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Abstract Purpose. Trans-rectal ultrasound (TRUS) guided random prostate biopsy
is, in spite of its low sensitivity, the gold standard for the diagnosis of prostate
cancer. The recent advent of PET imaging using a novel dedicated radiotracer,

Ga68 -labeled PSMA (Prostate Specific Membrane Antigen), combined with MRI
provides improved pre-interventional identification of suspicious areas. This work
proposes a multimodal fusion image-guided biopsy framework that combines PET-
MRI images with TRUS, using automatic segmentation and registration, and of-
fering real-time guidance. Methods. The prostate TRUS images are automatically
segmented with a Hough transform based random forest approach. The registra-
tion is based on the Coherent Point Drift algorithm to align surfaces elastically
and to propagate the deformation field calculated from thin plate splines to the
whole gland. Results. The method, which has minimal requirements and temporal
overhead in the existing clinical workflow, is evaluated in terms of surface distance
and landmark registration error with respect to the clinical ground truth. Evalua-
tions on agar-gelatin phantoms and clinical data of 13 patients confirm the validity
of this approach. Conclusion. The system is able to successfully map suspicious
regions from PET/MRI to the interventional TRUS image.
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1 Introduction

1.1 Prostate Cancer and Role of Imaging in Diagnosis

The current gold standard for the diagnosis of prostate cancer is a systematic 10
to 12 core random biopsy under trans-rectal ultrasound (TRUS) guidance [1]. Al-
though TRUS provides live anatomical guidance, its poor detection of suspicious
areas leads to a high rate of false negative results [29]. In contrast, MRI and
PET are well-suited for the pre-interventional identification of suspicious regions
by combining excellent anatomical soft-tissue contrast with metabolic informa-
tion [29]. Recent studies report that combined MRI/TRUS image-guided biopsy
is more accurate in detecting cancerous lesions with a significant Gleason score
than conventional TRUS-guided biopsy [2,5,14,20,28,31]. PET/TRUS fusion for
prostate biopsy guidance has generated only moderate interest due to the low
specificity of currently available radiotracers like C11 -acetate, C11 -choline and

F18 -FDG [29]. With the introduction of Ga68 labeled ligands of Prostate-Specific
Membrane Antigen (PSMA), exhibiting almost exclusive expression in the prostate
and increased expression in prostate cancer [6], PET/TRUS and PET/MRI/TRUS
fusion gains increasing attention [15]. Its higher cost is leveraged by the possibility
to avoid serial biopsies with unclear outcome. However, up to now the usage of
PSMA-PET/MRI has not yet been implemented into a biopsy guidance system.

Main challenges for the development of a multimodal fusion image-guided
prostate biopsy framework are time and space constraints during the procedure. In
particular, cognitive fusion of these imaging modalities, i.e. the exclusively men-
tal alignment of images presented side-by-side, is error prone, highly depends on
the ability of the urologist to interpret MRI or PET images, and thus remains
marginally useful [5]. Therefore, computer-aided approaches are of great interest.
Algorithms for image segmentation and registration, however, need to be fast and
sufficiently accurate to be applicable in daily clinical routine.

Currently, a variety of commercial solutions on the market offer fusion biopsy
functionality to some degree, employing different tracking systems to determine
the position of their US transducer in space and registration algorithms to perform
manual or semi-automatic rigid or elastic registration between 3D TRUS and MRI.
They are usually rather bulky, require several lengthy interactions by the urologist
– in particular for the segmentation of the prostate – and are mostly limited in
their overall accuracy. We refer the reader to the excellent review by Sonn et al. [26]
for further details. Advanced research on fusion approaches for MRI and TRUS is
further summarized by Sperling et al. [28].

Xu et al. [31] and Kaplan et al. [12] register MRI and TRUS by respectively
finding rigid and affine transformations based on fiducials. Reynier et al. [24] regis-
ter the point clouds from TRUS and MRI surfaces using first rigid and then elastic
transformations, however without modeling the real organ deformations. Prostate
surface-based registration models using thin plate spline basis functions are re-
ported by Cool et al. [2] and Mitra et al. [17], both requiring manual interaction.
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In the work by Narayanan et al. [19] for MRI to TRUS deformable surface regis-
tration, an adaptive focus deformable model in a prostate phantom is used. Sparks
et al.[27] and Hu et al. [10] have presented probabilistic and statistical shape and
motion models of the prostate in patient datasets. The authors of these methods
achieved low registration errors but also face time constraints for an integration
into the clinical routine due to the manual prostate segmentation.

A fully automatic segmentation method with clinically acceptable accuracy
within permissible time limits is highly desired. In this context, Ghose et al. [8]
review the extensive research on semi-automatic and automatic segmentation of
the prostate from TRUS and MRI images. The main approaches in delineating
prostate boundaries are contour-, shape- or region-based, and can be distinguished
in supervised or unsupervised classification, as well as combinations of these. A
recent study by Qui et al. [21] has reported promising segmentation results by using
convex optimization with axial symmetry enforcement for 3D TRUS and MRI
prostate images. However, the use of axial symmetry is a disputable assumption,
especially in diseased prostate conditions.

1.2 Aim of the Study

The aim of this work is to present, to the best of our knowledge, the first system
for TRUS-based multimodal prostate biopsy guidance using elastically registered
PSMA-PET/MRI datasets implemented in the routine clinical workflow. It in-
cludes all necessary components to automatically i) acquire, process and segment
TRUS images, as well as to ii) register them to pre-interventional MRI and PET
images, and to iii) finally use the fused information of all modalities for image-
guidance to perform targeted prostate biopsies. Its integration into the regular
clinical workflow is possible as the system requires minimal user interaction and
performs US acquisition, segmentation and registration in less than five minutes -
the time allocated for the local anaesthetic to take effect.

Due to the multimodal nature of our biopsy guidance system, it becomes fur-
thermore possible to not only employ TRUS, MRI, and PET information at the
same time for more accurate lesion targeting but also to assess the diagnostic value
of novel imaging modalities such as Ga68 -PSMA-PET/MRI for detecting prostate
carcinomas.

This study extends our previous work [25], where we presented an open-source,
multimodal image-guided prostate biopsy framework for the research and valida-
tion of image computing methods, as follows:

i Instead of using a rigid registration based on landmarks manually selected im-
mediately before the biopsy procedure, the presented system uses automatic
TRUS segmentation based on machine learning techniques. In particular, we
use a Hough forest approach that was successfully applied for the fully auto-
matic segmentation of retrospective cardiac datasets [16].

ii We employ a deformable registration based on automatic segmentation and the
Coherent Point Drift algorithm, allowing a better global overlay of the MRI
and PET images onto the ultrasound image.

iii For quantitative evaluation of our automatic system, we report results on phan-
tom and patient datasets and compare against expert annotations serving as
ground truth data.
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Fig. 1 Overview of the clinical protocol for multi-modal image-guided prostate biopsies. Apart
from the MRI segmentation, which can be obtained in advance, all steps need to be performed
within a time frame of around five minutes to fit into the time requirements of conventional,
only US-guided biopsy procedures.

While the underlying algorithms used for segmentation and registration have al-
ready been presented in the literature, this work is the first to employ these al-
gorithms with necessary modifications on the challenging prostate anatomy and
present results of their performance, not only on image data but in their real appli-
cation on phantoms and patients. In this work, the necessary components of our
system and the employed algorithms are described in Sec. 2. After a validation
of our method on agar-gelatin phantoms, the complete biopsy guidance system is
analyzed on a dataset of 13 real patients. Finally, Sec. 4 concludes the paper.

2 Methods

The proposed multimodal prostate fusion biopsy system is embedded into the clin-
ical routine as illustrated in Fig. 1. First, 2D TRUS images of the prostate are
acquired and compounded into a 3D volume. Section 2.1 describes the components
of the system as well as the image acquisition and compounding process. Next, the
prostate is automatically segmented in TRUS using a Hough forest classifier, and
a surface mesh is generated. The segmentation algorithm is detailed in Section 2.2.
Thereafter, a modified version of the Coherent Point Drift algorithm [18] is em-
ployed to deformably register the surfaces of the MRI and TRUS segmentations,
and warped versions of MRI and PET are computed using thin-plate splines, which
is presented in Section 2.3. Finally, we present in Section 2.4 how the registered
images are used for live prostate biopsy guidance.

2.1 System Components and Image Acquisition

Our system, as illustrated in Fig. 2, consists of three components [25]: an US
system, a tracking system and a workstation. Firstly, we employ a conventional
Hitachi AVIUSr US system with a 2D front fire trans-rectal probe (Model EUP-
V53W) for image acquisition. This system is routinely used for US-guided prostate
biopsies by attaching calibrated needle holders to the probe and following a needle
guide on the US images. In this work, the US-based guidance is not altered but
augmented with MRI and PET information.

Secondly, the US probe is tracked by an NDI Polarisr optical tracking system.
The tracking target is rigidly attached opposite of the needle guide. An additional
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Fig. 2 a) System overview during the intervention. The urologist performing the prostate
biopsy uses MRI and PET information in addition to the TRUS images on the US system
for targeting suspicious lesions. b) Coordinate systems used to reconstruct a 3D TRUS vol-
ume in the coordinate system of the chair to make the initialization for MRI registration
straightforward. See text for details.

reference tracking target is attached to the patient chair, allowing to move the
tracking camera freely during the intervention (see Fig. 2b).

Finally, a workstation is required for image processing. We employ a system
with 2 Intel Xeonr processors running at 2.13 GHz with 32GB RAM and an
NVIDIA GeForcer GTX TITAN Black graphics card. Due to lack of access to
RF data from the US machine, we use a StarTech frame grabber to acquire high
resolution (1280×1024 pixel) digital images.

We utilize the open source software SlicerIGT1 to perform spatial calibration
of the US image to optical tracking (frameTprobe). Further, we use the freely avail-
able PLUS framework [13] for temporal calibration, tracked freehand US acqui-
sition and for the compounding of 3D TRUS images [25]. For US compounding,
linear interpolation and hole filling with the Gaussian accumulation technique
available in PLUS is employed. Best performance of our system was achieved with
an isotropic voxel spacing of 0.5 mm. Larger spacings incorporate more averag-
ing artifacts, while smaller spacings only increase the segmentation time without
any further improvement in its quality. The 3D volumes are embedded in the chair
coordinate system, which is mapped to the 2D TRUS slices as follows (see Fig. 2b):

frameTchair =reference Tchair · (referenceTworld)−1 · probeTworld · frameTprobe (1)

The usage of the chair coordinate system allows simple translational initialization
of the subsequent registration step. Note that the patient is strictly told to remain
static during the entire intervention.

2.2 Prostate Segmentation

A fully automatic prostate segmentation in compounded 3D TRUS volumes is
obtained using Hough forests, a method coupling the classification performance
of random forests with object localization capabilities. In our method, we further
extend these with a strategy to extract a segmentation contour once the position
of the prostate in the image is obtained through a voting strategy. The algorithm is

1 Available online: http://www.slicerigt.org
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similar to the one presented by Rematas et al. in [23], and is based on the technique
presented in [16] already applied to the segmentation of 3D echocardiographic data.

Our Hough forest is an ensemble of Hough trees, trained on a set of TRUS
volumes of various size and common spacing using segmentation contours, which
were manually annotated by experts. During training, a grid of sampling points
over each annotated volume is defined. Around each point, a 1,000-dimensional
feature vector corresponding to the entire pattern of intensities in a 10× 10× 10
pixel patch of the volume is extracted. We chose high dimensional feature vectors
since we rely on the capabilities of the Hough forest to select the features that are
most discriminative for the problem at hand [22].

The sampling-points belonging to a narrow region around the prostate bound-
ary, denoted as foreground, are also associated with a vote v, in the form of a
displacement vector from the sampling point itself to the center of mass of the
prostate. Additionally, the original position p in the training volume of each point
of the foreground is stored and supplied to the training algorithm.

Training a Hough tree amounts to recursively splitting the training set T in
the splitting nodes until one of the termination criteria is met, in which case the
recursion is stopped and a leaf is instantiated. In our framework, the termination
criteria are defined as a depth of 18 levels, or alternatively, a population smaller
than 30 data points reaching a particular node. The splits are chosen such that
either the information gain is maximized (Eq. 2) or the vote scattering (Eq. 3)
is minimized. In the first equation, the splitting threshold θ is chosen such that
the difference between the Shannon entropy of the splitting node H(T ) and the
weighted Shannon entropies H(Tl) and H(Tr) of each of the child nodes is maxi-
mized. While this ensures good classification capabilities, Eq. 3 provides a criterion
to choose the splitting threshold using only the votes v associated with data points
d belonging to the foreground. The votes reaching each child node are compared
in terms of squared distance to the mean vote for that child node. This measure
is minimized to ensure minimal vote scattering after the split.

I(T, θ) = H(T )−
∑

Ti={Tl,Tr}

|x ∈ Ti|
|x ∈ T |H(Ti) (2)

V (T, θ) =
∑

k={l,r}

∑
di∈fg

(vk
i − v̄k)2 (3)

Apart from the class posterior distribution, when a leaf is instantiated, we store
one vote vi and the original position of the data-point pi for each data-point di

belonging to the foreground and reaching that leaf.
During testing, an image that was not employed for training is sampled using

a regular grid. The features of each data point are used to traverse each tree until
reaching a leaf node. If a data point is classified as foreground by a sufficient
number of trees in the forest, all the votes contained in the leaf nodes reached by
this data point are weighted by the classification confidence and accumulated in a
volume having the same dimensionality as the image. Additionally, as the votes are
being cast, a pixel-wise reprojection list of votes is filled with information about
the provenance of each vote and the position of the corresponding training data
point in the ground truth images. The position where the maximum number of
votes was attained represents the position of the prostate’s center of mass in the
test image.



Multimodal Image-Guided Prostate Fusion Biopsy 7

Using the information stored in the reprojection list in the immediate neigh-
bourhood of the maximum vote, we are then able to propagate portions of ground
truth contours from the training images onto the newly acquired test image. Addi-
tionally, we weight each contribution by the truncated normalized cross correlation
between the intensities of the currently considered patch pi in the test image and
the patch pt of the training image:

NCC(pi,pt) = max

(
1

N

∑ (pi
i − p̄i)(p

i
t − p̄t)

σiσt
, 0

)
. (4)

After the reprojection is complete, a normalization step is performed in or-
der to obtain a probabilistic segmentation, which can thereafter be thresholded at
0.5. We perform an automatic connected component analysis as post-processing,
resulting in a precise delineation of the boundary of the prostate. Our implemen-
tation of the Hough forest algorithm is based on the Sherwood C++ library [3].
For subsequent registration, we finally employ the CGAL library2 to triangulate
the binary volumetric segmentation image and create a surface mesh.

2.3 Deformable Surface-based Registration

The previously generated surface meshes from the TRUS and MRI segmentations
are now used to deformably register both images. Such a registration can be un-
derstood as a two-step process: Firstly, only the surface meshes are deformably
registered, for instance by computing displacements for each vertex of one mesh
such that a distance d between both meshes is minimized. Secondly, these sparse
displacements are used to interpolate a dense deformation field over the entire
image domain in order to warp the MRI image onto the TRUS image.

In this work, we achieve the first step, i.e. the mesh registration, by employing
a modified version of the Coherent Point Drift (CPD) algorithm [18], which is a
fully deformable point registration method without any geometrical constraints
regarding the shapes to be registered. Additionally, it also shows robustness in
terms of outliers as it forces the points to move coherently. The algorithm registers
two sets of points, which are both modeled as centroids of Gaussian mixture models
(GMMs). The first set of points X ∈ Rn×3 comprises the vertices of the TRUS
mesh and is considered static. The vertices of the MRI mesh are collected in the
second, moving set of points Y ∈ Rm×3, which is fitted to X during the registration
procedure using expectation maximization (EM). m and n denote the number of
points in the two sets, respectively. For numerical robustness, both point sets are
demeaned and normalized with respect to translation and scale. The goal of the
algorithm is now to find a non-rigid transformation T such that the deformed
point set Y′ = T (Y, v) = Y + v(Y) is given as the initial positions plus an optimal
displacement vector field v. Assuming that for a proper mesh registration the two
Gaussian mixtures will be statistically similar, mesh vertex correspondences will
be derived, expressed as the maximum of the GMM posterior probability for any
given data point. Therefore, the L2 distance is well suited as a cost function for
the parameter optimization:

dL2
=

∫
[gmm(T (Y, v))− gmm(X)]2 dx. (5)

2 Computational Geometry Algorithms Library, available online: http://www.cgal.org
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In this notation, gmm(P) =
∑
αN (µ,Σ) denotes the Gaussian mixture density

of point set P with weights α. Our CPD implementation is based on the version
of Jian and Vemuri [11]3 and uses thin-plate splines (TPS) as parametrization for
T . A TPS transformation can be decomposed into an affine as well as a non-linear
part parametrized by a set of warping coefficients w. As such, the relation between
the moving and the original MRI mesh vertices can be expressed as:

Y′ −Y =
[
Y|1

]
Aᵀ + Uw. (6)

Hereby, 1 is a column vector of size m. The matrix A ∈ R3×4 =
[
B|t
]

models
the affine part of the motion with translation t, and rotation and scaling B. The
basis matrix U ∈ Rm×m for the local, non-linear transformations is expressed
using radial basis functions in 3D, i.e. U = {ui,j}, ui,j = ‖Y′i − Yj‖. It has been
shown that efficient, gradient-based numerical optimization techniques are suited
to solve for A and w [11], using the following discretized cost function DL2

(Y′)
and its derivatives:

DL2
=

m∑
i=1

n∑
j=1

pi,j +
λ

2
tr(wᵀKw)

∂DL2

∂A
=
[
Y|1

]ᵀ
G,

∂DL2

∂w
= UᵀG + λKw.

(7)

The matrix P ∈ Rm×n = {pi,j}, pi,j = exp
[
−‖Yi −Xj‖/(2σ2)

]
includes the

GMM posterior probabilities, and ‖ · ‖F denotes the Frobenius norm. For the
optimization, the derivative matrix G ∈ Rm×3 = ∂DL2

/∂Y′ can be obtained
using P. The regularization term with kernel matrix K ∈ Rm×m = {ki,j}, ki,j =
‖Yi−Yj‖ and weighting parameter λ impose penalties on the bending of the TPS
deformation field.

As the parameters v are initialized with 0, the algorithm will intuitively first es-
tablish an affine transformation, which could cause significant rotation or shearing
of the prostate meshes, and only then fine-tune the local non-rigid TPS compo-
nents. However, minimal rotation is to be expected because the chair coordinate
system (see Fig. 2b) is defined to match the orientation of the coordinate system
of the MRI, and the translation should also be small because both point sets were
demeaned before the registration. Therefore, we constrain the affine part to the
identity transformation in the first k iterations of the optimization: Ai≤k =

[
I|0
]
.

After the point set registration is performed, the second step of the mesh reg-
istration consists of interpolating a dense displacement field for the entire MRI
image using the transformed MRI mesh points Y′. One advantage of our interpo-
lation scheme is that the TPS parameters w already obtained by the deformable
registration can be employed to warp an arbitrary point from the original MRI
space into the TRUS image. Incorporating Y and w as RGB textures, the warping
can easily be performed directly on the GPU in the fragment shader. Note that
such a mapping can be performed in both directions, i.e. from Y to Y′ and vice
versa, but the mapping is not bijective in the general case [7]. Because MRI and
PET images are acquired simultaneously and reconstructed in the same coordinate
system, all three modalities are now registered.

3 Available online: https://code.google.com/p/gmmreg/
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2.4 Image-based Biopsy Guidance

Finally, the mapping parameters obtained in the previous step are utilized to guide
the urologist during the biopsy procedure. Assuming the patient has not moved
in the meantime, the transformation frameTchair containing the real-time tracking
information of the US probe is used to interactively identify which part of the
3D TRUS volume is currently visible on the US machine. Then, corresponding
MPRs (multi-planar reconstructions) of the MRI and PET images according to
the deformable registration are rendered and presented to the urologist. A vir-
tual biopsy needle guide, previously calibrated, indicates an approximate needle
insertion path, as illustrated in Fig. 1. Two separate views are employed for suc-
cessful navigation: While the sole MRI image provides anatomical context, a fused
representation of gray-scale MRI and colored PET allows for precise targeting of
suspicious lesions. Target biopsies are taken by manoeuvring the US probe such
that the virtual biopsy guide aligns with the target site.

3 Results

In order to evaluate the performance of the presented method, we first examine
the applicability of the biospsy guidance system on agar-gelatin phantoms mim-
icking the conditions in prostate biopsy interventions as closely as possible. Next,
we analyze the performance of the individual components of our system, i.e. seg-
mentation, registration, and image-based guidance, on 13 real patient datasets
acquired in clinical routine.

3.1 Phantom Experiments

Based on the previous work of Dang et al. [4] for multi-modality phantoms, we
used agar and gelatin to generate several prostate phantoms with suitable tissue
contrast in both MRI and ultrasound. First, egg-shaped (roughly 50×30×30 mm)
prostate glands consisting of 6 weight percent (wt%) gelatin, 3 wt% agar, and blue
food coloring were cast. Into each gland, three lesions with a diameter of around
5 mm were positioned at varying locations during cooling. To ensure good con-
trast between normal prostate tissue and lesions in MRI, the latter were made with
12 wt% gelatin, 8 wt% agar and red food coloring. The different colors of gland
and lesions allow to visually distinguish the tissue types in biopsy samples. The
urethra was mimicked by an air-filled plastic tube. For each prostate, an artificial
rectum (modeled during casting by a glass cylinder of around 35 mm in diameter)

Phantom User Lesion 1 Lesion 2 Lesion 3 Total

1 Urologist 1/1 1/1 1/1 3/3 (100%)
2 Non-med. expert 2/2 2/2 1/2 5/6 (83%)
3 Urologist 2/2 1/1 1/2 4/5 (80%)

Table 1 Results of prostate phantom biopsy samples (number of positive cores / total number
of cores). All lesions were positively sampled at least once.
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Fig. 3 a) Axial (left) and
sagittal (right) MRI slices of
agar-gelatin phantoms with le-
sions well visible. The vertical
lines indicate the slice in the
respective other view. b) Set-
up for phantom biopsies with
reference tracking target. c)
Live TRUS image with invisi-
ble lesion and image-based MR
guidance view during biopsy
session. d) Positive core biopsy
sample, lesion material visible
due to red food color. See text
for details.

a

b c d

was surrounded with a very elastic compound of 8 wt% gelatin and 1 wt% agar.
Finally, the remaining phantom, now surrounding the prostate gland and main-
taining a distance between rectal wall and gland of around 20 mm, was filled with a
softer compound with only 1.8 wt% gelatin and 0.5 wt% agar. For efficiency, three
prostate glands were positioned next to each other in one big plastic container
and jointly MR-scanned, as illustrated in Fig. 3a-b. TRUS images were acquired
following the procedure described in Sec. 2.1 for all three phantoms after two days.
This time frame allowed diffusion between normal prostate tissue and lesions, mak-
ing them almost invisible in ultrasound and thus mimicking real biopsy conditions
well (cf. Fig. 3c). Due to the different intensity distributions compared to TRUS
images of real patients, a semi-automatic segmentation approach [9] was employed
for both TRUS and MRI, before the images were elastically registered as outlined
in Sec. 2.3. Finally, an experienced urologist and a non-medical expert used the
presented image-based guidance system to perform target biopsies. We considered
a biopsy intervention on a particular phantom successful if all three lesions were
hit at least once (visually identified using the red food color, cf. Fig. 3d), which was
the case for all phantoms. In only 2 of 14 samples, the lesion was missed, possibly
because of a different pressure of the transducer on the prostate compared to the
initial TRUS image acquisition, leading to a distorted TRUS-MRI registration.
Table 1 reports the biopsy samples in detail.

3.2 Patient Dataset and Protocol

For an evaluation of the segmentation and registration components as well as the
validity of the entire system in clinical routine, a dataset of 13 patients was used.
All of them underwent prostate biopsies without pathological finding in the past
and were referred for a follow-up biopsy to our clinic. In preparation of the proce-
dure for each patient, the prostate was carefully manually segmented in the MRI in
order to perform the MRI-TRUS registration without user interaction during the
intervention. After the acquisition of a 3D TRUS volume following the procedure
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MRI PET-MRI
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Fig. 4 The presented prostate biopsy guidance system provides the urologist with MRI and
PET-MRI views corresponding to the current position of the TRUS transducer. The PET-MRI
shows a hotspot in a suspicious region in left apical prostate zone where the target biopsies
were taken. Note that because the urologist turns the transducer by 180◦ to take biopsies
from the patient’s left side (thus flipping the TRUS image), also the MRI and PET-MRI slices
become flipped in our visualization.

outlined in Sec. 2.1, the prostate gland was automatically segmented and registered
using the presented system. In total, less than five minutes were required from the
end of the TRUS scan to the beginning of the biopsy procedure. In the following
sections, segmentation and registration results are analyzed retrospectively. After
the registration was performed, our system was used to guide targeted biopsies to
suspicious areas identified in PET or MRI. In addition to the 12 regular biopsy
cores spread throughout the prostate following the standard protocol, two targeted
biopsy samples were taken from these areas. For five of these 13 cases, histology
results are reported in Sec. 3.5. Figure 4 shows a screenshot of our image-based
guidance system during a biopsy procedure, including the two MRI and PET-MRI
views and the virtual needle guide lines.

3.3 Retrospective Evaluation of Prostate Segmentation

A dataset of 23 TRUS images, previously acquired in clinical routine following the
procedure outlined in Sec. 2.1, was employed to train a Hough Forest, which was
then used to automatically segment the prostate glands of the 13 patients during
the biopsy session. For ground truth segmentations of both training and – retro-
spectively – testing images, manual expert annotations were used. As previously
reported, e.g. by Reynier et al. [24], the segmentation of the basal and the apical
parts of the prostate in US images is very challenging. Even to the human eye,
delineating the boundaries in these regions is often ambivalent and will result in
high intra- and inter-observer variability. In order to maintain comparability to
ground truth segmentations, the prostate is subdivided into the three subregions
base, mid-gland and apex following the convention in [21], i.e. according to 30%,
40% and 30% of the base-apex axis, respectively, and focus our evaluation on the
mid-gland region only. As similarity metric, the surface distance between ground
truth and the automatically obtained segmentations, as reported for all patients in
Tab. 2, is used. Our method achieved an average surface distance of 1.04±1.06 mm
(mean ± standard deviation). The maximum distance between both surfaces was
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Patient Segmentation Surf. Dist. TRE Rigid TRE Deform.
Median Mean Std.Dev. Mean Max Mean Max

Pat. 1 0.56 0.98 1.09 1.14 1.45 0.94 1.45
Pat. 2 0.77 1.03 1.00 1.88 3.18 1.82 2.17
Pat. 3 0.41 0.62 0.67 1.92 2.96 0.88 1.12
Pat. 4 0.67 0.79 0.70 2.58 4.66 2.42 4.14
Pat. 5 2.16 2.69 2.37 3.62 5.62 1.74 2.70
Pat. 6 0.49 0.75 0.83 3.68 5.11 1.80 2.85
Pat. 7 0.86 1.14 1.13 2.38 2.79 2.80 3.73
Pat. 8 0.56 1.08 1.29 2.40 3.06 1.61 2.35
Pat. 9 0.41 0.66 0.76 2.19 3.96 3.55 6.56
Pat. 10 0.56 0.90 1.02 2.70 3.18 2.27 2.75
Pat. 11 0.62 0.81 0.77 1.82 2.00 1.79 2.35
Pat. 12 0.67 0.96 0.95 4.99 7.80 2.08 2.65
Pat. 13 0.77 1.13 1.18 2.60 3.60 2.27 3.64

Average 0.73 1.04 1.06 2.60 2.00

Table 2 Segmentation and registration results for all patients. Segmentation results are re-
ported as surface distances between ground truth and Hough forest-based segmentation [mm].
Registration results compare target registration errors (TRE) [mm] for rigid and automatic
deformable registration, computed with four landmarks each. See text for details.
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Fig. 5 Segmentation results for six representative patient datasets. The segmented surface
indicates the distances to the ground truth segmentation according to the color bar on the
right hand side. While segmentation artifacts extended far beyond the prostate in some datasets
(dashed circles), the majority of the gland is segmented reasonably well. Patient numbers
coincide with the ones in Tab. 2. See text for details.

on average 5.28 mm among all records. Segmentation results for six representative
patient datasets are illustrated in Fig. 5, showing the triangulated segmentation
surfaces as well as their color-coded distance to the ground truth annotation. As
observed for instance for patients 1, 7, and 12, the algorithm produced in some
cases artifacts stretching beyond the ground truth segmentation, having a clear
impact on the surface distance. We also computed a Dice similarity score, which
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was on average 87.81±2.92 for the mid-gland region, indicating potential for fur-
ther improvements, also by using an extended and more diverse training dataset in
the future. However, it has been previously shown that the registration algorithm
is robust in terms of outliers and able to cope with such artifacts as long as the
majority of the surface is appropriately well captured [18]. On our workstation,
training using 23 datasets took approximately 105 min., and segmentation of the
unseen dataset – without any optimization – around 3 min. depending on the size
of the image.

3.4 Retrospective Evaluation of Prostate Registration

We evaluate the quality of the automatic registration, obtained using the au-
tomatic segmentation result from the previous step, by comparing it with rigid
landmark-based registration. As in [25], four corresponding pairs of anatomical
landmarks were carefully selected in MRI and TRUS for each patient, and rigid
transformation matrices were obtained using the Umeyama method [30]. The ex-
perts performing these annotations were instructed to select landmarks from all
parts of the gland such that the overall match would be optimal. In Fig. 6, rigid
and deformable axial slice registration results are presented. In addition, we com-
puted the target registration errors (TRE) for both methods and reported mean

Fig. 6 Axial slice compar-
ision between landmark-
based rigid registration (left
column) and deformable
surface-based registration
(right column) for four
representative patients. In
general, the deformable
registration shows a good
alignment between both
images and captures the
non-linear deformation bet-
ter than in the rigid case.
Patient numbers coincide
with the ones in Tab. 2. See
text for details.

Rigid Surface-based (CPD)

1

3
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12

MRI

MRI TRUS

TRUS
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Patient PSA [ng/ml] Suspicious Lesion Random B. Target B. Gleason Sc.

1 9.8 left apical 3/12 1/1 3+4=7
4 10.0 right median basal 1/11 0/1 3+3=6
7 6.0 right central lateral 5/12 1/1 3+4=7
10 14.5 right median central 3/12 1/3 3+3=6
12 7.5 right central lateral 6/12 3/4 3+4=7

Table 3 Histology results for five cases are reported as number of positive cores / total number
of cores for random and targeted biopsies, respectively. For all but one patient, at least one
targeted sample was positive, indicating that the system is able to map suspicious lesions.

and maximum for each patient in Tab. 2. In some cases, little deformation was ev-
ident, resulting in low registration errors for both methods and good agreement of
the fused images, for instance in patient 1 (yellow arrows). Severe deformations as
seen in patient 12, however, were responsible for rigid landmark registration errors
of up to 7.8 mm, causing significant misalignment of both images (red arrows).
With our approach, a much better agreement between the surfaces was achieved
(blue arrows), decreasing the mean TRE for this case from 5.0 to 2.1 mm. Overall,
our method could improve the TRE in all but two cases, from an average 2.60 to
2.00 mm. In all cases, including these two, the TRE did not exceed 3.55 mm.

3.5 Clinical Histology Evaluation

As a detailed medical discussion of the findings for all patients would exceed the
scope of this work, we present results for 5 patients where available histological
evaluations indicated pathological findings. A full evaluation discussing the iden-
tification of suspicious lesions on PET/MRI and the detection rates of the biopsy
guidance system will be the subject of a urological publication in preparation.

First, we report the PSA (Prostate-Specific Antigen) blood level prior to the
biopsy and the location of the suspicious lesion identified in PET/MRI in Tab. 3. In
addition, the number of positive and total biopsy cores for random and targeted
biopsies, respectively, and the final Gleason score (standardized cancer grading
system, grade of most common plus grade of next most common tumor pattern)
are reported. In all cases, at least one of the targeted biopsy samples was positive,
except for patient 4, where the only positive randomized biopsy core showed patho-
logical findings in a different area than the targeted one. Our system was therefore
able to successfully map suspicious regions from PET/MRI to the interventional
TRUS image, and facilitated the diagnosis of prostate cancer. The application of
the presented guidance system did not interrupt the established clinical procedure
as the urologist could prepare the local anesthesia in the meantime.

4 Conclusion

In this work, we have presented a multimodal image-guided biopsy framework
combining PET-MRI images with interventional TRUS. Our approach is based
on an automatic segmentation of the prostate in the interventional TRUS image
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using a Hough transform inspired machine learning technique, and the Coherent
Point Drift algorithm, a surface-based, automatic deformable registration algo-
rithm. We have individually evaluated both the segmentation and the registration
algorithms and have presented results in the form of surface distance and land-
mark registration error, supporting the suitability of the method for the intended
usage in both cases. As presented on a retrospective dataset of 13 patients, our
system is robust in yielding smaller landmark registration errors compared to rigid
registration. The proposed system was validated with phantom experiments and
in a preliminary clinical evaluation with the help of urologists. Besides a broader
clinical validation on a larger dataset, possible future extensions of our method
include the use of an automatic approach for prostate segmentation in MRI to
make the system fully automatic.
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