix mapping will be a line or a point and not a plane 

(not a 2D image)

  

 

P ∈R3×4where
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Outline – Camera Models

• Geometric Parameters of a Finite Camera
• Projective Camera Model

 Camera Center, Principal Plane, Axis Plane, Principal Point, Principal Ray

 Decomposition of Camera Matrix

• Cameras at Infinity
• Other Camera Models (Pushbroom and Line Cameras)
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Camera Anatomy

• Camera center
• Column vectors
• Principal plane
• Axis plane
• Principal point
• Principal ray
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0PC = P has a 1D null-space

 

X λ( ) = λA + 1 − λ( )C
( ) λPAPCλ1λPAPXx =−+==
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Camera Center

we will prove that the 4-vector C is the camera center 

points on a line through A and C

since 0PC =
All 3D points on the line are mapped on the same 2D image point, and 
thus the line is a ray through the camera center
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[ ] [ ][ ]T001043212 ppppp =

Column vectors are the image points which project the 
axis directions (X,Y,Z) and the origin

Column Vectors

4p

Example for the image
of the y-axis

is the image of the world origin

4,...,1,3 =∈ ii Rp
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Row Vectors
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Represent geometrically particular world planes.

row vectors

column vectors
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Row Vectors of the Projection Matrix

P1 is defined by the camera center and the 
line x=0 on the image.

P2 is defined by the camera center and the 
line y=0 on the image.
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XpExample P2

respectively for P1
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0C3 =Tp

Plane through camera center and 
parallel to the image plane.

points X are imaged on the line at 
infinity

if X is on the principle plane 03 =Xp T

especially 
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333231

3 0ˆ ppp=P

33
0 MˆPx mP ==

[ ]4|MP p=

Line through camera center and 
perpendicular to principal plane is the 
principal axis.

Intersection of the principal axis 
with the image plane is the 
principal point.

normal direction to principal plane

T3m

33
0 MˆPx mP ==

principal point

where

third row of Mand

Principal Point



33 morm −

 

x = PcamXcam = K I | 0[ ]Xcam   

 

v = det K( )k3 = 0,0,1( )T

camcam PP k vv 4k

 

P = kKR I | − ˜ C [ ]= M | p4[ ] 0)Rdet( >

Ambiguity that principal axis points 
towards the front of the camera (positive 
direction)

direction unaffected by scaling

 

v = det M( )m3
since

Principal Axis Vector

towards the front of the camera

253D Computer Vision II - Camera Models



PXx =

[ ] MdDp|MPDx 4 ===

Maps a point in space on the image plane

Forward Projection

23 PP →

Vanishing points

Only M affects the projection of vanishing points 

( )TT ,0dD =
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xPX +=   
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(pseudo-inverse)
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Back-Projection to Rays

Points on the reconstructed ray

camera center C

Ray is the line formed by those two points

intersection of the ray with the 
plane at infinity
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( ) ( )C~X~mCXPXP T3T3T3 −=−==w
(dot product)(PC=0)

1m;0det 3 =>MIf                                        , 
then m3 unit vector pointing in positive axis direction

Suppose . Then

( )
3m

)sign(detMPX;depth
T

w
=

( ) TT )1,,( yxwX,Y,Z,TP =

Depth of Points
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Depth of Points: Examples

 

x = PX
P = I | 0[ ]
depth(X;P) = Z

 

x = PX

P = R I | − ˜ C [ ]
depth(X; P) =  R 3

T ( ˜ X − ˜ C )

( )
3m

)sign(detMPX;depth w
= ( ) TT )1,,(1 yxwX,Y,Z,P =
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Outline – Camera Models

• Geometric Parameters of a Finite Camera
• Projective Camera Model

 Camera Center, Principal Plane, Axis Plane, Principal Point, Principal Ray

 Decomposition of Camera Matrix

• Cameras at Infinity
• Other Camera Models (Pushbroom and Line Cameras)
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Finding the camera center C

0PC =
numerically: find right null-space by SVD of P

 

X = det p2,p3,p4[ ]( )

 

Y = −det p1,p3,p4[ ]( )

 

Z = det p1,p2,p4[ ]( )

 

T = −det p1,p2,p3[ ]( )

Algebraically: 

where ( )T,,,C TZYX=

0PVD UVPVD UP 44x43x44x43x4T4x44x43x43x4 =→=→=

Camera Matrix Decomposition
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Finding the camera center C

0PC =
Any plane π going through C will be a linear combination of the three 
planes defined by the rows of P. Therefore:

where ( )T,,,C TZYX=

 

det π,  PT[ ]( )= 0

= π1 det(P234 ) − π2 det(P134 ) + π3 det(P124 ) − π4 det(P123)

 

X = det p2,p3,p4[ ]( )

 

Y = −det p1,p3,p4[ ]( )

 

Z = det p1,p2,p4[ ]( )

 

T = −det p1,p2,p3[ ]( )

Camera Matrix Decomposition
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Finding the camera orientation and internal parameters

KRM = using RQ decomposition

Q R=(         )-1=    -1       -1QR

 

P = M | -M ˜ C [ ] =  K R | −R ˜ C [ ]
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Decompose

Ambiguity removed by enforcing positive diagonal entries

Camera Matrix Decomposition
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1 γ

arctan(1/s)

for CCD/CMOS, always s=0

Image from image, s≠0 possible
(non coinciding principal axis)

HPresulting camera: 

When is Skew Non-zero?

where H is a 3x3 homography 
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P = 3 × 3 homography[ ]
1 0 0 0
0 1 0 0
0 0 1 0

 

 
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 
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 

 
 
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4 × 4 homography[ ]

General projective interpretation

• Meaningful decomposition in K,R,t requires 
Euclidean image and space 

• Camera center is still valid in projective space 

• Principal plane requires affine image and space 

• Principal ray requires affine image and Euclidean space 

Euclidean vs. Projective Spaces
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Outline – Camera Models

• Geometric Parameters of a Finite Camera
• Projective Camera Model

 Camera Center, Principal Plane, Axis Plane, Principal Point, Principal Ray

 Decomposition of Camera Matrix

• Cameras at Infinity
• Other Camera Models (Pushbroom and Line Cameras)
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Cameras with their center lying at infinity

0Mdet =⇒

Two types of cameras at infinity:
Affine and non-affine cameras

Cameras at Infinity

M is singular
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Definition:
An affine camera is a camera with a camera matrix P in which the 
last row p3T is of the form (0,0,0,1)T .

Affine Cameras
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1000
P 24232221

14131211
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Points at infinity are mapped to points at infinity
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K 22 calibration matrix

principal point is not defined

Parallel Projections
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orthographic projection
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Hierarchy of Affine Cameras

dropping the z-coordinate
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scaled orthographic projection
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Hierarchy of Affine Cameras
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weak perspective projection
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Hierarchy of Affine Cameras
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Affine camera
































=

10
r
r

1
α

α
P 2

1T
1

1T

t
ts

y

x

A (8dof)













=

1000
P 2232221

1131211
tmmm
tmmm

A

 

PA = 3 × 3 affine[ ]
1 0 0 0
0 1 0 0
0 0 0 1
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 
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 
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4 × 4 affine[ ]

full generality of an affine camera

 Affine camera is a projective camera with principal plane at infinity
 Affine camera maps parallel world lines to parallel image lines
 No center of projection, but direction of projection PAD=0 

Hierarchy of Affine Cameras
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P = M | p4[ ] M is singular, but last row not zero

 Camera center is on plane at infinity
 Principal plane is not plane at infinity
 Images of points at infinity are in general not mapped to infinity 

on the image plane

General Camera at Infinity



Summary Camera Models

• Photometric and radiometric properties of a camera
• Geometric parameters of a finite camera
• Projective cameras

– Camera anatomy (camera center, principle plane, principle point, and principle axis)
– Camera matrix decomposition (camera center, orientation, and intrinsic parameter

• Cameras at infinity
– Affine cameras
– Non-affine cameras
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Literature on Camera Models

• Chapter 6 in R. Hartley and A. Zisserman, “Multiple View Geometry”, 2nd

edition, Cambridge University Press, 2003. 
• Chapter 3 in O. Faugeras, “Three-dimensional Computer Vision”, MIT Press, 

1993.
• Chapter 2 in E. Trucco and A. Verri, “Introductory Techniques for 3-D 

Computer Vision”, Prentice Hall, 1998.
• H. Gernsheim, “The Origins of  Photography”, Thames and Hudson, 1982.
• A. Shashua. “Geometry and Photometry in 3D Visual Recognition”, Ph.D. 

Thesis, MIT, Nov. 1992. AITR-1401. 
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