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Abstract. We present a novel framework for the segmentation of mul-
tiple organs in 3D abdominal CT images, which does not require regis-
tration with an atlas. Instead we use discriminative classifiers that have
been trained on an array of 3D volumetric features and implicitly model
the appearance of the organs of interest. We fully leverage all the avail-
able data and extract the features from inside supervoxels at multiple
levels of detail. Parallel to this, we employ a hierarchical auto-context
classification scheme, where the trained classifier at each level is applied
back onto the image to provide additional features for the next level. The
final segmentation is obtained using a hierarchical conditional random
field fusion step. We have tested our approach on 20 contrast enhanced
CT images of 8 organs from the VISCERAL dataset and obtained re-
sults comparable to the state-of-the-art methods that require very costly
registration steps and a much larger corpus of training data. Our method
is accurate, fast and general enough that may be applied to a variety of
realistic clinical applications and any number of organs.

1 Introduction

Multiple organ segmentation in abdominal computer tomography (CT) im-
ages can be an important step to computer aided diagnosis and computer assisted
surgery. Existing work in automated multi-organ segmentation can be roughly
divided into registration based and classification based. Registration methods in-
clude statistical shape models (SSM) [13], probabilistic atlases (PA) [4, 12] and
multi-altas techniques (MA) [16]. SSM approaches work by employing several
shape or appearance models, usually in conjunction with hierarchical object
localisation. Although SSM can produce accurate segmentations, they require
good initialisation otherwise registration between the SSM the organs will fail.
PA are more robust to registration with a target image since they incorporate
global spatial information as well as inter-organ spatial relationships. However,
both SSM and PA cannot handle large inter-subject variabilities, so research
has moved on to target-specific MA solutions, which have shown to be superior
to single model/atlas approaches. All registration-based methods are limited in



(a) The main components in our registration-free CT segmentation approach.

(b) Hierarchical auto-context between two subsequent levels.

Fig. 1. Proposed method outline (a) and details of the hierarchical auto-context (b)

that they require every organ to be present and to have stable locations between
training and test images (localised spatial support). Furthermore, non-rigid reg-
istration can be very time consuming. Especially for MA approaches, it is nec-
essary to have all the atlases available during segmentation time and register
the target image with each atlas separately. The classification-based methods
on the other hand, are not plagued by the same problems as registration-based
approaches. Instead, they can predict the probability that a voxel belongs to a
specific object based on previously seen data. Most classification-based methods
[11, 5] use some flavour of the random forest classifier and are trained by local
appearance features. Furthermore, issues such as non-localised spatial support
and large inter-subject variability may be dealt with by training with additional
data. Even though classification-based methods can be fast, they do not take
into consideration organ contextual information or organ shape and as such they
often produce less accurate segmentations than registration-based methods.

This paper proposes a novel framework for multi-organ segmentation (Fig.
1(a)), which leverages several ideas from computer vision and machine learning
and does not require any registration steps, neither during training nor during



segmentation time. Because of this, we can avoid all the potential shortcomings
of registration-based methods, while at the same time design a method that is
accurate and fast enough that can be applied to real-life clinical applications. We
begin by generating supervoxels from the CT image at multiple levels of detail
(Sec. 2.1). Then we extract a set of complementary appearance and contextual
features from the supervoxels (Sec. 2.2) and use them to train a boosted tree
classifier at each level. The classifiers are not independent but are linked together
using hierarchical auto-context (Sec. 2.3). During segmentation, the linked clas-
sifiers are applied to the new image and their output is fused using a hierarchical
conditional random field (Sec. 2.4). We have tested our approach for the seg-
mentation of 8 organs in a 20 CT image dataset (Sec. 3) and obtained results
comparable to the state-of-the-art registration-based methods, despite our solu-
tion being registration-free. Also, we are considerably more efficient than most
competitors since training is done offline and the training data does not have to
be present during segmentation. Our key contributions are:

– A method for registration-free multi-organ segmentation in 3D CT images
– Multiple levels of supervoxels for appearance and context learning
– Adaptation of auto-context to a hierarchical scenario
– Extension of 3D feature descriptors to volumetric data
– CRF fusion using spatial and hierarchical supervoxel neighbourhoods

2 Method

2.1 Multi-level supervoxels for learning appearance and context

The first step, after acquiring and pre-processing the training data, is to gen-
erate a supervoxel representation within which we may extract the appearance
features. A supervoxel representation is simply an oversegmentation of the image
into homogeneous regions and it is carried out by grouping adjacent voxels based
on their intensity similarities. Given a 3D image with voxels v=1 : V , we can
define a supervoxel as the set of voxels Sl = {v : s(v) = l}, where l = 1 : L and
s : {1, ..., V } → {1, ..., L}. We have used the fast implementation by [7]. Working
with supervoxels is preferable to using single voxels or arbitrary patches, since:
1) we have better adherence to object boundaries and as such are more likely
to preserve these boundaries in the final segmentation; 2) The homogeneous re-
gions inside each supervoxel usually come from a single organ since the shape
and size of a supervoxel adapts to the local information. Extracting therefore
features from inside each supervoxel means that we can capture the specific local
structures of individual organs, from a more natural voxel neighbourhood and
without confounding information from different organs; Finally, 3) using super-
voxels instead of voxels means that we have a reduced model complexity, which
in turn results in a much faster algorithm. Instead of using only a single grid
to generate the supervoxels, we have adopted a multi-level approach whereby
we apply multiple initialisation grids (in a coarse-to-fine strategy), in order to
obtain supervoxels at various sizes, shapes and granularity. Our aim with this



multi-level approach is to capture a more diverse set of local structures at mul-
tiple scales and from different-sized neighbourhoods, in order to obtain a richer
representation of organs that may exhibit a large variation in appearance.

2.2 3D volumetric feature extraction

Unequivocally, the most important part of our framework is the choice of features
used to train the classifiers, since they directly influence the accuracy of the
segmentation. We have extracted a mixture of texture, shape and neighbourhood
context features in order to obtain a comprehensive representation of the organs
of interest. We denote a feature vector as: d = {dG,dV,dH,dN }.
3D GLCM features: The gray level co-occurrence matrix (GLCM) is a com-
monly used approach [10] for extracting statistical features between pixels/voxels
in image data. We have adapted this idea to supervoxels, where each entry in the
3D GLCM represents the probability of different graylevels occurring between
neighbouring voxels. The neighbourhoods are defined inside a supervoxel and
the displacement between two voxels is given by the vector {d, θ,ϕ}, where d
is the L1 distance and {θ,ϕ} are the azimuth and zenith angles that determine
direction in 3D polar coordinates. For simplicity, we set d=1 and calculated 13
combinations of corresponding directions. This gives 13 Harralick-type features
and for each such feature we have extracted both the angular mean and standard
deviation, resulting in a 26-dimensional texture vector for every supervoxel.
Volumetric Shape Context features: The 3D shape context (3DSC) feature
[6] is a histogram that accumulates the number of shape points within a given
volume. We have extended the 3DSC, originally proposed for 3D point clouds
and meshes, to work with volumetric data. We denote this as the Volumetric
Shape Context (VSC) descriptor. The VSC uses a 3D gradient intensity his-
togram centred around each voxel. However unlike the 3DSC, the histogram is
now a cube regularly subdivided along its three dimensions, so that each bin
describes the same portion of 3D space and contains the same number of voxels.
The volume of the cube is given by the volume of the associated supervoxel
inside which the current voxel resides. In addition, we assume a global 3D co-
ordinate frame that remains consistent amongst the acquired data. Given thus
the gradient ∇f(v) of a voxel v at coordinates (vx, vy, vz), each bin h(k) of the
histogram stores the average gradient computed from all the N voxels falling
within the associated volume of the cube C(k):

h(k) =
1

N

�

v∈C(k)

∇f((vx, vy, vz)). (1)

HOG3D features: The HOG3D is a local descriptor based on oriented his-
tograms of 3D gradients and is complementary to the VSC. We have used the
algorithm by [8] and have adapted it to volumetric data and supervoxels. The
computation of the descriptor involves first calculating the 3D gradients around
a point of interest. Then, the orientation of these gradients is quantised using
regular polyhedra and the mean gradient is computed. In our case, the point



of interest is the supervoxel centroid. The gradients are computed and averaged
over the spatial support of the supervoxel. HOG3D features differ from VSC in
that the former uses multiple histograms and accumulates gradient orientations,
while the latter has a single histogram and accumulates gradient intensities.
Neighbourhood context: One simple way of including additional discrimina-
tive power into the algorithm is to relate nearby supervoxels together, thereby
incorporating neighbourhood context information. This is because in general,
the organs of interest have stable relative positions and so we also expect that
relative contextual information between supervoxels to be consistent between
training and test images. We may define a neighbourhood N around a given
supervoxel Sl as those supervoxels that share a boundary with Sl. Then for ev-
ery supervoxel Sn, n ∈ N inside the neighbourhood, we calculate the difference
Dn=�dl − dn�1 at each feature-type. Since the size of the neighbourhood can
vary for different supervoxels, we only consider the mean and the maximum of
Dn, giving us two neighbourhood context features for each supervoxel. There-
fore, for every supervoxel we extract a 177-dim vector d, which is composed by
concatenating the 26-dim GLCM features dG the 125-dim VSC features dV the
20-dim HOG3D features dH and the 6-dim neighbourhood context features dN .

2.3 Hierarchical auto-context classification

After feature extraction the next step is to train the classifiers. Here we use
the gradient boosted trees (GBT) [14], which is an ensemble prediction method
where boosting is applied to weak decision trees. GBTs can often surpass generic
random forests and produce a very good fit to the data even in the case of com-
plex nonlinear problems. In order to incorporate all the information contained
in the features from the different supervoxels levels, it makes more sense to link
the levels together than to treat each level independently. We therefore train
one GBT classifier for each supervoxel level and link them using a technique
called auto-context [15]. In auto-context a classifier is first trained from local
features and then applied back onto the image to produce discriminative prob-
ability maps. These maps, which act as a rough object localiser, are appended
to the existing local features and are used to train a new classifier.

We have introduced two novelties to the basic auto-context algorithm. First,
we have extended it to work in a hierarchical scenario and thereby linking to-
gether the classifiers from all the levels. More specifically we train the initial
GBT from the features extracted at the coarsest level and apply it back onto
the image to produce a probability map. The probability map is then transferred
to the image on the next level (from coarse supervoxels to fine supervoxels) and
together with the features extracted at this new level are used to train a new
GBT classifier (Fig. 1(b)). This procedure is repeated until we reach the final
level. The output of the training stage is a set of linked GBT classifiers and the
output of the segmentation stage is a set of probability maps. The probability
maps will be merged in the final CRF fusion step. The second extension is that
we further exploit the information in the probability maps and use them as im-
portance sampling weights. Namely, at each subsequent level we only train with



the features at locations where the preceding classifier had a high confidence.
This step avoids inundating the classifier with too much data and additionally
increases the confidence of the classifier at every level by only training with
strong, discriminative features.

2.4 Hierarchical CRF fusion using supervoxel neighbourhoods

The last component of our framework is a conditional random field (CRF) step
where the hierarchical outputs from the auto-context classification are fused in
order to determine the best labelling. CRF fusion is by far superior to other merg-
ing approaches such as voting or averaging. The CRF structure is specified by the
undirected graph G=(V , Ea ∪ Ep), where Ea={(i, j) ∈ S × S| i is adjacent to j}
and Ep={(i, j) ∈ S × S| i is parent to j}. Ea contains all pairs of supervoxels
that are neighbours on the same level, whereas Ep is the set of all parent-child
supervoxel pairs between two subsequent levels. The energy function is given by:

E(y) =
�

i∈S

φi(yi) +
�

(i,j)∈Ea

φa
i,j(yi, yj) +

�

(i,j)∈Ep

φp
i,j(yi, yj), (2)

where y are the labels. Hence, the CRF introduces both spatial regularisation
within each level of supervoxels by φa as well as interaction potentials between
levels by φp. We use the probabilistic output P (yi|di) of the classifiers for the
unary potentials:

φi(yi) = − logP (yi|di), (3)

where d are the extracted feature vectors we have used to train the classifiers
with. The binary potentials are set as:

φi,j(yi, yj ;λ) = λ exp(−γ||di − dj ||1)(1− δ(yi, yj)), (4)

with γ=1/ dim(d) and δ(.) being the Kronecker delta function. λ is a scalar pa-
rameter that is chosen separately for the spatial and the hierarchical potentials.
We estimate the best labelling y� by minimising (2) with the algorithm of [9].

3 Experiments and results

Dataset: We have used the VISCERAL Anatomy3 dataset [1], which includes
20 contrast enhanced, abdominal CT images. Each CT image has a resolution
of 512×512 pixels with an average of 426 slices and a resolution between 0.604-
0.793 mm. The images are manually segmented and the ground truth annotations
contain up to 20 anatomical structures, albeit not ubiquitous. We will consider 8
organs here: liver, spleen, 2 kidneys, pancreas, 2 lungs, urinary bladder; because
they are the most consistently represented in the dataset. In order to improve
the appearance learning and discriminative power of the classifier we utilised
a secondary add-on dataset, the VISCERAL Silver Corpus [2]. This dataset
contains an additional 59 useful CT images, but without any manual ground



truth. Instead the labels have been automatically obtained and as such contain
segmentation errors. Despite that, the data can still be used for noisy training
since the errors are mostly manifested as organ under-segmentations. This means
that if we ignore the background information we may still incorporate the partial
organ labels from the Silver Corpus.
Pre-processing: Every image was first downsized by a factor of 2 and cropped
to speed up training and segmentation. Following that, we converted the data
to an isotropic resolution, windowed the Houndsfield units between [0,150] and
mapped to intensities in the range [0,1]. Finally, we performed histogram equal-
isation and denoised the images using 3D anisotropic diffusion.
Training and segmentation: We defined 9 classes, one for each of the 8 organs
and a background class for all the remaining structures. Features were extracted
at 4 different levels of detail with 5k, 10k, 20k and 30k supervoxels respectively.
The classifiers were set to run for 300 iterations using an exponential loss function
and a tree depth of 2. We followed a leave-one-out evaluation strategy, in which
the classifiers were trained on 19(+59 noisy) examples and tested on 1. The final
organ labels were obtained by the CRF fusion with fixed parameters λ=0.05 for
both the hierarchical and spatial potentials.
Results: The main results from our experiments are presented in Table 1 with
exemplar segmentation in Fig. 2. We see that our approach obtains good segmen-
tation for the majority of the organs. Furthermore, our results are on par with
other state-of-the-art methods from literature that use much larger datasets.
Although we cannot yet fully outperform the very accurate registration-based
methods [16, 4, 17, 12, 13] we expect that our results will improve upon increasing
the noise-free training data to comparable sizes. Note however that we are con-
siderably better than the classification-based method [11] that does not leverage
additional information from the data like we do. For reference, we have also in-
cluded (last column, Table 1) the average results from the methods participated
in the VISCERAL Anatomy2 segmentation challenge [3]. This dataset is closely
related to ours and so direct comparison is more reasonable. We observe that
our method compares very favourably to the average results reported in [3].

4 Conclusions

We have presented a novel classifier-based framework for registration-free multi-
organ segmentation in CT images. We have adapted and extended a number
of concepts such as multi-level supervoxels, hierarchical auto-context and CRF
fusion, in order to fully leverage all the available information and improve the
segmentation quality. Our method was evaluated on a 20 image contrast en-
hanced CT dataset for the segmentation of 8 organs. In terms of accuracy our
results are comparable with other state-of-the-art methods that use a much
larger corpus of training data. Also, because our training is done offline and



Fig. 2. From left to right: (upper row) Worst, bottom 10%; (lower row) top 10% and
best results from the 20 evaluated CT images. Our segmentations are outlined in red
over the manual labels.

is decoupled from the segmentation stage, we can increase accuracy by train-
ing with more data but without any additional segmentation cost. This is not
possible for registration-based methods because they do not scale very well with
increasing data. Moreover other approaches require all the atlases to be available
during segmentation time. All we need to carry over is a small set of trained clas-
sifiers with a minimal memory footprint and without data storage and privacy
issues. This makes our method efficient, portable and very practical.
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