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Introduction and Motivation

Classification of Depth Measurement Techniques
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Introduction and Motivation

Applications for 3D Sensing

• Computer Vision
– People and object tracking
– 3D Scene reconstruction

• Interaction
– Gesture-based user interfaces
– Gaming/character animation

• Medical 
– Respiratory gating
– Ambulatory motion analysis
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Introduction and Motivation

Depth Measurement Using Multiple Camera Views
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Introduction and Motivation

Depth Measurement Using Multiple Camera Views

• Disadvantages:
• At least two calibrated cameras required
• Multiple computationally expensive steps
• Dependence on scene illumination
• Dependence on surface texturing
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Introduction and Motivation

Time-of-Flight (ToF) Imaging refers to the process of measuring the depth of a 
scene by quantifying the changes that an emitted light signal encounters when it
bounces back from objects in a scene.
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Introduction and Motivation

Depth Measurement Using a ToF Camera

• Advantages:
• Only one (specific) camera required
• No manual depth computation required
• Acquisition of 3D scene geometry in real-time
• Reduced dependence on scene illumination
• Almost no dependence on surface texturing
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Introduction and Motivation
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Principles of ToF Imaging
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Pulsed Modulation

• Measure distance to a 3D object by measuring the absolute time a light pulse 
needs to travel from a source into the 3D scene and back, after reflection

• Speed of light is constant and known, c = 3·108m/s
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Principles of ToF Imaging

Pulsed Modulation

• Advantages:
– Direct measurement of time-of-flight
– High-energy light pulses limit influence of background illumunation
– Illumination and observation directions are collinear

• Disadvantages:
– High-accuracy time measurement required
– Measurement of light pulse return is inexact, due to light scattering
– Difficulty to generate short light pulses with fast rise and fall times
– Usable light sources (e.g. lasers) suffer low repetition rates for pulses
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Principles of ToF Imaging
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Continuous Wave Modulation
• Continuous light waves instead of short light pulses
• Modulation in terms of frequency of sinusoidal waves
• Detected wave after reflection has shifted phase
• Phase shift proportional to distance from reflecting surface
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Continuous Wave Modulation
• Retrieve phase shift by demodulation of received signal
• Demodulation by cross-correlation of received signal with emitted signal
• Emitted sinusoidal signal:

• Received signal after reflection from 3D surface:

• Cross-correlation of both signals:

Principles of ToF Imaging
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Principles of ToF Imaging

Continuous Wave Modulation
• Cross-correlation function simplifies to

• Sample          at four sequential instants with different phase offset :

• Directly obtain sought parameters:
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Principles of ToF Imaging

Continuous Wave Modulation

• Advantages:
• Variety of light sources available as no short/strong pulses required
• Applicable to different modulation techniques (other than frequency)
• Simultaneous range and amplitude images

• Disadvantages:
• In practice, integration over time required to reduce noise
• Frame rates limited by integration time
• Motion blur caused by long integration time
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Principles of ToF Imaging

Continuous Wave Modulation
• Simultaneous availability of (co-registered) range and amplitude images
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Principles of ToF Imaging

• Near-infrared light (700-1400 nm)
• Continous wave modulation
• Sinusoidal signal

• Resolution: 204x204 pixels
• Standard lens, standard calibration
• Frame rate: 20 fps

• Multiple camera operation by using
different modulation frequencies
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Computer Vision with ToF Cameras

Measurement Errors and Noise

Systematic distance error
• Perfect sinusoidal signals hard to

achive in practice
• Depth reconstructed from

imperfect signals is erroneous
• Solution 1: camera-specific

calibration to know distance error
• Solution 2: alternative 

demodulation techniques not 
assuming perfect sinusoidal
signals
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Computer Vision with ToF Cameras

Measurement Errors and Noise

Intensity-related distance error
• Computed distance depending on 

amount of incident light
• Inconsistencies at surfaces with

low infrared-light reflectivity
• Correction by means of

corresponding amplitude image
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Computer Vision with ToF Cameras

Measurement Errors and Noise

Depth inhomogeneity
• Current ToF cameras have low

pixel resolution
• Individual pixels get different 

depth measurements
• Inhomogeneous
• „Flying pixels“, especially at

object bondaries
• Correction: discard pixels along

rays parallel to viewing direction

22
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Computer Vision with ToF Cameras

Measurement Errors and Noise

Light interference effects
• Signal received on detector can be mixed with signals that were reflected in 

the scene multiple times (instead of direct reflection)
• Emitted light waves can be attenuated and scattered in the scene
• Interference by other sources of near-infrared light (e.g. sunlight, infrared

marker-based tracking systems, other ToF cameras)
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Computer Vision with ToF Cameras

Geometric Calibration of ToF Cameras
• Standard optics used in commercial ToF cameras
• Use ToF amplitude image for calibration
• Standard calibration procedure for camera intrinsics

– fx = fmx: focal length in terms of pixel dimensions (x)
– fy = fmy: focal length in terms of pixel dimensions (y)
– cx: principal point (x)
– cy: principal point (y)
– Lens distortion parameters

• Typical approach: 
– checkerboard calibration pattern
– World-to-image point correspondences
– Linear estimation of intrinsic/extrinsic parameters
– Non-linear optimization

Time-of-Flight Imaging - 3DCV II 24



Computer Vision with ToF Cameras

Extraction of Metric 3D Geometry from ToF Data
• ToF data: depth d in meters for every pixel location
• Desired data: 3D coordinates for every pixel

• Write image coordinates in homogeneous notation (x,y,1)
• Apply inverse of intrinsic parameters matrix K to points
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Computer Vision with ToF Cameras

Extraction of Metric 3D Geometry from ToF Data
• Simply taking measured depth d as Z coordinate is not sufficient
• Depth is measured along rays from camera center through image plane
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Computer Vision with ToF Cameras

Extraction of Metric 3D Geometry from ToF Data
• Ray from camera center into 3D scene:

• Normalize to unit length (keep only direction), multiply with depth:
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Computer Vision with ToF Cameras

Combining ToF with Other Cameras
• Additional, complementary information (e.g. color)
• Higher-resolution information (e.g. for superresolution)
• Example: combination with a high-resolution RGB camera
• Approach: Stereo calibration techniques, giving and
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Principles of Kinect (Primesensor)

Structured Light Imaging

• Project a known light pattern into the 3D scene, viewed by camera(s)
• Distortion of light pattern allows computing the 3D structure
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Principles of Kinect (Primesensor)

Structured Light Imaging types

• Time Multiplexing
• Direct coding
• Spatial Neighborhood

This coding has to be unique per position 
in order to recognize each point in the 
pattern. 

Kinect uses pseudo random pattern.
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Principles of Kinect (Primesensor)

How Kinect works?

• Projects a known pattern (Speckles) 
in Near-Infrared light.

• CMOS IR camera observes the 
scene. 

• Calibration between the projector and 
camera has to be known.

• Projection generated by a diffuser and 
difractive element of IR light,
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Principles of Kinect (Primesensor)

How calculate the depth data?

• Triangulation of each speckle 
between a virtual image (pattern) and 
observed pattern.

• Each point has its correspondence 
speckle.
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Principles of Kinect (Primesensor)

How calculate the depth data?

• Having a calibrated speckle pattern:
– Compute the 3D map of the beginning 

frame.
– Compute the x-direction speckle shift 

to renew the 3D map.

• Calibration is carried out the time of 
manufacture. A set of reference 
images were taken at different 
locations then stored in the memory. 
For the first computation.
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Principles of Kinect (Primesensor)

How Kinect works?

• The speckles size and shape 
depends on distance and orientation 
w.r.t. sensor.

• Kinect uses 3 different sizes of 
speckles for 3 different regions of 
distances. 

• Then:
– Near   → High Accuracy
– Far     → Low accuracy

35
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Principles of Kinect (Primesensor)

How pattern looks like?

• First Region: Allows to obtain a high 
accurate depth surface for near objects 
aprox. (0.8 – 1.2 m)

• Second Region: Allows to obtain medium 
accurate depth surface aprox. (1.2 – 2.0 m).

• Third Region: Allows to obtain a low 
accurate depth surface in far objects aprox. 
(2.0 – 3.5 m).
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Principles of Kinect (Primesensor)

Microsoft Kinect 
– Depth resolution: 640x480 px
– RGB resolution: 1600x1200 px
– 60 FPS
– Operation range: 0.8m~3.5m
– spatial x/y resolution: 3mm @2m distance
– depth z resolution: 1cm @2m distance
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Other Range Imaging Techniques

Structured Light Imaging
• Example: Microsoft Kinect
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Case Studies

Semantic Scene Analysis [4]

• Extract geometric representations from
3D point cloud data for object recognition

• Application: scene understanding for
mobile robot

• RANSAC for fitting geometric models
(e.g. plane, cylinders) to point data

• Points belonging to a detected model
(e.g. table) are subsequently removed

• Final step: classification of remaining
point clouds to object types

40
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Case Studies

Mixed/Augmented Reality [5]

• Real-time 3D scene augmentation
with virtual objects

• Substitution for traditional chroma-
keying (blue or green background)
used in TV studios

• Combined ToF-RGB camera system
• Segmentation of moving objects
• Occlusions and shadows between

real and virtual objects
• Tracking of camera location by

co-registration of 3D depth data
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Case Studies

Acquisition of 3D Scene Geometry [6]

• Combined ToF and RGB cameras
• Real-time acquisition of 3D scene geometry
• Each new frame is aligned to already

previously aligned frames such that:
– 3D geometry is matched
– color information is matched

• Point cloud matching algorithm similar to
Iterative Closest Points (ICP)

• Color information compensates for low depth
image resolution

• Depth image compensates for hardly textured
image regions
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Case Studies

Simultaneous Localization and Mapping (SLAM) [7]
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Case Studies

Medical Respiratory Motion Detection [8]

• Patient motion during examinations
such as PET, CT causes artifacts

• Several breathing cycles during
image acquisition

• Reduce artfacts when breathing
motion pattern is known

• Measure breathing motion using
ToF camera above patient

• Plane fitting to 3D data in specific
regions of interest

• Continuous breathing signal
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Case Studies

Gesture Recognition [9]

• Recognition of upper-body gestures
• Invariance to view-point changes

(limited invariance)
• Representation of human point

cloud using 3D shape context
descriptors

• Rotational invariance by means
of spherical harmonics functions
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Case Studies
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Markerless Human Motion Tracking [12]

• Person segmentation by
background subtraction

• Graph-based representation of 3D points
• Geodesic distance measurements

(almost) invariant to pose changes
• Detection of anatomical landmarks

as points with maximal geodesic distance
from body center of mass

• Self-occlusion handling by means of
motion information between frames

• Fitting skeleton to landmarks
using inverse kinematics



Case Studies
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Markerless Human Motion Tracking [12]



Case Studies

Markerless Human Motion Tracking [10,11]

• Background segmentation
• Extraction of many interest points at

local geodesic extrema with respect
to the body centroid

• Classification as anatomical landmarks
(e.g. head, hands, feet) using classifier
trained on depth image patches
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Case Studies

Human Body Tracking and Activity Recognition [13]

• Generative model with low-dimensional state space learned from training data
• Multiple-hypothesis tracking using particle filter
• Weighting of hyptheses by predicting ToF measurements and comparing to

actual, true observations
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Case Studies

Human Body Tracking and Activity Recognition [13]

• ToF-based feature descriptor for human poses
• Sampling of extremal points of 3D surface corresponding to person
• Features: distances of extremal points to centroid of point cloud
• Descriptor varies smoothly with motion
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Case Studies
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