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Abstract We propose to characterize deformable registration methods
in a unified way, based on their parametrization. In contrast to traditional
classifications, we do not apply this characterization only to standard
“parametric” methods such as B-Spline Free-form deformations, but we
explicitly include elastic and fluid-type “non-parametric” methods, such
as the classic variational approach, and the fluid demons method. To
this end, we consider parametrizations by linear combinations of arbi-
trary basis functions. While for the variational approach we simply uti-
lize piecewise linear bases, for the fluid demons method we provide a new
interpretation by showing that it can be seen as inherently parametrized
by densely located Gaussian basis functions. Furthermore, we show that
the semi-implicit discretization of the variational approach can be seen
as steepest descent, with a displacement parametrized by densely lo-
cated bases, based on Green’s functions corresponding to the regular-
ization. This provides a further connection to the demons approaches.
The proposed characterization is widely applicable and provides a simple
and intuitive way of relating some of the arguably most commonly used
methods to each other.

1 Introduction

Dense, intensity-based estimation of nonlinear motion from images has gained
tremendous popularity in the last 30 years [1,2], resulting in a plethora of meth-
ods. Early reviews of registration methods [3,4], as well as more recent ones
[5,6,7,8,9] include overviews of the work on deformable registration at the re-
spective times of publication. These reviews have a focus on linear methods
and do not treat deformable registration exclusively. An early survey of non-
linear techniques is given in [10], with focus on hierarchical aspects. More re-
cent overviews and classifications of deformable techniques [11,12,13,14] have
in common that they in general distinguish - among other properties - between
“parametric” methods, such as B-Spline Free-form deformations (FFD), and the
so called “non-parametric” methods.3 Here, “parametric” methods are classified

3 In some of these publications, different terms are used for generally same groups:
[9] distinguishes Spline models and Elastic registration (defined as “not to use any



by a parametrization which leads to a reduction of the number of the degrees of
freedom, compared to “dense” parametrizations featuring a displacement vector
at every voxel. For the “non-parametric” methods, no explicit parametrization is
performed during the modeling of the energy. Hence, during the derivation of the
optimization criterion, the unknown is a continuous function, so that the “non-
parametric” approach is referred to as variational. The term “non-parametric”
is used for (at least) two different groups of methods. For the first group, a
regularization energy term is defined in the model, and then an optimization
of the model is performed [12]. The second “non-parametric” group are the so
called demons approaches, for which (in the original formulation) no explicit
regularization term is defined in the model, and the regularization is performed
by applying a low-pass filter to the displacement. In order to concisely distin-
guish between the two “non-parametric” groups, we will refer to the first group
as variational, and the second one as demons methods.

Our work in this paper is guided by the fact that for any method, a parametriza-
tion must be performed in order to compute an actual solution. However, in most
“non-parametric” cases, this inherent parametrization is not explicitly stated.
For example, for the “non-parametric” cases, the parameters are usually the dis-
placement vectors located at all sampling points (voxels) of the volume. In this
work, we focus on such inherent parametrizations for the variational and the
fluid demons approach. These two methods can be seen as prototypal examples
for the wider classes of elastic-type and fluid-type methods. While for the varia-
tional approach many different basis functions can be used for parametrization,
we identify tensor products of piecewise linear functions as the natural choice,
which is effectively used in many implementations. For the demons approach,
we propose a novel interpretation by showing that the fluid demons method can
be seen as optimization of a given similarity measure, with the displacement
parametrized by a linear combination of densely located Gaussian bases.

We see the contribution of this paper in the focus on the inherent parametriza-
tion as a characterization criterion. This enables the treatment of some of the
arguably most commonly used deformable registration methods in a unified
framework, and allows for an intuitive way of relating the different methods
to each other. In Sec. 2 we present a derivation for the standard parametric
approach which is used as the general framework in the paper, and we introduce
the elastic and fluid method groups. Following this, we give a brief overview of
the parametric (Sec. 3), variational (Sec. 4) and the demons methods (Sec. 5),
and show how they can be cast in the parametrization-based framework. In Sec.
6, we discuss the use of parametrization as a criterion for characterization.

2 General Framework Based on Parametrization

Common to all intensity-based registration methods is the goal to estimate the
transformation ϕ between the domains of the target image IT and the source

parametric mapping functions”); [11] uses parametric models and competitive regu-
larization ; [13] differentiates physically based models and basis function expansions.



image IS by optimizing an appropriate similarity measure ED. This results in

ϕ = arg min
ϕ′

ED(IT , IS ◦ ϕ′) , (1)

with d-dimensional I〈S|T 〉 : Ω → IR with Ω ⊆ IRd, and the transformation
ϕ : Ω → Ω, where mostly ϕ∈L2 is assumed. The discretization of the images in
Ω is supposed to result in N samples. The deformation ϕ is usually expressed
in terms of the displacement u, as ϕ = Id + u, with the identity operator Id.

Without modification and with ϕ ∈ L2, Eq. (1) does not offer enough con-
straints to solve for ϕ.4 With the similarity measure being modular in most
modern methods, these differ primarily in the strategy to deal with the under-
constraintment of (1). There are basically two approaches to this problem.

The first strategy is by defining an explicit regularization term in the energy
model. This path is taken for variational methods (Sec. 4).

The second way of dealing with the above problem is by restriction of the de-
formations to a lower-dimensional function space. The “parametric” approaches
(Sec. 3) are the classical example for this solution. In practice, an explicit energy
is mostly defined additionally to the restriction of the deformation. This way,
many “parametric” approaches combine the two discussed strategies.

Another way of restricting deformations to lower-dimensional manifolds is
by treating them in Sobolev spaces, which contain only functions with a certain
degree of regularity by construction [15,16,17,18]. In [15,17], it is pointed out
that the fluid demons approach can be seen as minimization of (1) in a Sobolev
space, which corresponds to a manifold containing only diffeomorphisms. The
parametrization of the fluid demons as discussed in this paper can be seen as a
discrete analogon to the use of Sobolev spaces in [15,17].

In our framework, we use the general model, which includes the explicit
regularization energy term ER, that is

E(u) = ED(IT , IS ◦ (Id + u)) + αER(u) . (2)

Here, approaches with no regularization energy are included by setting α=0.
Depending on the problem at hand, different regularization terms such as diffu-
sion, curvature, or linear elasticity can be employed [12]. Since the problem in
(2) is non-linear, it is solved in an iterative manner by computing an update du
to an initial displacement estimate u. In the following we drop the argument u
in the notation for simplicity where it is not necessarily required.

The minimization problem in each iteration is solved by computing the up-
date du. Most commonly, du is based on the gradient of the energy E with
respect to the displacement, resulting in a gradient descent scheme

du ≡ ∂u

∂t
with

∂u

∂t
≡ −∂E

∂u
, (3)

cf. e.g. [19,12]. For shorter notation, we set ∂E/∂u = ∇E.

4 Note that (1) can be well posed in other spaces such as Sobolev spaces [15].



In order to solve the non-linear partial differential equation (PDE) in (3),
discretization has to be performed. For time discretization, two common choices
are: 1) the explicit discretization, leading to the update rule

du = −τ
(
∇ED + α∇ER

)
, (4)

which results in the standard steepest gradient descent, and 2) the semi-implicit
discretization (cf. e.g. [12,20]), resulting in a linear system(

Id + τα∇ER
)
du = −τ

(
∇ED(u) + α∇ER(u)

)
. (5)

The spatial discretization is performed by representing the deformation by
parameters p. As parametrizations, we consider linear combinations of arbitrary
basis functions Bk : Ω → Ω, resulting in

up(x) =
∑
k

pkBk(x) . (6)

The parameters pk∈ IRd can be seen as representative displacement vectors. The
set of all pk constitutes the parameter vector p. With the parametrization from
(6), the derivative of (2) with respect to the parameters reads

∇pE =
∂E

∂u

∂u

∂p
. (7)

Please note that due to the linearity of (6), Eq. (7) can be written for each
parameter as a scalar product of ∇E with the corresponding basis function as

(∇pE)k =
〈
Bk ,∇E

〉
, (8)

which can be seen as the projection of the continuous updates onto the space
of parameters. We can use the gradient (7) in (4) or (5) to obtain the evolution
rules for the parameters. For example, for the explicit discretization (4) we get

dp = −τ∇pE . (9)

2.1 Elastic and Fluid Registration Modes

In this work, we treat the variational and the fluid demons methods as represen-
tatives of two groups of approaches: the elastic-type, and the fluid-type methods.
In this context, the terms elastic and fluid present generalizations of the original
linear elasticity [2] and viscous fluid [21] approaches to more general regulariza-
tion terms, compare e.g. [22,23]. This generalization classifies methods as elastic
if the regularization is performed on the displacement field, which is the case
for standard minimization of (2). On the other hand, a methods is fluid, if the
regularization is performed only on the displacement updates (i.e. velocities) in
every iteration. A characteristic of fluid approaches is that the regularization
energy is not conserved in the iteration process, in contrast to elastic methods.



Variational and parametric methods as described in Sec. 3 and 4 of this paper
implement the elastic approach. The original form of the demons method [24]
proposes the smoothing of the complete displacement field in every iteration,
which was shown to constitute an elastic-type method [23]. This provides a
connection between the approaches with explicit regularization energy, and the
original demons method. For the demons methods, also combinations of elastic
and fluid approaches have also been discussed [23,25].

Fluid-type approaches comprise the viscous fluid methods [21,22], approaches
employing Sobolev spaces [16,17,15,18], and the fluid-type demons method [22,23].
Equivalence between these methods is established [22,15,17], with different regu-
larization resulting in different flow models. In Sec. 5 we discuss the fluid demons
method from [16] as a representative of this group.

Finally, one can note that elastic-type methods can in general be rendered
fluid by applying the resulting evolution rules to displacement updates du instead
of the displacement u. In this case, the original energy is no longer optimized.

3 Classic Parametric Methods

Classic “parametric” methods can be derived as shown in Sec. 2. In the fol-
lowing we consider two general groups of parametrizations, and discuss briefly
one popular example of each class. The first group employs local basis functions
Bk, each of which is centered at the position ck ∈ Ω. This is exemplified by
B-Spline based Free-form Deformations (Sec. 3.1). This group further includes
the parametrization by radial basis functions (RBF) such as Thin-Plate Splines
(TPS), Wavelets, or parametrizations used by the Finite Element (FE) method.5

The second class features global basis functions, which cannot be assigned a ge-
ometrical center of influence. This group is represented by the parametrization
based on trigonometric functions (Sec. 3.2).

3.1 B-Spline Free-form Deformations (FFD)

The parametrization of deformations by FFDs based on cubic B-Splines is a
common technique for registration of medical images. Early uses are reported in
[27,28,29], and the methods has become very widely used since [30,31,32,33].

The B-Spline basis B is the tensor product of the one-dimensional basis
functions b, defined as

b(x) =

2/3− (1− |x̃|/2)x̃2 for 0 < |x̃| < 1
(2− |x̃|)3/6 for 0 < |x̃| < 1

0 otherwise
, (10)

5 In [26], a link between FE-based methods, which are commonly used for parametriza-
tion of variational methods, and B-Spline FFDs is discussed, providing further mo-
tivation to discuss variational methods in the context of parametrization.



with x̃ = x/H, where H is the spacing between two control points along the
respective dimension on a regular grid. The actual bases Bk, located at points
ck, are defined as

Bk(x) = B(x− ck) . (11)

A visualization of the one dimensional B-Spline representation is given in Fig. 1a.
More details on B-Splines can be found in [34,35] while [13] gives an overview of
the historical development.

3.2 Trigonometric Functions

Parametrization by trigonometric functions is also a popular choice in many
applications. The general approach is to parametrize the displacement field by
Discrete Fourier Transformation (DFT) [36,37], or Discrete Cosine Transforma-
tion (DCT) [38] basis functions. For space reasons, at this point we only note
that the corresponding basis functions Bk are global and represent a signal of fre-
quency k, and refer the reader to the respective papers for the definitions. Mostly,
only a certain number of low-frequency basis functions is used for parametriza-
tion. This provides an inherent regularization since only smooth functions can
be generated by construction. For an exemplary visualization, please see Fig. 1b.
A further motivation for the use of trigonometric functions is that in some cases,
the trigonometric bases form the eigenfunctions to the linear operator in (5),
which facilitates the solution of the linear system.

4 Variational Methods

The variational approach for deformable registration is very common, cf. e.g.
[39,12]. The actual derivation of the methods is mostly performed in the spirit
of the first part of the derivation in Sec. 2, resulting in evolution rules (4) and (5).

4.1 Variational Methods Parametrized

For numerical realization of variational methods, parametrization of the result-
ing PDE in (3) (i.e. discretization of the displacement) is inevitable. There are
different parametrization approaches in the context of image registration, most
notably the Finite Difference (FD), and the Finite Element (FE) methods. The
discretization of the displacement by FE as a linear combination of a set of cho-
sen basis functions is obviously parametric in the classical sense according to Sec.
3. On the other hand, classical “non-parametric” approaches mostly employ the
FD discretization on a regular grid. In this approach, the differential operators
are discretized by evaluating the underlying data (images and displacement) at
all given sampling points in the image domain, and the parameters are the val-
ues of the displacement field vectors at the sampling points. This discretization
approach can be seen as a parametrization of the displacement by a linear com-
bination of basis functions covering only one sampling point by their support,



and having the value 1 at the corresponding sampling point position. A natural
choice for such a basis is the tensor product of piecewise linear “hat” basis func-
tions, as these bases are often used for interpolation of the displacement field at
inter-voxel positions in practice. Other possible choices include constant unity
box function (nearest neighbor interpolation), or simply a function equal to one
at the respective control point and zero everywhere.

So, corresponding to (6), we again perform the parametrization with bases
Bk(x) = B(x − ck). Here, the basis B is a tensor product of d one-dimensional
functions b, defined as b(x) = 1+h−1 for x ∈ [−h, 0], b(x) = 1−h−1 for x ∈ (0, h],
and b(x) = 0 elsewhere, with h being the distance between sampling points.

The resulting update rules are equivalent to those in Sec. 2. After discretiza-
tion of (7), the derivative of the displacement with respect to the parameter pk
vanishes everywhere except at the corresponding sampling point ck. This can be
also directly seen from (8), as we have (∇pE)k = 〈Bk ,∇E 〉 = (∇E)k. This is
the case since after discretization it holds that Bk(ck)=1 and Bk=0 everywhere
else. Thus, the equation (7) effectively boils down to (3) in this case.

Please note that such a parametrization is always performed for variational
approaches, but often not explicitly stated. Our goal is not to propose a new
parametrization, but rather to point out its inherent usage, and employ it for
characterization in the hope that it facilitates comparison to other approaches.

Semi-Implicit Version of Variational Methods An alternative interpreta-
tion for the semi-implicit version of the variational approach from (5), is gained
by observing that (5) can be solved by

du = −τ F ∗
(
∇ED(u) + α∇ER(u)

)
= −τ F ∗ ∇E(u) . (12)

Here, F is the Green’s function depending on the choice of regularization and
defined as

(
Id + τα∇ER

)
F (x, s) = δ(x − s), with the Dirac delta δ [22]. For

regularization settings, the Green’s function is F is a low-pass filter. For certain
choices of ER, it equals a Gaussian, while for others, the Gaussian is a good
approximation [22,16]. With Bk(x) = F̃ (x − ck), with F = F̃ ∗ F̃ , the semi-
implicit approach can be seen as a standard steepest gradient descent, with the
displacement parametrized densely based on the appropriate Green’s functions,
cf. Fig. 1d. The detailed derivation of the above follows closely the argument for
fluid demons in Sec. 5.1, as (12) has the same form as (13). This interpretation
provides a further connection between the variational and the demons methods.

5 Fluid Demons

The original demons algorithm was proposed by Thirion [40,24]. This seminal
work contains a number of different heuristic variants, motivated by an analogy
to Maxwell’s Demons. The variant 1, which entailed most interest, consists of
defining forces at all sampling points in the image domain, iteratively adding
them to the already computed deformation, and smoothing the new resulting



deformation field at the end of each iteration. In contrast to methods in Sec. 3
and 4, no explicit energy model was assumed.

Since the initial publication, a lot of work was dedicated to the interpre-
tation and extension of the method, and a solid theoretical context has been
developed. A connection between a fluid version of the demons method and
the so called viscous fluid method [21] is discussed in [22]. An interpretation of
the forces as approximation to second order optimization of the SSD similarity
was given in [23]. Furthermore [23] discusses fluid and elastic variants of the
demons algorithm, depending on whether the smoothing is applied to the ac-
cumulated displacement or the displacement updates only. In [16,17], the fluid
demons approach is interpreted as gradient descent on the similarity measure in
a Sobolev space representing diffeomorphisms. Also, in this work, derivatives of
different similarity measures as forces are employed, as discussed in [39]. In [11],
a connection is provided between the minimization of an explicit regularization
energy term, and the elastic version of demons. Recent developments include ef-
ficient diffeomorphic versions of the demons approach [41]. Furthermore, in the
recent years, the compositional update rule has gained popularity as the natural
composition operator in the space of transformations [16,25,41].

In summary, a fluid version of the demons approach can be stated as min-
imization of (1), in which the regularity of the deformation is ensured by con-
volution with a Gaussian Gσ with variance σ. In every iteration, the following
update rule is performed

du = −τ Gσ ∗ ∇ED(u) (13)

ϕ = ϕ ◦ (Id + du) . (14)

It was shown in [22] that the application of the Gaussian in (13) corresponds
to fluid approach for the diffusion regularization term. Different smoothing ker-
nels, corresponding to certain regularization terms such as linear elasticity or
curvature have also been discussed [22,42].

5.1 Parametrized Fluid Demons

Here, we show that the fluid demons approach in (13) can be seen simply
as the optimization of a similarity criterion (1), with a displacement function
parametrized by Gaussians Gβ with a standard deviation of β = σ/2, that is

up(x) =

N∑
k=1

pkG
β(x− ck) . (15)

Following the derivation in (7), the Eq. (8) now corresponds to

(∇pE)k =
〈
Gβk ,∇E

〉
, (16)

where we use Bk = Gβk with Gβk(x) = Gβ(x − ck). Since in this case, the bases
functions are located at every sampling point ck, the resulting gradient can be
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Figure 1: 1D illustrations of discussed parameterizations. Parameters (vertical
lines) and corresponding basis functions are given. Please note that for the
trigonometric bases (b), the influence of parameters is not localized in space.

written in terms of discrete convolution as

∇pE = Gβ ∗ ∇E , (17)

According to (9), this gives us the evolution dp = −τ Gβ ∗ ∇ED for the param-
eters, and the corresponding displacement is then, according to (15),

udp(x) =

N∑
k=1

dpkG
β(x− ck) = −τ Gσ ∗ ∇ED . (18)

This corresponds to the fluid demons evolution rule (13), and shows that fluid
demons can be interpreted as a gradient descent on (2), with α = 0 and the
displacement parametrized as in (15). For a visualization please see Fig. 1d.

6 Discussion of Parametrization-based Characterization

With the results from the previous sections, we can provide a characterization
of the discussed methods based on their parametrizations. More specifically, the
characterization criteria are: type of the basis function, location of the basis



Method Basis Function Basis Location Basis Support

FFD tensor product B-Splines sparse (regular) extended

Trigonometric DFT, DCT, DST global global

Variational “hat functions” dense local

Variational (semi-impl.) low-pass filter dense extended

Demons Gaussian dense extended

FE-based different options sparse, irregular extended

TPS-based TPS sparse, irregular global

Table 1: Exemplary characterization of some common deformable registration
methods, based on parameterization.

function, and support of the basis function. An example of such a characteriza-
tion is given in Tab. 1. It can be seen as a description of the parametrizations
illustrated in Fig. 1. The proposed characterization can be used to gain insight
into the relations between the single methods. We give two examples.

For instance, there is a striking similarity between the parametrizations of
the B-Spline FFD approach (1a) and the demons approach (1d) in Fig. 1. With
the respective choice of standard deviation, the B-Spline and Gaussian bases
have very similar shapes. This observation extends to higher dimensions. So the
major difference between the two approaches seems to be the sparsity of the
basis locations in the FFD parametrization. With dense setting of the control
points for the FFD approach, and the standard deviations for demons adjusted
accordingly, the two methods can be expected to behave in a very similar way.

A further possible relation which can be established by inspecting the para-
metrizations is that the demons method can be seen as an approximation to the
Fourier-based methods employing only a certain number of low-frequency func-
tions. Since the demons method is parametrized by dense Gaussian bases, the
resulting displacement does not contain high-frequency signals by construction.
This corresponds to a Fourier-based parametrization, from which the correspond-
ing high-frequency bases have been excluded.

7 Summary and Conclusion

In this paper, we propose to use the parametrization of deformable registration
methods for their characterization. To this end, we demonstrate that also meth-
ods often described as “non-parametric” feature an inherent parametrization. For
the variational methods, we employ simple “hat functions”, and for the semi-
implicit version, we demonstrate equivalence to steepest descent with a certain
dense parametrization. For the demons approach, the inherent parametrization
yields an interesting new interpretation. The proposed parametrization-based
characterization provides a compact and precise way for comparing and distin-
guishing some of the most popular groups of deformable methods. Thus, it can
be used for a classification of deformable registration methods, and could prove
a useful tool to gain further insight into the single approaches.



Acknowledgments We would like to thank Maximilian Baust of CAMP for
his extremely helpful feedback on the organization of this manuscript.

References

1. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence (1981)

2. Broit, C.: Optimal Registration of Deformed Images. PhD thesis (1981)

3. Brown, L.: A survey of image registration techniques. ACM Computing Surveys
(1992)

4. Van den Elsen, P., Pol, E., Viergever, M.: Medical image matching - a review with
classification. IEEE Engin. in Medicine and Biology Magazine (1993)

5. Maintz, J., Viergever, M.: A survey of medical image registration. Medical Image
Analysis (1998)

6. Fitzpatrick, J., Hill, D., Maurer Jr, C.: Image registration. Handbook of medical
imaging - Medical Image Processing and Analysis (2000)

7. Hill, D., Batchelor, P., Holden, M., Hawkes, D.: Medical image registration. Physics
in Medicine and Biology (2001)

8. Hajnal, J., Hill, D., Hawkes, D., eds.: Medical Image Registration. CRC Press
(2001)

9. Zitova, B., Flusser, J.: Image registration methods: a survey. Image and Vision
Computing (2003)

10. Lester, H., Arridge, S.: A survey of hierarchical non-linear medical image registra-
tion. Pattern Recognition (1999)

11. Cachier, P., Bardinet, E., Dormont, D., Pennec, X., Ayache, N.: Iconic feature
based nonrigid registration: the pasha algorithm. Computer Vision and Image
Understanding (2003)

12. Modersitzki, J.: Numerical methods for image registration. Oxford University
Press (2004)

13. Holden, M.: A review of geometric transformations for nonrigid body registration.
IEEE Trans. Medical Imaging (2008)

14. Modersitzki, J.: FAIR: Flexible Algorithms for Image Registration. SIAM (2009)
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