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Structure From Motion (SFM) with Uncalibrated
Cameras

Requirements A set of pictures taken from one camera in motion
or multiple cameras.

Goal Compute from the pictures:

• a (Euclidean) 3D model of the scene structure.
• the camera parameters (intrinsic and extrinsic).

Assumptions • The scene is rigid.
• Some of the camera intrinsic parameters are

known or constant.
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Why Using Uncalibrated Cameras?

• Calibrated approaches require (at least) one image of a calibration
object (i.e. of which the Euclidean 3D model is known).

• Uncalibrated approaches:

• Do not require a special material, neither user interaction.
• Impose only mild assumptions on the imaging conditions (thus

applicable to images from unknown sources, e.g. internet).
• Deal with on-line calibration ( useful when camera intrinsic

parameters vary, due to e.g. zooming).
• Provide flexible and e�cient methods for camera

self-calibration.
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Preliminaries

xi
j = PiXj

Scene structure: Set of 3D points Xj, with j = {1, . . . , n}. Other
features can be used (e.g. lines, curves, planes).

Camera geometry: A�ne or perspective (pin-hole) projection,
represented by matrices Pi, with i = {1, . . . ,m}.

Images: 2D points matched across the images with coordinates xi
j.
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Preliminaries

xi
j = PiXj

Scene structure: (Unknown) Set of 3D points Xj, with j = {1, . . . , n}.
Other features can be used (e.g. lines, curves, planes).

Camera geometry: (Unknown) A�ne or perspective (pin-hole) projection,
represented by matrices Pi, with i = {1, . . . ,m}.

Images: (Given) 2D points matched across the images with
coordinates xi

j.
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Is it Possible?: A Counting Argument

• Look for cameras Pi and 3D points Xj that explain image
points:

xi
j = Pi Xj i = {1, . . . ,m} j = {1, . . . , n}

• For n points projected in m images :

• Each point has 2 coordinates.
• We can build 2nm constraints.
• We want to recover m projection matrices P

i (Each 3⇥ 4 with
11 d.o.f. under a�ne assumption).

•
11m + 3n unknowns ?(3n due to 3D point coordinates).

• Projective reconstruction up to a projective transformation
(4⇥ 4 matrix with 15 DoFs).

•
11m + 3n� 15 unknowns

• The problem can be solved (in general) 2nm � 11m + 3n� 15

e.g. n = 10 m = 3, then 60 � 33 + 30� 15 = 48 .
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Projective Reconstruction
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SFM Method Overview

1 Find correspondences across the images.

2 Initialization with a “good enough” sub-optimal estimate, e.g.
using a Factorization-based algorithm:

• Batch.
• Sequential.
• Hierarchical.

3 Bundle Adjustment (Optional):
• Non-linear minimization of the reprojection error (discrepancy

between measured and predicted feature coordinates).

4 Self-Calibration (Optional).
• Estimation of the intrinsic parameters of the camera using only

the information available in the images taken by that camera.
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Batch Algorithms
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Batch Algorithms

• Uniform and simultaneous use of all data.

• Two type of approaches:

Factorization • Simple and fast.
• All points need to be seen in all images.
• measurements (points) need to be valid.
• Orthographic [Tomasi, 1992].
• A�ne [Kahl and Heyden, 1998].
• Projective [Sturm, 1996], iterative [Triggs,

1996; Heyden, 1997].

Closure constraints Handles unseen and erroneous points, but
su↵ers from algebraic approximation, e.g. [Kahl and
Heyden, 1998].
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A�ne Factorization

Assumptions:

• All points are seen in all views.

• There are no blunders.

• A�ne camera model (uncalibrated) 8 d.o.f.:
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• xi
j and Xj in inhomogeneous coordinates.
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A�ne Factorization: Camera model
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A�ne Factorization: Goal

Find a reconstruction of the scene that minimizes the geometric error in
the image coordinate measurements. That is, estimate:

• Cameras {Pi
, ti}

• 3D points {Xj}

such that the distance between the estimated image points
ˆxi

j = PiXj + ti and measured image points xi
j is minimized:

min

Pi,ti,Xj

mX

i=1

nX

j=1

||xi
j � ˆxi

j||2

min

Pi,ti,Xj

mX

i=1

nX

j=1

||xi
j � (PiXj + ti

)||2
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A�ne Factorization: Algorithm Overview

1 Compute the translations ti.

2 Center the data.

3 Construct the 2m⇥ n measurement matrix M (a single
matrix equation).

4 Factorize M, i.e. find the closest rank 3 matrix which is
closest to M in Frobenious norm (SVD of M truncated to
rank 3).
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1. Compute the Translations

• Calculate the average of the points seen e.g. in image 1:
x1

1 = P1X1 + t1

...
x1

n = P1Xn + t1

1

n

nX

j=1

x1
j =

1

n

P1

nX

j=1

Xj + t1

• A�ne cameras map the centroid of a set of 3D points to the
centroid of their projection. Set the (arbitrary) origin of the 3D
coordinate frame to the centroid of the unknown 3D points

(⇠⇠⇠⇠⇠⇠⇠: 0
1
n
Pa

Pn

j=1 Xj):

ti
=

1

n

nX

j=1

xi
j
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2. Center Image Points
• Transform the image measurements by subtracting the centroid of

the points in each image.

xi
j = PiXj + ti )

mi
j , xi

j � ti

= (PiXj + ti
)� ti

= PiXj

• The resultant centered projection model is bilinear.

• Removing the translation, simplifies the problem:

min

Pi,Xj

mX

i=1

nX

j=1

||mi
j � (Pi

jXj)||2

• All points must be seen in all cameras. (why?)
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3. A Single Matrix Equation

• Gather the centered projections for image 1 in a single matrix
equation:

�
m1

1 m1
2 . . . m1

n

�
| {z }

= P1

|{z}
�

X1 X2 . . . Xn

�
| {z }

2⇥ n 2⇥ 3 3⇥ n

• Further, gather the equations for all images
0

BBB@

m1
1 m1

2 . . . m1
n

m2
1 m2

2 . . . m2
n

...
...

. . .
...

mm
1 mm

2 . . . mm
n

1

CCCA

| {z }

=

0

BBB@

P1

P2

...
Pm

1

CCCA

| {z }

�
X1 X2 . . . Xn

�
| {z }

M P S
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3. A Single Matrix Equation
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�
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• The (2m⇥ n) matrix M is the measurement matrix.

• The (2m⇥ 3) matrix P is the (a�ne) projection matrix.

• The (3⇥ n) matrix S is the structure matrix.

• In the absence of noise, the measurement matrix has rank 3 at most.
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3. A Single Matrix Equation

• In the presence of noise M = PS is not exactly verified.

• We look for the matrix ˆM that is the closest possible to M in
Frobenious norm sense.

||M� ˆM||2F =

P
ij
(Mij � ˆ

Mij)
2

=

P
ij
||(mi

j � ˆmi
j)||2

=

P
ij
||(mi

j � ˆPi
ˆXj)||2
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4. Factorize M

• The measurement matrix is factorized with SVD as M = U⌃V>.
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4. Factorize M

• The estimate of the joint projection matrix

ˆP is the first 3

columns of U.

• The estimate of the structure matrix

ˆS is the first 3 rows of V>.
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4. Factorize M

• Closest rank-3 approximation ˆM yields Maximum Likelihood
Estimate (assumption of isotropic mean-zero Gaussian noise).

• A�ne ambiguity.
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Identify the estimated parameters
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Summary of the Algorithm

Input: n points in m images xi
j.

Outputs: 3D a�ne reconstruction defined by 3D points Xi
j and

cameras (Pi
, ti

).

1 Compute the translation vectors ti
=

1
n

Pn

j=1 xi
j.

2 Center the image points mi
j = xi

j � ti.

3 Form and factorize the centered measurement matrix using SVD:
M = U⌃V>.

4 Extract the joint projection matrix

bP as the first 3 columns of U.

5 Extract the joint structure matrix

bS as the first 3 rows of V>.

6 Extract the individual projection matrices Pi from bP and the
individual 3D points Xj from bS.
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Orthographic Factorization

[Tomasi Kanade, 1992] method first estimates the a�ne structure and
then upgrades it to Euclidean. It operates on a batch of at least 3
frames with known correspondences (i.e., with tracked features).

• Factorize M through singular value decomposition:
M = U⌃V>

• The a�ne reconstruction can be computed as:
˜P = U,

˜S = V>

• Upgrade to a metric reconstruction, by finding an invertible matrix
A, such that:

ˆP =

˜PA�1
,

ˆS = A˜S
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Orthographic Factorization

To find A additionally consider metric constraints under an orthographic
camera model:

P i
3⇥4 =

2

4
f 0 0 0

0 f 0 0

0 0 1/f f

3

5

3⇥4


R t
0> 1

�

4⇥4

• This model appears as the limit of the general perspective
projection as the focal length f becomes large with respect to the
distance of the camera to the object.

• 5 d.o.f.s (3 due to the rotation and 2 due to the translation)
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Orthographic Factorization

bPi
=


bpi>

1

bpi>
2

�
=


ri>

1 0

ri>
2 0

�

Remove the translation as in the a�ne case. Then, the orthographic
projection matrix is characterized by two orthonormal vectors ri

1 and ri
2:

bpi>
1 ˆpi

1 = 1

bpi>
2 ˆpi

2 = 1

bpi>
1 ˆpi

2 = 0

!
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Orthographic Factorization

˜pi>
1 C ˜pi

1 = 1

˜pi>
2 C ˜pi

2 = 1

˜pi>
1 C ˜pi

2 = 0

• The orthographic constraints lead to 3 linear equations on
symmetric matrix C (6DoF)

• A can be obtained from C through Cholesky factorization
and inversion.

• The Cholesky factorization decomposes of a symmetric,
positive-definite matrix into the product of a lower triangular
matrix and its conjugate transpose C = LL>

• A = L�1
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Perspective Factorization

According to perspective camera model (after centering the points):

�

i
jm

i
j = PiXj =

2

4
pi>

1

pi>
2

pi>
3

3

5

3⇥4

Xj

• Each Pi is 3⇥ 4

• Xj is a (4⇥ 1) homogenous vector.

• mi
j =

2

4
x

i
j

y

i
j

1

3

5, with x

i
j, y

i
j the centered image coordinates.

•
�

i
j is a scale factor for each point: the “projective depth”.
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Perspective Factorization

�

i
jm

i
j = PiXj =

2

4
Pi>

1

Pi>
2

Pi>
3

3

5Xj

• The single matrix equation becomes:
0

BBB@

�

1
1m

1
1 �

1
2m

1
2 . . . �

1
nm

1
n

�

2
1m

2
1 �

2
2m

2
2 . . . �

2
nm

2
n

...
...

. . .
...

�

m
1 mm

1 �

m
2 mm

2 . . . �

m
n mm

n

1

CCCA

| {z }

=

0

BBB@

P1

P2

...
Pm

1

CCCA

| {z }

�
X1 X2 . . . Xn

�
| {z }

Msp P S

32/66



Perspective Factorization
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Can we still use factorization?
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Perspective Factorization
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• Collect measurements in one image Mi
= [mi
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Perspective Factorization
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• Mi are known, but ⇤

i,Pi and S are unknown.

• PS has rank 4: product of a 3m⇥ 4 and a 4⇥ n matrices .

• Assume that ⇤

i are known, then PS can be computed.

• Use the singular value decomposition: PS = U⌃V>

• In the noise-free case ⌃ = diag(�1, �2, �3, �4, 0, . . . , 0)

• A reconstruction is obtained by setting:
• P = the first 4 columns of U⌃.
• S = the first 4 rows of V>.
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Iterative Perspective Factorization Algorithm

• When ⇤

i are unknown the following algorithm can be used:

1 Normalize image data using isotropic scaling.

2 Initialize �

i
j = 1 (e.g. set �

i
j = 1, a�ne approximation).

3 Normalize the depths (↵

i
�j�

i
j)m

i
j = (↵

iPi
)(�jXj).

4 Factorize M and obtain an estimate of P and S.
5 If �5 is su�ciently small then STOP.
6 Use m, P and S to estimate ⇤

i from the camera equations
(linearly) mi

⇤

i
= PiS

7 GOTO 3.

• In general the algorithm minimizes a proximity measure
Prox(⇤,P,S) = �5.

• Convergence is not guaranteed.

• Note that structure and motion are recovered up to an
arbitrary projective transformation.
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Euclidean Update

Projective Projective Euclidean Euclidean

A�ne A�ne Euclidean Euclidean

• The a�ne and perspective reconstructions may be upgraded to a
metric reconstruction by:

• Supplying metric information on the scene.
• Using auto-calibration methods.
• A combination of the two.
• Hartley Zisserman - Chap 10.
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Sequential Algorithms

 
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Sequential Algorithms

• Register each view in turn.

• Pick a “small” number of views and compute a partial 3D
model using e.g. factorization.

• Repeat until the 3D model is complete.
• Pick an unregistered view and apply resection, i.e. compute

the camera matrix. The view must share su�ciently many
points with the partial 3D model.

• Apply triangulation (intersection) to reconstruct new 3D
features appearing in the latest registered view.
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Sequential Algorithms

Pros • Robustness to blunders is easily incorporated
• On-line processing

Cons • The error in the initial partial 3D model
conditions the final complete 3D model, i.e. it
may make the 3D model drift away from the
optimal one.

Note: If computational cost is not an important criteria,
Bundle Adjustment is launched in the inner loop to
prevent drifting.
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Hierarchical Algorithms

   

 


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Hierarchical Algorithms

•
Split the image sequence into subsequences [Fitzgibbon et al.,
1998 ; Nistr 2000].

•
Reconstruct a partial 3D model from each subsequence using
e.g. factorization.

• Hierarchically merge the partial 3D models (by computing a
3D homography, e.g. [Csurka et al., 1999]).

• This approach distributes the error over the entire sequence
and can be easily made robust.
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Extensions

• Extension to paraperspective cameras [Poelman and Kanade,
1993].

• Other features (lines and conics) [Kahl and Heyden, 1998 ; Quan,
1997].

• Extension to projective cameras [Sturm and Triggs, 1996]. The
projective depths of each image point are recovered before
factorization and the algorithm does not longer minimize the
reprojection error.

• Missing data [Jacobs, 1997 ; Martinec and Pajdla, 2002].

• Multibody [Costeira and Kanade, 1995].

• Deformable [Bregler et al., 2000].
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Recall: SFM Method Overview

1 Initialization: Compute a “good enough” sub-optimal
estimate.

• Batch.
• Sequential.
• Hierarchical algorithms.

2 Bundle Adjustment (Optional):
• Non-linear minimization of the reprojection error (discrepancy

between measured and predicted feature coordinates).

3 Self-Calibration.

45/66



Problem Statement

• 3D Points Xj, with

• with j = {1, . . . , n}
•

n points.

• viewed by a set of cameras Pi, with

•
i = {1, . . . ,m}

•
m views.

Problem: Given the projections xi
j of the n points on the m

cameras, find:

• The set of camera matrices bPi

• and the set of points bXj

such that:
bPi bXj = xi

j
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Noisy Measurements

• If the image measurements are noisy, then the projection
equation is not satisfied exactly.

bPi bXj 6= xi
j

• Use Maximum Likelihood estimation assuming noise is
Gaussian.
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Maximum Likelihood

• Estimate projection matrices ˆPi and 3D points ˆXj which
project exactly to corrected image points ˆxi

j

• while minimizing the distance between the estimated ˆxi
j and

the measured xi
j points for every view.

min

P̂i,X̂j

X

ij

d(

ˆPi
ˆXj , xi

j )

2

• where d(x,y) is the geometric image distance between
homogeneous points x and y.
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Bundle Adjustment

min

P̂i,X̂j

X

ij

d(

ˆPi
ˆXj , xi

j )

2

minP̂i,X̂j
. . .

Adjust the bundle of rays
between each camera center and

the set of 3D points.

minP̂i,X̂j
. . .

Adjust the bundle of rays
between each 3D point and the

set of camera centers.
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Non-linear Least Squares

Assume a problem can be modeled with a parameterized function f

(parameters p) such that:
ˆx = f(p)

LSQ optimization seeks the parameters p that minimize the di↵erence
between the measure x and estimation ˆx:

arg min

p
||x� f(p)||

• Iterative optimization algorithms:

• Newton.
• Levenberg-Marquardt
• Sparse Levenberg-Marquardt
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Number of parameters to optimize

• Each camera matrix Pi has 11 DoFs.

• There are m views.

• Each point Xj has 3 DoFs.

• There are n points.

There are 3n + 11m parameters to optimize !!!!
(This is a lower bound, it can be more due to

over-parameterization)

• e.g. when using Levenberg Marquardt, matrices of
(3n + 11m)⇥ (3n + 11m) have to be factored or inverted,
which is computationally expensive.

51/66



Practical Implementation

• Initialization
• Use factorization for initialization.
• Use available information:

e.g. coplanarity leads to a closed form solution.

• Tackle the size of the problem by:
• Reducing the number of views m or the number of points n.

• Do not include all the points or all the views. These can be
then computed by resection or triangulation.

• Partition the data, e.g. hierarchical approach.

• Interleave: iterate between minimizing the projection error by:
• varying the entries of the cameras P̂i.
• varying the entries of the points X̂j

• Use sparse methods.
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Bundle Adjustment

Used as a final step of any reconstruction.

Pros • Provides ML estimate.
• Tolerant to missing data.
• Assigns covariances to each measure.
• Can be extended to include priors and

constraints on camera parameters and point
positions.

Cons: • It requires a good initialization.
• It can become an extremely large minimization

problem.
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Recall

A 3⇥ 4 projection matrix P can be decomposed into

P / K[R t]

(R; t) is the pose or extrinsic parameters
K is the calibration or intrinsic parameters

K =

0

@
↵f sf u0

0 f v0

0 0 1

1

A

f is the focal length
(u0, v0) is the principal point
↵ is the aspect ratio

s is the skew
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Problem Statement

• The projective 3D model is defined up to a projective transformation

PiXj / PiHH�1Xj = Pi0X0
j

where H is a 3D (4⇥ 4) homography, with det(H) = 0 and 15

parameters.

• The goal is to obtain a Euclidean 3D model defined up to a
similarity (7 parameters).

• The number of unknowns is thus 15� 7 = 8

• We are looking for a projective transformation Z such that:

• PiZ are projection matrices
• Z�1Xj are 3D points

in a Euclidean coordinate frame.
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Internal Camera Calibration

The internal camera calibration can be computed from prior
knowledge (Chapter 19):

• on the scene, e.g. right angles, equal lengths.

• on the camera motion, e.g. pure translation, stereo rig.
• on the intrinsic parameters themselves:

• Assume they are all unknown and constant.
• Varying focal length calibration [Triggs, 1997 ; Pollefeys et al.,

1998].

The estimated internal camera parameters allow us to compute a
metric reconstruction from initially uncalibrated images
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Example Applications

Automatic reconstruction of piecewise planar models from multiple views

[Baillard,Zisserman-CVPR1999]
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Example Applications

Creating 3D models with a simple webcam [Pan, Reitmayr, Drummond -

BMVC 2009]
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Comercial Software

• 2d3 (www.2d3.com)
• Boujou (camera tracking)
• SteadyMove (video stabilizer)
•

. . .

• Realviz (bought by Autodesk)
• MatchMover (camera tracking)
• Stitcher (image mosaicing)
• ImageModeler (computer-aided 3D models from images)
•

. . .

• Google Street view

• Microsoft Fototurism
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Autostitch

http://people.cs.ubc.ca/⇠mbrown/autostitch/autostitch.html
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Street View

http://www.talkmunich.com/services/munich map.php
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Bundler
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Photo Tourism
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Photosynth

http://photosynth.net/
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