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Abstract

We present a preconditioning scheme for improving the

efficiency of optimization of arbitrary difference measures

in deformable registration problems. This is of particu-

lar interest for high-dimensional registration problems with

statistical difference measures such as MI, and the demons

method, since in these cases the range of applicable opti-

mization methods is limited. The proposed scheme is simple

and computationally efficient: It performs an approximate

normalization of the point-wise vectors of the difference

gradient to unit length. The major contribution of this work

is a theoretical analysis which demonstrates the improve-

ment of the condition by our approach, which is further-

more shown to be an approximation to the optimal case for

the analyzed model. Our scheme improves the convergence

speed while adding only negligible computational cost, thus

resulting in shorter effective runtimes. The theoretical find-

ings are confirmed by experiments on 3D brain data.

1. Introduction

Given two input images, the target image IT and the

source image IS, the task of registration is to compute the

transformation φ, such that φ maps between the correspond-

ing points in the input images. Intensity-based deformable

registration is generally formulated as an optimization of an

energy E combining a difference measure ED and a regu-

larization term ER by

E(φ) = γ ED(φ) + λER(φ) , (1)

with positive scalar factors γ and λ.1 For high-dimensional

deformation models, the difficulty of efficient optimization

of (1) depends largely on the choice of ED. While many

standard methods can be used for point-wise difference

measures such as the sum of squared differences (SSD), al-

ternatives for efficient optimization of statistical measures

1E in (1) is highly non-linear, and we compute only local solutions.

such as mutual information (MI) [18, 8], or correlation ratio

(CR) [13] are more rare and complex. The goal of this work

is to provide a simple scheme for efficient optimization of

arbitrary difference measures.

For the treatment of multi-modal registration problems

in medical image analysis, the use of statistical difference

measures such as MI or CR is of particular interest. These

measures operate on the joint probability distribution of the

intensities of the two input images, hereby linking all points

with the same intensities, which results in a non-local char-

acter of the measures. This is in contrast to difference mea-

sures which are defined by point-wise comparisons, such

as SSD. The non-locality of statistical measures has conse-

quences on the structure of the corresponding Hessian ma-

trix, which is a major building block for many standard op-

timization methods. While the Hessian of the SSD mea-

sure is a sparse matrix with a small number of non-zero

diagonals, the Hessian of MI is dense without any regu-

lar sparsity pattern. The size of Hessian matrix H for MI

thus becomes prohibitive for practical treatment for high-

dimensional settings - with the number of parameters being

equal to the number of voxels times the dimension of the

images, we get sizes of H in the order of ((3·106)×(3·106))
for medium size problems. The same problem holds for the

Jacobian J of statistical difference measures. This property

rules out a number of standard efficient optimization meth-

ods for the use with statistical measures, such as the Newton

method (employing H), or as Gauss-Newton or Levenberg-

Marquardt (employing J⊤J), which are good choices for

point-wise measures such as SSD. Please see also [9] for a

more detailed description of this issue.

Therefore, efficient optimization methods for statistical

difference measures in high-dimensional settings must cir-

cumvent the problem of dealing with dense matrices H or

J⊤J . Standard techniques to achieve this goal include quasi-

Newton methods such as L-BFGS, nonlinear conjugate gra-

dient (NL-CG), or preconditioning techniques [11].

While all of these methods can in principle be applied for

approaches based on generic optimization of the energy in
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Figure 1: Example of the effect of the proposed preconditioning scheme for MI. The point-wise gradient vectors ∇ED(x)
are normalized to approximately same length by P−1∇ED(x). Our analysis reveals that this simple strategy improves the

condition for arbitrary difference measures ED, which improves the convergence speed of gradient descent methods.

(1), the use of L-BFGS and NL-CG is not theoretically jus-

tified for the standard interpretation of the popular demons

registration method as an alternating optimization process,

in which the optimization steps for ED are interleaved with

smoothing operations, which correspond to optimization of

ER [9]. Since L-BFGS and NL-CG operate by utilizing the

information about the energy gradient from subsequent it-

erations, this process for ED is disturbed by the smoothing

step, which makes this information inconsistent [9]. Pre-

sumably in consequence of these properties, optimization

of ED by steepest gradient descent (SGD) is still the stan-

dard choice for multi-modal demons registration.

In this work, we propose a simple but theoretically jus-

tified preconditioning scheme for the optimization of ar-

bitrary difference measures. Since the derivation of the

method relies only on the general properties of a generic

difference measure, without any approach-specific consid-

erations, it has the advantage of being applicable to any

deformable registration method, and for any difference

term. The major idea behind the proposed preconditioning

scheme is extremely simple: Modify the gradient of the dif-

ference measure, such that the force vectors ∇ED(x) at sin-

gle points in space have possibly similar magnitudes, please

compare Fig. 1 for an illustration. In this work, we perform

a theoretical analysis which demonstrates that the above

scheme actually improves the condition of the problem,

which results in faster convergence. Actually, the analysis

yields that our scheme is an approximation to the optimal

preconditioning of the problem, with respect to the made as-

sumptions. Also, due to the simplicity of the scheme, only

minimal computational cost is added compared to SGD.

While the proposed approach is generally applicable in

any registration framework, it seems particularly interest-

ing for the demons method, due to its previously discussed

restrictions with respect to available optimization methods.

Therefore, in this work, we focus on this setting and demon-

strate the potential of our scheme in the demons framework.

1.1. Related Work

The preconditioner that we discuss in this work is re-

lated to our choice of the Riemannian metric in [19]: It cor-

responds to the part of the metric related to ED. While in

[19], the term is chosen heuristically, we provide an analysis

which demonstrates that our scheme actually improves the

condition for arbitrary difference measures. This result can

be used to theoretically justify the findings in [19]. On the

other hand, the results in [19] can be seen as an exemplary

application of the proposed scheme also to other registration

methods than the demons approach.

With respect to the demons method, most applications

are employing it for mono-modal registration based on

SSD, with the original force term, which is based on the

Gauss-Newton method. The demons framework has also

been applied in some multi-modal settings with statistical

difference measures. However, most of these works as-

sume the steepest gradient descent (SGD) update step for

the forces [2, 5]. To our best knowledge, the only exception

to the use of SGD is the work by Modat et al. in [9], where

the force is computed as an update of the non-linear conju-

gate gradient (NL-CG) optimization method [11]. Boiled

down, the NL-CG method computes the force term as a

specific weighted average of the gradients of the difference

measure from the last two iterations [11].

While NL-CG does not require an approximation of the

Hessian, which would be problematic for statistical dif-

ference measures, it has the following disadvantages (also

discussed in [9]). First, the usage of NL-CG is theoreti-

cally not justified for demons, since the gradient informa-

tion about the difference measure from consecutive itera-

tions is not consistent due to the interleaved regularization

step [9]. While, in spite of this point, NL-CG reportedly can

improve the convergence speed compared to the SGD, no

quantitative comparison is performed in [9]. Furthermore,

NL-CG requires a precise step size estimation in order to

achieve an improvement in convergence [9, 11]. Since pre-



cise step-size search in deformable registration has the cost

of several iterations of the algorithm, the increased compu-

tational cost can easily outweigh the improvement in con-

vergence speed.

In the context of high-dimensional elastic registration,

the L-BFGS method [11] has been employed e.g. in [10].

The essence of L-BFGS is the approximation of the effects

of applying H−1 to the energy gradient, without actually

setting up or inverting H . Since the approximation in L-

BFGS also relies on accumulation of the gradient informa-

tion from several iterations, it shares the same disadvantages

as NL-CG, which makes it unsuitable for the demons frame-

work. Compared to NL-CG, the additionally required stor-

age for the n last gradients is a further disadvantage.

Preconditioning schemes have not been studied widely

for deformable registration to our best knowledge. An ex-

ception is [7], which proposes a specific scheme for SSD.

In contrast to the above methods, the use of the proposed

preconditioning approach is applicable to arbitrary differ-

ence measures, and it is justified also in the demons setting,

since it does not require information from previous itera-

tions. Furthermore, the proposed method does not require

a precise step size search, and improves the convergence

speed already with a simple fixed step size strategy, thereby

directly translating the gain in convergence speed to an ef-

fective improvement of runtime.

2. Methodology

We proceed in the following manner. First, to present

the setting for the application of the proposed precondition-

ing scheme, we provide a brief description of the demons

framework in Sec. 2.1, and we also discuss how the scheme

can be employed for other methods in Sec. 2.2. Then we

present the actual preconditioning scheme in Sec. 2.3. The

analysis in Sec. 2.4 shows that even the restricted optimiza-

tion of difference measures for deformable registration is in

general ill-conditioned, and that the proposed scheme im-

proves the condition of the problem. The theoretical find-

ings are confirmed by the experiments in Sec. 3.

2.1. The Demons Framework

Due to its efficiency and simplicity of implementation,

the demons method [14] has become a popular choice in nu-

merous applications. We consider a general demons frame-

work which computes the transformation φ = Id + u by

f = compute force(ED ) (2)

g = τγ Gσfl
∗ f (3)

ui+1 = Gσel(τ,λ) ∗ (ui ◦ (Id + g)) . (4)

The above framework contains several extensions of the

original approach, which have been proposed in the liter-

ature. First, the original elastic-type approach (filtering by

Gσel
in (4)) is combined with fluid-type regularization (fil-

tering by Gσfl
in (3)) which is applied not to the complete

displacement, but only to the force f , as discussed for ex-

ample in [12]. Second, assuming a group structure for de-

formations, composition is used as the update scheme in (4)

[15, 2, 17]. Finally, the optimization now contains a step

size parameter τ , which is included directly in (3), and en-

ters (4) through the width of the Gaussian kernel which is

defined by σel(τ, λ) = 2
√
τλ. The discretization of images

and the displacements is performed on a dense, Cartesian

grid, corresponding to position of image voxels, and linear

interpolation for computation of values at off-grid points.

A common interpretation which ties in the demons ap-

proach within the energy model in (1), is to see the demons

approach as optimization of the energy E, by alternating op-

timization of the expressions containing the difference mea-

sure ED and the regularization term ER [12, 1]. Within this

interpretation, the computation of the forces in (2) corre-

sponds to a step of the optimization of ED in the L2 space,

the fluid regularization in (3) can be seen as a projection to

a corresponding Sobolev space [2], and the regularization

step in (4) corresponds to one optimization step of ER.

The focus of this work is on the computation of the force

term in (2). In the original approach this was performed by

f =
1

(IT − IS(φ))
2
+ ‖∇IS(φ)‖2

(IT − IS(φ))∇IS(φ)
︸ ︷︷ ︸

=−∇ESSD(φ)

, (5)

which can be seen as a modification of the gradient of the

SSD. It was demonstrated that (5) corresponds to a step of

a Newton-type optimization scheme on the SSD [12]. Most

current approaches which extend the demons framework to

other difference measures, compute the forces by employ-

ing the steepest descent scheme, that is

f = −∇ED(φ) . (6)

The only exception to this approach known to us is [9],

where the forces are based on the NL-CG method.

In this work, we consider the computation of the demons

forces based on a preconditioned gradient descent by

f = −P−1∇ED(φ) , (7)

with the operator P−1 as discussed in Sec. 2.3.

2.2. Application to Other Methods

For registration methods based on generic optimization,

a preconditioned gradient descent can be employed for the

energy E from (1) by incrementally updating φ by

h = −K−1∇E(φ) , (8)

where K is a symmetric positive definite operator, which

should present a numerically favorable approximation to



HE . The art of preconditioning consists in designing such a

K for a specific problem. While the difference terms ED

are non-linear, most regularization terms are of the form

ER = 1/2〈ARu, u〉, with the corresponding Hessian being

HER
=AR. Thus, for the scheme from (8), we have to es-

timate only the preconditioning term P for the difference

measure, and we get

h = −(P +AR)
−1∇E(φ) . (9)

The above equation shows how the preconditioning term

P , which we discuss in Sec. 2.3 can be employed also for

registration methods other than demons, cf. also [19].

2.3. Preconditioning Scheme

In this work, we propose a simple preconditioning
scheme, which modifies the magnitudes of ∇ED(x), such
that they become possibly similar, please see Fig. 1 for
an illustration. Point-wise, this can be achieved by defin-
ing the action of the preconditioner P as a multiplication of
∇ED(φ)(x) with a positive scalar by

P
−1∇ED(φ)(x) =

1

‖∇ED(φ)(x)‖+ σ
∇ED(φ)(x) . (10)

This corresponds to a diagonal, positive definite opera-

tor P , with blocks corresponding to x ∈ Ω defined by

P |x = diag (‖∇ED(φ)(x)‖+ σ). While P being positive

establishes the formal requirements for a proper gradient

descent, it has not yet been shown that the application of P
will actually improve the condition of ED. We will demon-

strate this property by the analysis in Sec. 2.4.

It is interesting to note that in the case of SSD, the pro-

posed scheme from (10) approximates the original demons

force in (5), since for small displacements, we have |IT −
IS(φ)| ≈ ‖∇IS(φ)‖, and

‖∇ESSD(φ(x))‖ = ‖ (IT − IS(φ))∇IS(φ)‖ (11)

≈ 1

2
(IT − IS(φ))

2
+

1

2
‖∇IS(φ)‖2 (12)

Thus our approach can be seen as a natural generalization

of the original demons to arbitrary difference measures.

2.4. Analysis of the Preconditioning Scheme

The analysis of the proposed preconditioning is per-

formed as follows. First, we define the model for the analy-

sis of the condition, which operates by measuring the vari-

ation of the energy about the optimum, and is based on the

energy gradients (Sec. 2.4.1). Second, for optimization of

difference measures, which is an under-constrained prob-

lem for high-dimensional deformable registration, the anal-

ysis has to be restricted to permissible, meaningful direc-

tions (Sec. 2.4.2). Finally, we perform the condition anal-

ysis for a restricted optimization of difference measures in

deformable registration (Sec. 2.4.3). We find that the pro-

posed scheme approximates the optimal improvement of the

condition, w.r.t. to the made assumptions.

(a) Ill-conditioned energy (b) Well-conditioned energy

Figure 2: Illustration of the model for evaluating the condi-

tion of the optimization problem, cf. Eq. (14). For regis-

tration, the directions v correspond to displacement fields,

and ǫv represent permissible small warpings of the source

image about the optimal deformation, compare also Fig. 3.

2.4.1 Model for Condition Analysis

The condition of an optimization problem can be intuitively

seen as the description of the geometry of the energy func-

tion about the optimum. A well-conditioned energy func-

tion has a possibly spherical shape. The process of precon-

ditioning can be interpreted as modification of the under-

lying space to render the energy possibly spherical. For a

critical point φ′, the perfectly conditioned problem can be

formalized by

ED(φ
′ + vi) = ED(φ

′ + vj) , (13)

where the energy is varied in all possible directions v with

a fixed length ‖v‖ = r. Intuitively, the model states that

for a perfectly conditioned problem, the change of energy

about the optimum φ′ should depend only on the distance to

φ′ and not the probing direction v.

In order to tie the above condition to the gradient of the

function, we employ the following alternative form

〈 ∇ED(φ
′ + ǫv) , v 〉 , (14)

which describes a spherical function if (14) is constant for

all directions v with a fixed length ‖v‖ = r. For a visu-

alization, please see Fig. 2. If the energy is not perfectly

conditioned, then the term in (14) varies, and we measure

the quality of the shape of ED by the variation of the values

of (14) for all possible directions v, which is bounded by

κ(ED) =
maxv 〈 ∇ED(φ

′ + ǫv) , v 〉
minv 〈 ∇ED(φ′ + ǫv) , v 〉 . (15)

A high κ corresponds to an ill-conditioned problem, with

the perfectly conditioned function expressed by κ = 1.

Our goal will be to determine a preconditioner P , which

minimizes or at least reduces the value of

κP (ED) =
maxv

〈

P−1∇ED(φ
′ + ǫv) , v

〉

minv 〈 P−1∇ED(φ′ + ǫv) , v 〉 (16)

compared to no preconditioning, i.e. P = Id.



2.4.2 Restriction of Analysis to Permissible Directions

For optimization of difference measures in deformable reg-

istration, we have to restrict the set of allowed directions

v, since in general, the optimization of the unregularized

difference measure subject to a high-dimensional deforma-

tion is an under-constrained problem, and the condition is

infinitely bad per definition. However, we are interested in

improving the condition along the constrained dimensions

of the problem. The problem is under-constrained since not

all deformations result in changes of the energy. For exam-

ple, this is the case for deformations in homogeneous image

areas or along the level set lines of the source image. There-

fore, we exclude such under-constrained directions from the

analysis, and focus on deformations which do not contain

any under-constrained components. Such “pure” displace-

ments v are characterized by being point-wise parallel to

the corresponding intensity gradient of the source image,

i.e. v(x) ‖ ∇IS(x). It is important to note that - with the as-

sumption of group structure for deformations - the original

energy gradient has the above permissible structure through

∇ED(φ)(x) = ω(x)∇(IS ◦ φ)(x), cf. e.g. [2]. An illustra-

tion of the permissible directions is given in Fig. 3.

Through the connection between ∇IS and ∇ED, we can

formalize the deformations v as point-wise rescaling of the

directions of the energy gradient

v(x) = α̃(x)∇ED(φ)(x) = α(x)
∇ED(φ)(x)

‖∇ED(φ)(x)‖
, (17)

with α : Ω → R. We define the spatial subset Ω′ =
{x ∈ Ω : ‖∇ED(φ)(x)‖ 6= 0}, and set α(x)|Ω′ ≥ 0, and

otherwise α(x)|Ω\Ω′ = 0, and v(x)|Ω\Ω′ = 0. Scaling by

α instead of α̃ in (17) will facilitate the further analysis.

Please note that, given ∇ED(φ), the directions v are com-

pletely determined by the choice of α.

In order to restrict the directional vectors v to a sphere,

such that (17) complies with (14), α has to be chosen such

that ‖v‖ = r, which gives the following condition

r2 = ‖v‖2 =
∑

x∈Ω′

α(x)2 . (18)

It is important to note that the choice of α is not unique, and

we define the set of all permissible α values as A. Also,

due to the construction in (17), A is only dependent on |Ω′|,
i.e. the number of non-zero point-wise vectors ∇ED(x),
and not their actual magnitudes or directions.

For the analysis we will employ the directions v as de-

fined in (17), and substitute these to the criterion (14). Thus,

we have to employ the test deformations ϕ with

ϕ = φ′ + ǫv with v(x) = α(x)
∇ED(ϕ)(x)

‖∇ED(ϕ)(x)‖
. (19)

(a) valid test dir. (b) valid test dir. (c) invalid test dir. (d) invalid test dir.

Figure 3: Illustration of the restriction to permissible test di-

rections for condition analysis. Directions v are represented

by displacement fields, superimposed onto the source im-

age, warped by a scaling transformation. (a) gradient ∇ED,

and (b) general valid test field, obtained point-wise by

α(x)∇ED(x), with α(x) ≥ 0. (c) is invalid since its ap-

plication results in no change of energy. (d) is invalid as the

point-wise vectors ∇ED(x) are re-oriented, thus containing

a component along the image level set lines, which does not

change the energy. Also, some v(x) point in the opposite

direction of the original gradient, i.e. 〈∇ED(x), v(x)〉 < 0.

It is easy to demonstrate the existence of such points for a

quadratic function E. Consequently for ǫ → 0, the exis-

tence of such points can also be assumed.

Also, we restrict the class of preconditioners P , such

that P−1∇ED is permissible in the above sense. This is

achieved by restricting P to a point-wise multiplication,

such that P−1∇ED(x) = p−1(x)∇ED(x) with p > 0. Our

scheme from (10) falls within this class with

p−1(x) =
1

‖∇ED(φ(x))‖+ σ
. (20)

2.4.3 Condition Analysis of Difference Measures

Finally, we argue that the proposed scheme actually im-

proves the condition of the problem, by showing that the

proposed P reduces the value of (16), compared to the orig-

inal, un-preconditioned problem (i.e. P = Id).
For the shape of a general preconditioned difference

measure, we find by applying a preconditioned version of
(14) to directions from (19) that

〈

P
−1∇ED(ϕ) , v

〉

=
∑

x∈Ω′

〈

P
−1∇ED , α

∇ED

‖∇ED‖

〉

(21)

=
∑

x∈Ω′

α ‖ p−1∇ED ‖ . (22)

In the above we omit the arguments from α(x), p−1(x) and

∇ED(ϕ)(x) on the right-hand side for space reasons. We

get from (21) to (22) based on (20).

By inserting (22) into (16), we obtain

κP (ED) =
maxα

∑

x∈Ω′ α(x)‖p−1∇ED(ϕ)(x)‖
minα

∑

x∈Ω′ α(x)‖p−1∇ED(ϕ)(x)‖
. (23)



A solution of the constrained maximization and minimiza-

tion sub-problems from (23), with 1=
∑

α(x)2 (cf. (18)),

by Lagrange multipliers, reveals that (23) equals

κP (ED) =

√
∑

x∈Ω′ ‖p−1∇ED(ϕ)(x)‖2
minx∈Ω′ ‖p−1∇ED(ϕ)(x)‖

, (24)

Note that (24) is independent on α or overall scaling of

∇ED. The minimum of (24), and thus the optimal condi-

tion, is obtained if the magnitudes of all non-zero point-wise

entries are equal: Assuming w.l.o.g. ‖p−1∇ED(ϕ)(x)‖=1,

∀x ∈ Ω′, an increase of ‖p−1∇ED(ϕ)(x)‖ for any x ∈ Ω′

will increase the numerator of (24), while the denominator

remains unchanged.

Please note that the constant value of ‖p−1∇ED(ϕ)(x)‖
for all x ∈ Ω′ corresponds to a gradient field obtained by

the proposed preconditioning (10) for σ→ 0. On the other

hand, for σ→∞, we arrive at the original energy shape (i.e.

P = Id), compare also Fig. 4. This shows that for finite

values of σ, the proposed scheme improves the condition of

the original problem, and for σ→0 it actually approximates

the optimal case for the examined model. Since we consider

the model assumptions to be reasonable, we see the above

result as a strong indication that a noticeable improvement

of convergence speed can be expected in real applications.

3. Evaluation

3.1. Influence of the σ Parameter

The performance of the proposed method depends on the

setting of the σ parameter from Eq. (10). For large values of

σ, the preconditioning effect disappears, and the proposed

method behaves as SGD. On real data, too low values of

σ will enhance noise, which will lead to inrobust perfor-

mance. To visualize the effect of the σ parameter in a multi-

modal setting, we perform a test with MI, on a synthetic 3D

data set, with the source image IS shown in Fig. 4(a). The

corresponding target image was set to IT = 1 − IS ◦ φGT,

and the ground truth φGT was generated by a B-Spline FFD.

Fig. 4(b) shows the increasing preconditioning effect for

decreasing values of σ. In all our experiments, the σ value

is given relative to maxx ‖∇ED1(x)‖ in first iteration by

stating σ′, s.t. σ = σ′ maxx ‖∇ED1(x)‖. The actual choice

of σ depends on the used difference measure, the level of

noise in the input images, and the chosen amount of regu-

larization. From our experience, smaller σ values are suited

for: (1) SSD rather than MI (probable reason: approxima-

tions in implementation of MI introduce “noise”); (2) im-

ages from same rather than different modalities; (3) strong

regularization, which effectively counteracts noise.

3.2. Tests on Brain Images

We test on simulated 3D MRI brain images (T1,T2,PD)

from the BrainWeb project [3], with noise-level of 3%,

(a) Source Image
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Figure 4: Influence of the σ parameter. Small values of σ
result in a stronger preconditioning, and faster convergence.

For σ→∞ the proposed method approximates SGD.

intensity non-uniformity of 20%, and element spacing of

1mm/vx. We perform the 6 possible registrations between

the different modalities with different algorithm settings.

The target image is created by applying a ground truth

displacement uGT to one of the input images. The quality of

the results is assessed by the mean end-point error in the

region of interest ΩM (the head), measured in millimeters.

The ground truth fields are generated in two steps. This

two step approach is performed to generate random defor-

mations, which do not have high-frequency displacements

in homogeneous areas, which can not be recovered by any

method and can overshadow the results of the evaluation.

While seemingly complex, such an approach is commonly

used, cf. e.g. [9]. First, a combination of cubic B-spline

FFDs with different resolutions is created. This field is used

to warp the one of images, and then, a registration with the

DROP software [4] is performed. The resulting deforma-

tion is employed as the ground truth field in the experi-

ments. The second step produces deformation fields which

are mostly smooth in homogeneous image regions, and thus

reduces the amount of this regularization-related error in

the experiments. We employ DROP since it is based on

gradient-free optimization and thus can be expected to be

less affected by the condition of difference measures.

The implementation of the MI follows [6] with chosen

histogram size of 40 and the standard deviation of 0.1 for

the Parzen windowing. The tests are performed on two lev-

els to simulate a realistic application setting.

As for σ, the difference weight γ is defined as γ =
γ′/max ‖∇ED1(x)‖ by setting γ′. This facilitates the use

of different energy measures. We perform no explicit step

size search. The only modification of the step size τ is per-

formed if the maximal update exceeds a certain given value

µ. Then, τ is modified, s.t. max ‖f(x)‖ = µ.

Fluid Demons. The first test is performed with fluid

demons. For the coarse and fine level, the settings are

σfl = 4, 4[mm], γ′ = 1, 2, τ = 1, 1, µ = 1, 1[mm]. For the

proposed method, we set σ′ = 0.1, 0.1. The results of the

test are summarized in Fig. 5.
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Figure 5: Comparison of proposed method (PC) and steep-

est descent (SGD) for fluid demons. As in all following

figures, we show the convergence plot measuring the devel-

opment of the mean end-point error in [mm] over iterations.

Elastic Demons #1. The first test with elastic demons is

performed with limited update steps, with the limits µ =
1, 1[mm]. This approach is of particular interest, as several

demons approaches require small updates in order to gen-

erate diffeomorphisms, cf. e.g. [2, 16], and the proposed

method could thus yield a faster convergence for these ap-

proaches. The remaining parameters were: σfl = 2, 2[mm],
σel = 1.4, 0.7[mm], γ′ = 1, 2, τ = 1, 1. For the proposed

method, we set σ′=0.4, 0.4. See Fig. 6.

Elastic Demons #2. The steepest descent method can

yield significantly better results if larger updates are al-

lowed. In this case, the result is improved since the majority

of updates are assigned larger and more meaningful values,

however, the maximal updates become too large and lead to

local oscillations, which results in divergence.

In this experiment, the proposed method (PC) did not

have to be limited, and the maximal occurring updates were

always below 3 mm. For SGD, a limit of 10 and 2 mm

had to be imposed for the coarse and the fine level, to avoid

divergent behavior on several data sets. The remaining joint

parameters were: σfl = 2, 2[mm], σel = 1.4, 0.7[mm], τ =
1, 1. For SGD, we had γ′ = 2, 1.3, and for PC we used

σ′=0.4, 0.4, and γ′=1.5, 1.3. See Fig. 7 for the results.

Discussion. The results show that in general, the proposed

method requires a smaller number of iterations to reach the

same level of error as SGD. We observe this improvement

in convergence speed in almost all tests, compared to a care-

fully tuned SGD method. Please note that we use the same

preconditioning parameter σ′ = 0.1 in all fluid tests, and

σ′=0.4 in all elastic tests.

With respect to the actual computation time, the pro-

posed scheme introduces only a minimal overhead. As an
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Figure 6: Elastic Demons #1: Point-wise updates are lim-

ited to 1mm. This scenario is of particular interest for those

demons approaches which require small updates to generate

diffeomorphisms, cf. e.g. [2, 16].
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Figure 7: Elastic Demons #2: Point-wise updates are un-

controlled for PC (however, always smaller than 3mm), and

for SGD had to be limited 10 and 2mm on the coarser and

finer level respectively, to avoid divergence.

example, for the fluid demons test (cf. Fig 5), SGD takes

114 sec, compared to 116 sec for the PC version (C++ im-

plementation, CPU: Intel R©CoreTM2 Duo P8700 2.53GHz,

RAM: 4GB). For elastic demons, which feature an addi-

tional costly smoothing step, the difference in runtime is

even less prominent.

The effect of the preconditioning depends mostly on the

distribution of gradient magnitudes and is more prominent

for images with multiple distinct clusters of gradient mag-

nitudes (CGM). For example, in Fig. 4, IS has two CGMs:

one with weaker gradients between most blocks, and one

with stronger gradients resulting from the high-contrast hor-

izontal line. Without the “stronger” CGM, the precondi-

tioning influence would be less prominent. Consequently,

the effect for real data also depends on its CGMs. We in-



cluded all results to show that in some cases the effect can

be limited - e.g. for the combination of T1 and PD. Our

statement is that our simple technique performs at least as

well as SGD in general, and better in most cases, without

requiring tedious tuning.

The results for SGD are better in Fig. 7 than in Fig. 6

due to an extreme tuning of the step sizes. These are on

the limit of the robust behavior for SGD and reaching such

performance requires manual tuning for each data set. Our

approach reaches its result with more conservative settings.

A further interesting observation is that the performance

of our method seems to be less dependent on attribution of

image modality to source or target: e.g. the results of PD-

T1 and T1-PD should lead to same errors (Fig. 6: a,b). This

is not too surprising, since for SGD, the process depends

heavily on IS through ∇ED(x) = ωD(x)∇IS(x) (cf. [2]),

and thus on the choice of IS. In our approach this depen-

dence is strongly reduced by the preconditioning.

4. Summary

In this paper, we present a simple and theoretically jus-

tified preconditioning scheme for arbitrary difference mea-

sures in deformable registration. This approach is of par-

ticular interest for cases where other standard optimization

methods become too complex, or are not applicable. Impor-

tant examples of such scenarios are multi-modal registration

problems with statistical difference measures (e.g. MI) and

high-dimensional deformation models, and especially the

multi-modal demons registration.

Our theoretical analysis demonstrates that the proposed

scheme improves the condition of the problem, and that

it actually even approximates the optimal case for the ex-

amined model. More specifically, we show that 1) point-

wise multiplication of ∇ED(x) can be seen as an impor-

tant class of preconditioners for deformable registration,

and 2) that the strategy to normalize the point-wise lengths

‖p−1(x)∇ED(x)‖ to the same value is optimal for this

class. Our actual strategy is only an approximation to this

optimal case, since it performs a damped normalization,

which makes the process robust to noise.

Due to its simplicity, our scheme is not only easy to im-

plement for any difference measure, but it also has only a

negligible computational overhead, such that the improve-

ment in convergence speed is directly transfered to an im-

provement of runtime. The fact that the proposed method

does not require any information from previous iteration

steps makes it particularly suited for demons registration -

this is in contrast to NL-CG or L-BFGS.

The performed experiments show an improvement of the

convergence speed compared to SGD, which is currently the

standard approach for multi-modal demons.

References

[1] P. Cachier, E. Bardinet, D. Dormont, X. Pennec, and N. Ay-

ache. Iconic feature based nonrigid registration: the pasha

algorithm. Comp. Vis. and Im. Underst. (CVIU), 2003. 3

[2] C. Chefd’hotel, G. Hermosillo, and O. Faugeras. Flows of

diffeomorphisms for multimodal image registration. In Intl.

Symp. on Biomedical Imaging (ISBI), 2002. 2, 3, 5, 7, 8

[3] C. A. Cocosco, V. Kollokian, R. K.-S. Kwan, G. B. Pike,

and A. C. Evans. Brainweb: Online interface to a 3d mri

simulated brain database. NeuroImage, 5:425, 1997. 6

[4] B. Glocker, N. Komodakis, G. Tziritas, N. Navab, and

N. Paragios. Dense Image Registration through MRFs and

Efficient Linear Programming. Med. Image Anal., 2008. 6

[5] A. Guimond, A. Roche, N. Ayache, and J. Meunier. Three-

dimensional multimodal brain warping using the demons al-

gorithm and adaptive intensity corrections. IEEE Transac-

tions on Medical Imaging (TMI), 20(1):58–69, 2002. 2

[6] G. Hermosillo, C. Chefd’Hotel, and O. Faugeras. Variational

methods for multimodal image matching. IJCV, 2002. 6

[7] S. Klein, M. Staring, P. Andersson, and J. Pluim. Pre-

conditioned stochastic gradient descent optimisation for

monomodal image registration. In MICCAI, 2011. 3

[8] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and

P. Suetens. Multimodality image registration by maximiza-

tion of mutual information. IEEE Trans. Med. Im., 1997. 1

[9] M. Modat, T. Vercauteren, G. R. Ridgway, D. J. Hawkes,

N. C. Fox, and S. Ourselin. Diffeomorphic demons using

normalized mutual information, evaluation on multimodal

brain mr images. In SPIE Med. Imag., 2010. 1, 2, 3, 6

[10] J. Modersitzki. FAIR: Flexible Algorithms for Image Regis-

tration. SIAM, 2009. 3

[11] J. Nocedal and S. Wright. Numerical optimization. Springer,

2000. 1, 2, 3

[12] X. Pennec, P. Cachier, and N. Ayache. Understanding the

demon’s algorithm: 3d non-rigid registration by gradient de-

scent. In MICCAI, 1999. 3

[13] A. Roche, G. Malandain, X. Pennec, and N. Ayache. The

correlation ratio as a new similarity measure for multimodal

image registration. Proc. MICCAI, 98:1115–1124, 1998. 1

[14] J. Thirion. Image matching as a diffusion process: an

analogy with maxwell’s demons. Medical Image Analysis,

2(3):243–260, 1998. 3
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