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Abstract

We apply the concept of natural gradients to deformable
registration. The motivation stems from the lack of phys-
ical interpretation for gradients of image-based difference
measures. The main idea is to endow the space of defor-
mations with a distance metric which reflects the variation
of the difference measure between two deformations. This
is in contrast to standard approaches which assume the Eu-
clidean frame. The modification of the distance metric is
realized by treating the deformations as a Riemannian man-
ifold. In our case, the manifold is induced by the Rieman-
nian metric tensor based on the approximation of the Fisher
Information matrix, which takes into account the informa-
tion about the chosen difference measure and the input im-
ages. Thus, the resulting natural gradient defined on this
manifold inherently takes into account this information. The
practical advantages of the proposed approach are the im-
provement of registration error and faster convergence for
low-gradient regions. The proposed scheme is applicable to
arbitrary difference measures and can be readily integrated
into standard variational deformable registration methods
with practically no computational overhead.

1. Introduction
Given the target image IT and the source image IS , the

general deformable registration problem can be stated as the
minimization of the energy

E(ϕ) = ED(IT , IS ◦ ϕ) + αER(ϕ) , (1)

consisting of the difference measure ED and the regular-
ization term ER acting on the deformation ϕ. A popular
class of methods for minimization of (1) are variational ap-
proaches, in which the unknown is the deformation function
itself, and the optimization is based on the gradient of the
energy.

In contrast to the gradient of the regularization term, the
difference gradient ∇ED does not have a direct physical

interpretation, since it depends in an abstract way on the
input images. A major drawback of this lack of physical
context is that the magnitude of the difference gradient at a
certain point in the domain provides no information about
the magnitude of displacement at this point. Since for vari-
ational approaches the gradient serves as the basis for the
estimate of the displacement, this lack of correlation is a se-
rious issue. A practical problem resulting from this is that
the magnitude of the difference gradient is large at strong
image edges, independent of the actual amount of the dis-
placement at these points. This behaviour is present for all
commonly used difference measures, and we refer to it as
the difference gradient bias. In consequence, regions with
strong edges are systematically favoured in the registration
process, while the convergence and ultimately precision in
regions with less strong (however still clearly present) edges
are impeded. This leads to biased and sub-optimal registra-
tion results.

The main idea of this paper is to counteract the lack of
physical context for difference gradients by changing the
way in which the distance is measured in the space of de-
formations. We propose to employ a distance metric which
reflects the variation of the difference measure between two
deformations, instead of simply computing their Euclidean
distance. This new distance metric is naturally induced by
the chosen difference measure and the input images. This
modification of the distance distorts the space of deforma-
tions, so that it represents the problem specific information.

We realize the proposed modification by modeling the
space of deformations as a Riemannian manifold, which is
induced by a corresponding Riemannian metric tensor. The
metric tensor will also enable us to compute the gradient on
the manifold by a modification of the Euclidean gradient.

We follow the work put forward most notably by Shun-
ichi Amari in the field of information geometry [5], in which
the Fisher Information matrix (FIM) is used as a metric ten-
sor. The Natural Gradient is computed with respect to the
manifold induced by the FIM as the metric tensor, and was
shown to have preferable convergence properties for differ-
ent applications using stochastic optimization [7]. As the
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deformable registration problem is not naturally formulated
as a stochastic optimization problem, in this work we dis-
cuss several possibilities to adapt the natural gradient con-
cept to deformable registration. To this end, we develop and
evaluate three different alternatives for the approximation of
the FIM for deformable registration.

We demonstrate that using the natural gradient for de-
formable registration provides a remedy to the above issues
related to the Euclidean gradient: The proposed approach
improves the convergence rate and precision in low-gradient
images areas. Furthermore, due to the properties of the de-
formable registration problem, the implementation of the
resulting approaches is extremely simple, and poses very
little additional computational cost. Thus, it is directly ap-
plicable to existing variational approaches.

1.1. Related and Prior Work

Our approach is inspired by the use of natural gradients
for stochastic optimization for learning tasks [3]. Here, it
was shown that parameter space for neural network learn-
ing tasks has a Riemannian metric structure, and advantages
of the natural gradient compared to the Euclidean gradient
were shown, especially in terms of convergence. The nat-
ural gradient has since been successfully applied to several
different problems in the area of machine learning [4].

In the area of variational deformable registration, most
methods treat the difference gradient with respect to the Eu-
clidean frame. An exception is the work in [19, 8], where
the problem is treated in Sobolev spaces. However, these
works have a fundamentally different goal and employ a
different manifold. In [19, 8], Sobolev spaces are employed
to restrict the space of deformations to functions with cer-
tain regularity properties. On the other hand, we use a man-
ifold based on the Fisher Information metric to incorporate
the information about the chosen difference measure and
the input images. This does not restrict the space of possi-
ble deformations, but changes the notion of distance in this
space. The term Natural Gradient is employed in [8], how-
ever not strictly in its original sense of [3], but for gradients
in arbitrary spaces which are employed.

2. Method
This section is organized as follows. The context of vari-

ational deformation registration is briefly presented in Sec.
2.1, and basics of Riemannian manifolds and Natural Gra-
dients are treated in Sec. 2.2. The actual contribution is
presented in Sec. 2.3 and 2.4, where we transfer the con-
cept of natural gradients to deformable registration.

The last thing before embarking upon the method is to
supplement Eq. (2) by definitions of the image domain
Ω ⊂ RD, the image functions I〈S|T 〉 : Ω → R, and the
deformation ϕ : Ω → Ω. We further require a discretized

version of the displacement function u at points in space
x1, . . . , xN ∈ Ω. The resulting vector u ∈ RND is con-
structed by u = (u(x1)>, . . . , u(xN )>)>, where a single
subvector u(xi) ∈ RD is the displacement vector at xi. The
same holds for the difference gradient which is discretized
by ∇ED(u) = (∇ED(u)(x1)>, . . . ,∇ED(u)(xN )>)>.
Now, we are ready to start.

2.1. Variational Deformable Registration

For variational approaches, the deformation ϕ is ex-
pressed in terms of the displacement u, as ϕ = Id + u,
with the identity operator Id, so we can restate (1) as

E(u) = ED(IT , IS ◦ (Id + u)) + αER(u) . (2)

Depending on the problem at hand, a number of differ-
ence measures and regularization terms can be employed
[10, 14]. Here, the choice of more powerful statistical sim-
ilarity measures such as Cross correlation (CC), correlation
ratio (CR) [17], or mutual information (MI) [13, 21], is
important for registration applications. Since the problem
in (2) is non-linear, it is solved in an iterative manner by
computing an update du to an initial displacement estimate
u. In this work, we apply the compositional update rule
ϕnew = ϕold ◦ dϕ to compute the estimates in the iterations.

Most commonly, the minimization problem in each
equation is solved by computing the update du based on the
gradient of the energy E with respect to the displacement,
resulting in a steepest descent scheme

du =
∂u

∂t
= −∇E(u) . (3)

which is employed for example in [1, 14]. In order to solve
the non-linear PDE in (3), a discretization of the time pa-
rameter is needed [14]. Here, the common choices are the
explicit discretization leading to the update rule

du = −τ
(
∇ED(u) + α∇ER(u)

)
, (4)

and the semi-implicit discretization yielding a linear PDE(
Id + τα∇ER

)
du = −τ

(
∇ED(u)− α∇ER(u)

)
. (5)

The second popular group of variational methods is
based on the so-called demons approach [18, 15, 8]. It re-
frains from defining an explicit regularization term in the
energy function, which restricts the choice of the time-
discretization scheme to (4) with α = 0. The regularity of
the deformation is ensured by convolution with a smoothing
kernel, mostly a Gaussian G with variance β. This results
in the fluid demons scheme

du = −τ Gβ ∗ ∇ED(u) . (6)

While the demons approach does not require a gradient
of the regularization term, all variational methods are based



on the gradient of the difference measure. The general form
of the difference gradient at a certain point in space is

∇ED(IT , IS , ϕ)(x) =WD(IT , IS ◦ ϕ)(x)∇IS(ϕ(x)) . (7)

Here, the scalar-valued function WD is determined by
the chosen difference measure. While WD can depend on
global statistics of the images, it is important to note that
(7) depends directly on the gradient of the warped image
∇IS ◦ ϕ. It is this dependence which causes the bias of the
difference gradient to high-gradient regions.

In summary, all variational methods require the gradient
of the difference measure, and in the most of the methods,
the Euclidean difference gradient is used directly as the ba-
sis for the estimate of the displacement field update. Conse-
quently all standard variational approaches suffer from the
drawbacks associated with the difference gradient. We thus
perform the modification of the distance metric for the dif-
ference term. To this end, we use the general definition of
the gradient by the directional derivative ∂vE for the energy
from (2)

∂vE = 〈∇E, v〉 = 〈∇ED, v〉+ α〈∇ER, v〉 . (8)

Here, we will augment the difference-related term from (8)
by a Riemannian metric M as

∂vE = 〈M∇ED, v〉+ α〈∇ER, v〉 . (9)

2.2. Riemannian Manifolds and Natural Gradients

The general definition of distance for two vectors v and
w = v + dv with sufficiently small dv reads

dM (v, w)2 = 〈M(v)dv, dv〉 . (10)

If the metric tensor M is a symmetric positive definite op-
erator varying smoothly in the domain, it is called the Rie-
mannian metric tensor, and it induces a Riemannian man-
ifold. The Euclidean distance is the special case of (10),
with constant M = Id. From the definition of the gradient
in (8), one sees that the gradient in a certain space depends
on the chosen metric tensor. It follows [2] that the gradi-
ent∇M , which is computed with respect to the Riemannian
manifold induced by the metric tensor M , can be expressed
in terms of the Euclidean gradient∇ at the point v as

∇M = M−1(v)∇ . (11)

For stochastic optimization problems, it was shown that
the Riemannian structure of the parameter space of a sta-
tistical model is defined by a metric tensor corresponding
to the Fisher information matrix (FIM) [2]. For a random
variable X with a probability density function P and pa-
rameters θ, the Fisher information matrix F is defined as

the covariance of the partial derivatives of the log likelihood
function, that is

F (θ)i,j = E
[
∂ logP (X; θ)

∂θi

∂ logP (X; θ)

∂θj

]
, (12)

where the expectation is evaluated with respect to P (X; θ).
The gradient computed with respect to the metric (12) is
called the Natural Gradient.

The basic difference between the stochastic optimization
and the standard deterministic optimization methods which
are used for deformable registration, is that the former oper-
ate on random variables and assume the existence of train-
ing sets. Since this is not naturally given for deformable
registration problems, the Fisher information matrix from
(12) will have to be approximated for our purposes.

2.3. Natural Gradients for Deformable Registration

In this section we transfer the concept of natural gradi-
ents to deformable registration. This will be done by fol-
lowing the work on natural gradients and using the Fisher
information matrix as the metric which induces the Rieman-
nian manifold with respect to which the difference gradient
will be computed. To this end, we will have to approximate
the expectation in the definition of the Fisher information in
(12). This will lead us to three different models, which will
be discussed in detail in Sec. 2.4, and evaluated in Sec. 3.

In order to define natural gradients for deformable regis-
tration, we have to cast the deformable registration problem
as a statistical model. This can be done by employing the
probabilistic model for difference measures [16], according
to which a difference measure can be written as

ED(IS , IT , u) = − logP (IT , IS ;u) . (13)

By setting the random variable X to the input images IS
and IT , and the parameters θ to the parameters of the de-
formation, that is the displacement u, we can combine (12)
and (13), and write the Fisher information matrix in terms
of deformable registration as

F (θ)i,j = E
[
∂ED(u)

∂ui

∂ED(u)

∂uj

]
(14)

= E
[
∇ED(u)∇ED(u)>

]
, (15)

where we drop the image arguments to ED for briefness.
In the setting of deformable registration, the evaluation

of the expecation in (12) has to be approximated, since it is
based on the assumption that a set of different training im-
ages is given, which agree on same parameters. This setting
is not naturally given for deformable registration in (15),
since we do not have a sampling set of target and source
images, which are related by the same displacements. In
the following we propose three different options for treat-
ing this issue.



1. We compile the sampling set by taking into account
the information from sufficiently small regions around
single points in the image domain. More precisely, we
define a sampling set of gradients ∇ED(u)i by col-
lecting subgradients ∇ED(u)(yi) with yi ∈ N (x) in
the vicinity of x. The resulting metric is referred to as
the FIM Region Metric and treated in Sec. 2.4.1.

2. We assume no a priori distribution and take into ac-
count only the given input images. The sampling set
thus now consists only of the input images, so that in
this case, the expectation in (15) collapses to the value
for the difference gradient on the given image pair. The
resulting metric is referred to as the FIM Frequentist
Metric and treated in Sec. 2.4.2.

3. As the last option, we derive the metric tensor by gen-
eralizing the FIM Frequentist Metric. This goes be-
yond a mere adaptation of the FIM and provides us
with the flexibility to adapt the manifold according to
the desired properties of the deformable registration
problem. We refer to the result as the Direct Metric
and give details in 2.4.3.

A general issue with (15) is that for deformable regis-
tration, the positive definiteness of F cannot be guaranteed,
since the partial derivatives can equal zero, which can lead
to a rank deficient and thus not invertible matrix. We coun-
teract this in the construction of the metric by regularization

M = σId + F , (16)

where σ is a noise parameter, compare e.g. [11].

2.4. The Metric Gallery

In this section we discuss the metric tensors resulting
from the different assumptions considered in Sec. 2.3.

Common to all derivations in this section is the assump-
tion of independence of subvectors ∇ED(x) of the differ-
ence gradient at different points x ∈ Ω. This is a common
assumption for all approaches treating difference measures
in a probabilistic setting, compare e.g. [16].

This assumption results in a simple structure of the Rie-
mannian metric tensor. While in general, the discretization
of the metric tensor M based on the FIM from (15) is a
dense matrix of sizeND×ND, the independence assump-
tion allows us to treat only a block-diagonal matrix, with
blocksMx of sizeD×D, corresponding to single locations
x in the image domain. In consequence, the general system
for computation of the general gradient

∇MED(u) = M−1(u)∇ED(u) , (17)

simplifies to

∇MED(u)(x) = M−1x (u)∇ED(u)(x) . (18)

The resulting block-diagonal system (18) is preferable to
(17), since only N inversions of a small D × D system
have to be performed, opposed to the inversion of the global
ND × ND system. It is an interesting observation that
properties of difference measures for deformable registra-
tion leads naturally to a simple version of the metric tensor
for deformable registration, while for general large-scale
learning problems, a lot of effort has to be invested in find-
ing a good approximation to the metric tensor [11].

Now, we discuss the single realizations of the metric ten-
sors for deformable registration, resulting from Sec. 2.3.

2.4.1 FIM Region Metric

In this approach, we assume that difference gradient sub-
vectors in a small region N (x) of x constitute a sampling
set for the ∇ED(u)(x) entry of the difference gradient.
This is denoted by ∇ED(u)(y) for y ∈ N (x). The associ-
ated probability of the single gradients∇ED(u)(y) is based
on the distance of their location y to the current point x. We
model this in a standard way by a Gaussian distribution as

P (y) = G( y ;µ=x, γ) . (19)

This is comparable to the assumption made in the Lucas-
Kanade optical flow approach [12].

This approach results in the metric tensor

Mx(u) = σId +
∑

y∈N (x)

P (y)∇ED(u)(y)∇ED(u)(y)> . (20)

The actual computation of the natural gradient is performed
in a block-wise manner by (18).

2.4.2 FIM Frequentist Metric

Under the assumption that we only take into account the
difference gradient resulting from the given input images
and the displacement u in every iteration, the expectation
computation from (15) collapses and with (16) we arrive at
the metric tensor M , composed of blocks

Mx(u) = σId +∇ED(u)(x)∇ED(u)(x)> . (21)

For this case, the computation of the natural gradient is
exceptionally simple, since∇ED(u)(x) is an eigenvector to
Mx(u) with the eigenvalue σ + ‖∇ED(u)(x)‖2. Thus, by
plugging (21) into (18), the natural gradient is computed by
rescaling of the point-wise subvectors ∇ED(u)(x) of the
Euclidean gradient as

∇MED(u)(x) =
1

σ + ‖∇ED(u)(x)‖2
∇ED(u)(x) (22)
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Figure 1: The application of the FIM Frequentist Metric
and the Direct Metric induces a robust norm for point-wise
subvectors of the difference gradient ∇ED(x), depending
on the noise level σ. x-axes depict the magnitude of the
Euclidean gradient, and the y-axes the magnitude after the
application of the inverse metric tensor.

2.4.3 Direct Metric

Motivated by the results in (22) and the computational effi-
cacy of this approach, we consider a generalization for set-
ting up a valid metric M by defining the blocks by

Mx(u) = σId + f(x)f(x)> , (23)

with an arbitrary function f : Ω→ RD.
This gives us the ability to shape the distance metric ac-

cording to our requirements. We illustrate this on the fol-
lowing example. If we chose f as

f(x) =
1√

‖∇ED(u)(x)‖
∇ED(u)(x) , (24)

then ∇ED(u)(x) is an eigenvector to Mx with an eigen-
value σ + ‖∇ED(u)(x)‖, and the natural gradient reads

∇MED(u)(x) =
1

σ + ‖∇ED(u)(x)‖
∇ED(u)(x) . (25)

In conrast to (22), now the subvector ∇ED(u)(x) is nor-
malized by its length, regularized by the noise level σ.
When this gradient is used as estimate for the displace-
ment, it gives approximately the same weight to all points
for which a possible improvement in the difference measure
is detected, if they are above a certain noise level. Please
compare also Fig. 1.

Two interesting observations considering this approach
and the frequentist metric from Sec. 2.4.2 can be made.
Since (22) and (25) only changes the length of the subvec-
tor ∇ED(u)(x), due to the form of the rescaling, it can be
seen as an application of a robust norm to the single subvec-
tors (however not the complete difference gradient vector).
This is visualized in Fig. 1 for different choices of the noise
parameter σ. It is important to note that while (22) does not
change the direction of the single subvectors of the differ-
ence gradient, this is done in an independent way for each
subvector, so that the complete difference gradient vector is
re-oriented, and not simply re-scaled. Furthermore, please

(a) AE for Euclidean gradient (b) EPE for Euclidean gradient

(c) AE for Natural gradient (d) EPE for Natural gradient

Figure 2: Distribution of the angular error (AE) and the end-
point error (EPE) (y-axes) with respect to magnitude of∇IS
(x-axis). The proposed approach clearly reduces the amount
of large errors for structures with less prominent gradients.

note that the additional computational cost of this approach
requires only a multiplication of the entries of the Euclidean
vector by a scalar value. For registration applications, this
does not present a computational overhead. Combined with
the improvement of the convergence rate by the proposed
approach, this reduces the overall runtime.

3. Experiments

We demonstrate the properties of the proposed method
by results obtained by a standard variational approach
with regularization defined in the energy term. We
use the diffusion regularization component ER(u) =∫ ∑D

k=1 ‖∇uk(x)‖2dx, and employ the semi-implicit dis-
cretization from (5). The difference measures and their Eu-
clidean gradients are implemented according to [10]. We
also tested the proposed approach with a demons scheme.
The results are very similar to the ones obtained by the first
method, in terms of both, the final error, and the improve-
ment of the convergence rate.

The tests are performed on several bio-medical images.
Here, we do not follow a certain application, but merely
want to show that the observed behaviour is not restricted
to a certain class of images. In order to perform a quantita-
tive evaluation, we generate ground truth displacements by
a B-spline based FFD-grid of a 25×25 resolution. The grid
control points are assigned random, uniformly distributed
displacements of up to ± 5 pixels. In the experiments, we



(a) Test Image (Endoscopy of Oesophagus)
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(b) Average Angular Error
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(c) Average End-Point Error
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(d) Registration Run (Angular Error)
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(e) Average Angular Error with Noise
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(f) Average End-Point Error with Noise

Figure 3: Averaged results of the random study with 100 runs on random displacement fields. We perform a registration
with an image pyramid in (d), and the runs (e) and (f) are performed with Gaussian noise (σ = 5% of intensity range).
The angular and end-point error exhibit comparable behaviour in all tests. We observe a clearly faster convergence of the
proposed methods based on the natural gradient, compared to the standard usage of the Euclidean gradient.

monitor the mean and the standard deviation of the angular
error (AE) and the end-point error (EPE) of the computed
displacements over iterations, please compare [6] for defi-
nitions.

3.1. Distribution of Error

In all experiments we observe that the errors are reduced
mostly in low-gradient image regions. This is quantified by
comparing the error at a certain image point, to the magni-
tude of the image gradient at this point. We visualize this for
an exemplary registration in Fig. 2. Plotting the error values
versus the norm of the image gradients at single points in a
joint histogram shows that the proposed approach most sig-
nificantly reduces the error for low-gradient regions. Here,
the example is given for the Direct metric. The other pro-
posed approaches exhibit a similar behaviour.

3.2. Random Study

In the random study we evaluate the convergence of the
standard approach employing the Euclidean gradient com-
pared to the proposed versions of the natural gradient. To
this end, we perform 100 runs on a narrow band endoscopy
image of the oesophagus, please compare also Fig. 3. The
used difference measure is the sum of squared differences
(SSD). In each run, a new ground truth deformation uGT is
generated. Then, based on a given source image, the target

is created by warping the source image by uGT. The regis-
tration is run with the same parameters for all different ap-
proaches. The time step τ and the regularization parameter
α are held constant over iterations in order to assure com-
parability of the methods. In order to achieve a fair com-
parison, these parameters are tuned manually for the stan-
dard approach based on the Euclidean gradient. Then, the
proposed methods are run with these parameters. The only
parameter which is adjusted for the proposed method is the
noise level parameter σ. For the noiseless cases, we use
σ = 0.01 for the Frequentist and Direct metric approaches
and σ = 0.005 for the approach based on the region met-
ric. The standard deviation for the Gaussian for the region
probabilities in Eq. (19) is set to γ = 1.5 in all tests. In or-
der to demonstrate robustness to noise, we repeat this same
test, but with Gaussian noise with standard deviation of 5%
of the intensity range independently added to both images.
Additionally to the random study on one level of the im-
age pyramid, we also perform a qualitative example of a
registration run over all pyramid levels. Here, we perform
unnecessarily many iterations of the proposed method. The
finding (based also on further registrations) is that also the
final precision of the proposed approach tends to be better
and the error in this case exhibits a smaller variance. To
sum up, in all the performed random tests we detect a faster
convergence of the proposed methods based on the natural
gradient.



(a) Microscopic Image of a Zebrafish
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(b) End-Point Error of CC
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(c) End-Point Error of MI

(d) Detail of a Histological Slice of Human Patella
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(e) End-Point Error of CC
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(f) End-Point Error of MI

Figure 4: Results on further images with cross correlation (CC) and mutual information (MI) as difference measures. Again,
we observe faster convergence of the natural gradient. Please see Sec. 3.3 for details.

3.3. Further Images, Different Measures

We also perform tests on further images and with other,
more general difference measures. The other images are
a bright field microscopic image of the dorsal aorta of a
zebrafish larvae, and a detail of an image of a histological
slice from the patella bone. The treated difference measures
are the Cross Correlation (CC) and the Mutual Information
(MI). For MI, the σ values for the proposed methods had
to be increased by a factor of 10. The same settings were
used for all images. For the CC, we simulate a multi-modal
scenario multiplying the target image by a scalar value, and
for the MI by inverting the target image. The results are
summarized in Fig. 3, and support the findings of improved
convergence for further images and difference measures.

3.4. Optical Flow Example

As the last experiment, and more as a side note, we test
the performance of the proposed approach for optical flow,
which is closely related to the registration problem. It is
interesting that in spite of the generality of the scheme as
to the ability to include any difference measure, it is also
able to compute accurate flow fields. We use the Rubber
Whale sequence from the Middlebury Flow data base [6]
with known ground truth, and SSD as difference measure.
Please note that since we are only interested in evaluating
our modification of the difference gradient, here we also
employ the diffusion regularization, which is known to be
suboptimal for optical flow [1]. The resulting flow has the

following statistics: angular error (AE) mean of 6.181 with
standard deviation of 10.860, and the end-point error (EPE)
of 0.196 with standard deviation of 0.341. Please compare
[6] and Fig. 5 for visuals.

4. Summary and Discussion

The main idea of this paper is to counteract the lack of
physical context for gradients of difference measures in de-
formable registration. This is done by modifying the way
in which distances between deformations are measured, by
providing the metric tensor with information about the dif-
ference measure and the input images. In order to reach
this goal, we adapt the concept of Natural gradients from
stochastic optimization. The different choices for the re-
quired approximation of the Fisher Information matrix lead
us to three different resulting approaches. Our experiments
demonstrate the preferable properties of the proposed ap-
proach. A detailed comparison between the different pro-
posed approaches is subject to further, more detailed tests,
and a line of further work.

The use of natural gradients for deformable registration
exhibits two advantages. It counteracts the difference gradi-
ent bias by improving the accuracy in low-gradient regions,
and exhibits a clearly faster convergence compared to the
standard approaches. For least-squares difference measures
such as SSD, faster convergence can be achieved by us-
ing more efficient optimization schemes. Some works, e.g.
[9, 20] employ least-squares methods to this end. However,
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Figure 5: Results for optical flow computation on the Rubber Whale sequence. In spite of generality to application of arbitrary
difference measures, the proposed approach is capable of accurate optical flow results.

least-squares methods have the drawback that they cannot
be directly used for many difference measures such as CC,
CR or MI, which are no least-squares measures. So a further
advantage of our approach is that it improves convergence
for arbitrary difference measures, since it is not based on
the least-squares assumption.

The advantages of natural gradients come at a very cheap
computational cost, and the actual implementation of the
derived methods is surprisingly simple. Two of the three
proposed alternatives (Frequentist and Direct metrics) re-
quire practically no computation overhead, while the Re-
gion metric is slower but also comparably efficient, since
it only requires convolution of small regions, and inver-
sion of small systems. The proposed scheme is generally
applicable to arbitrary difference measures and its integra-
tion into standard variational methods requires only mini-
mal changes in existing implementations.
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