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Abstract

Diagnosis and treatment of dilated cardiomyopathy (DCM) is challenging
due to a large variety of causes and disease stages. Computational models of
cardiac electrophysiology (EP) can be used to improve the assessment and
prognosis of DCM, plan therapies and predict their outcome, but require per-
sonalization. In this work, we present a data-driven approach to estimate the
electrical diffusivity parameter of an EP model from standard 12-lead elec-
trocardiograms (ECG). An efficient forward model based on a mono-domain,
phenomenological Lattice-Boltzmann model of cardiac EP, and a boundary
element-based mapping of potentials to the body surface is employed. The
electrical diffusivity of myocardium, left ventricle and right ventricle endo-
cardium is then estimated using polynomial regression which takes as input
the QRS duration and electrical axis. After validating the forward model,
we computed 9,500 EP simulations on 19 different DCM patients in just un-
der three seconds each to learn the regression model. Using this database,
we quantify the intrinsic uncertainty of electrical diffusion for given ECG
features and show in a leave-one-patient-out cross-validation that the regres-
sion method is able to predict myocardium diffusion within the uncertainty
range. Finally, our approach is tested on the 19 cases using their clinical
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ECG. 84% of them could be personalized using our method, yielding mean
prediction errors of 18.7 ms for the QRS duration and 6.5◦ for the electrical
axis, both values being within clinical acceptability. By providing an estimate
of diffusion parameters from readily available clinical data, our data-driven
approach could therefore constitute a first calibration step toward a more
complete personalization of cardiac EP.

Keywords: Cardiac Electrophysiology, Statistical Learning,
Lattice-Boltzmann Method, Uncertainty Quantification, Electrocardiogram

1. Introduction1

1.1. Clinical Rationale2

With around 17.3 million deaths per year (Mendis et al., 2011), the global3

burden of cardiovascular diseases remains high and causes a significant social4

and economic impact. According to recent estimates, about 2% of adults in5

Europe (McMurray et al., 2012) and 2.4% of adults in the US (Roger et al.,6

2012) suffer from heart failure alone, with the prevalence rising to more than7

10% among persons 70 years of age or older. One of the most common causes8

of heart failure is dilated cardiomyopathy (DCM), a condition with weakened9

and enlarged ventricles and atria, leading to an ineffective pump function that10

can directly and indirectly affect the lungs, liver, and other organ systems.11

The prevalence of DCM amounts to around 0.9% of adults in the US (Ferri,12

2013), and the disease is the leading indication for heart transplantation in13

younger adults. Due to a large variety of individual causes and disease stages,14

diagnosis and treatment of DCM remains an open challenge.15

Cardiac arrhythmia, i.e. irregular electrical activity of the heart, occurs16

frequently in heart failure patients, particularly in those with DCM (McMur-17

ray et al., 2012). But also beyond DCM, the prevalence of cardiac rhythm18

disorders has increased significantly in the last decade following an improve-19

ment in patient care (Marcus et al., 2013). Depending on the kind of rhythm20

disorder, which is commonly diagnosed using electrocardiography (ECG), the21

treatment of arrhythmia includes drug therapies, radio frequency ablation22

and the implantation of artificial pacemakers and cardioverter-defibrillators.23

Unfortunately, around 30% of patients are non-responders to these invasive24

treatments, and in up to 50% of the cases, recurrences are identified (Auric-25

chio et al., 2011).26
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As a result, tools for a more predictive assessment of cardiac electrophys-27

iology (EP) are needed. Computational assistance is not only required for28

a superior patient management and diagnosis but could also benefit therapy29

planning, outcome prediction and intervention guidance. While improved30

risk stratification could help avoiding unnecessary surgeries, the potential of31

optimizing invasive procedures, for instance by choosing optimal electrode32

locations, can potentially lead to an increased success rate and fewer non-33

responders. For this purpose, computational models can be employed to34

study and evaluate patient-specific electrophysiology in-silico.35

1.2. Technical Background: Computational Models of Cardiac Electrophysi-36

ology37

1.2.1. Models of Cardiac Action Potential38

A wide range of computational models of cardiac EP with different bio-39

logical scales and theoretical complexity has been proposed since the seminal40

work of Hodgkin and Huxley (1952). Especially in the last decade, the com-41

munity has witnessed tremendous progress in modeling efforts (Clayton et al.,42

2011). Depending on their level of detail, EP models can be classified into43

three groups: Biophysical, phenomenological and Eikonal models.44

Biophysical cellular models capture cardiac electrophysiology directly at45

cell level by describing biological phenomena responsible for myocyte de-46

polarization and repolarization. More precisely, ionic interactions within the47

cell and across the cell membrane (ion channels) are considered (Noble, 1962;48

Luo and Rudy, 1991; Noble et al., 1998; Ten Tusscher et al., 2004) and lead49

to complex equations, commonly one per molecular process. Although it has50

been shown that biophysical models can reproduce different electrophysiolog-51

ical behaviors such as action potential restitution and conduction velocity,52

the large amount of parameters limits their usage in clinical applications due53

to the difficulty of personalization.54

Cell models are then integrated at the organ level using reaction-diffusion55

partial differential equations (PDEs). Two major categories can be distin-56

guished. While mono-domain approaches neglect interstitial effects and con-57

sider the myocardium as single excitable tissue (Coudière and Pierre, 2006),58

bi-domain strategies superimpose intra- and extra-cellular domains and take59

different electrical properties into account (Bourgault et al., 2009). In the60

absence of external stimuli, mono-domain models have been shown to pro-61

duce almost identical results as their bi-domain counterparts (Potse et al.,62

2006).63
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Phenomonological models, historically the first models to be proposed by64

FitzHugh (1961), work at a more macroscopic level. Derived from experi-65

mental observations, the action potential is described by a small number of66

parameters with direct influence on its shape, disregarding the underlying67

ionic interactions (Aliev and Panfilov, 1996; Mitchell and Schaeffer, 2003).68

Having only few parameters with direct effect on measurable output facil-69

itates model personalization, and the lower computational cost when com-70

pared to biophysical models offers a reasonable compromise between model-71

ing capacity and performance. The distinction between mono-domain organ72

level integration schemes such as in Aliev and Panfilov (1996); Fenton and73

Karma (1998); Mitchell and Schaeffer (2003) and bi-domain approaches such74

as in Clayton and Panfilov (2008) can be applied to phenomonological mod-75

els, too. Recent numerical advances based on Lattice-Boltzmann methods76

(Rapaka et al., 2012) or Finite Element methods (Talbot et al., 2013) exploit77

the massively parallel architecture of modern graphics processing units, and78

allow near real-time performance and user interaction.79

Eikonal models (Franzone et al., 1990; Keener and Sneyd, 1998; Serme-80

sant et al., 2007) solely concentrate on the propagation of the electrical wave81

to stimulate muscle activation. The formation as well as the shape of the82

action potential in myocytes is neglected. Governed only by the anisotropic83

speed of wave propagation, the local time of wave arrival throughout the84

myocardium, can be computed very efficiently using fast marching methods85

(Sethian, 1999; Wallman et al., 2012). While it has become possible to sim-86

ulate wave reentry phenomena with Eikonal models (Pernod et al., 2011),87

capturing other complex pathological conditions such as arrhythmias, fibril-88

lations or tachycardia is more challenging.89

1.2.2. Model Personalization90

In order to apply the aforementioned EP models in clinical settings,91

patient-specific physiology has to be captured by personalized model param-92

eters. Finding those is challenging in the clinical workflow as the estimation93

from patient data implies solving an inverse problem. In this context, the94

forward model denotes the computation of the electrical wave propagation95

from the heart to the point of measurement (catheter electrode, body sur-96

face), and the inverse model the back-projection of measurement data onto97

the heart and the inference of model parameters (Gulrajani, 1998).98

Inverse problem techniques are computationally demanding because they99

comprise an optimization problem and therefore require a large quantity of100
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forward model runs (Modre et al., 2002; Chinchapatnam et al., 2008; Dössel101

et al., 2011). Alternatively, data-driven algorithms have been investigated102

to tackle model personalization. Linking activation patterns with the result-103

ing cardiac motion that can be observed in clinical images, Prakosa et al.104

(2013) train a machine-learning algorithm to estimate depolarization times105

for cardiac segments from regional kinematic descriptors. Jiang et al. (2011)106

apply statistical learning to map body surface potentials onto the epicardium.107

Konukoglu et al. (2011) derive a surrogate EP model based on polynomial108

chaos theory to personalize an Eikonal model. Wallman et al. (2014) infer109

tissue conduction properties using Bayesian inference to be patient-specific.110

The advantage of these statistical methods is the possibility to quantify un-111

certainty and to optimize the location of measurements. Machine learning112

techniques could therefore constitute efficient strategies for model personal-113

ization. However, a sufficient sampling of the parameter space is needed for114

these approaches to yield meaningful results. In this study, we aim to achieve115

an estimation of model parameters only from sparse electrocardiogram data.116

1.2.3. Models of Electrocardiogram and Torso Potential117

From the perspective of data acquisition, endocardial mapping (Serme-118

sant et al., 2009; Relan et al., 2011) facilitates the parameter estimation as it119

provides dense potential measurements but it is pre-operatively often avoided120

as it is invasive. A non-invasive alternative is to back-project electrical poten-121

tials measured at the body surface in the form of electrocardiograms (ECG),122

to the epicardium. Considering the ill-posedness of the parameter estimation,123

the use of body surface mapping (BSM) has been investigated (Dössel et al.,124

2011; Wang et al., 2011; Han et al., 2013). In contrast to standard 12-lead125

ECG, BSM is however not yet widely available as diagnostic modality.126

If body surface ECG data is used for parameter estimation, regardless127

of the number of traces, a model of electrical potentials at the surface of128

the torso is needed. In terms of the forward model, current approaches129

employ both Finite Element (FEM) and Boundary Element (BEM) methods.130

While the former intrinsically allow varying conductivity within and across131

different organs (Li et al., 2007; Geneser et al., 2008; Liu et al., 2012), the132

latter either assume constant isotropic conductivity throughout the entire133

torso (Barr et al., 1977; Shou et al., 2009) or integrate additional surface134

meshes delineating neighboring organs (Potse et al., 2009). Furthermore, in135

a numerical study by Boulakia et al. (2010), decoupling the computation136

of cardiac electrophysiology and body surface potentials has been shown to137
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preserve the shape of ECG features well.138

1.3. Aim of the Study139

The personalization of computational EP models, i.e. the estimation140

of patient-specific model parameters, remains challenging because of lack141

of dense data and the ill-posedness of the inverse problem. We therefore142

propose in this work to estimate EP model parameters from standard 12-lead143

electrocardiograms (ECG) only using a data-driven method that provides144

insight into estimation uncertainty. In particular, our method is based on145

statistical learning and employs polynomial regression to map ECG features146

to model parameters, instead of finding a solution of the inverse problem147

numerically. The key contributions of this work are:148

i A fast forward model of cardiac electrophysiology and electrocardiogram149

based on a Lattice-Boltzmann formulation and the boundary element150

method.151

ii A novel data-driven approach to automatically and efficiently estimate152

heart electrical diffusivity from 12-lead ECG features.153

iii The quantification of the intrinsic uncertainty of the inverse problem,154

i.e. the uncertainty of myocardial diffusion given a set of ECG features,155

through statistical learning.156

iv The evaluation of our estimation framework on 19 DCM cases.157

This study extends our previous work (Zettinig et al., 2013a) as follows:158

i In a detailed quantitative evaluation and convergence analysis of the em-159

ployed forward model and its parts, we show the influence of various160

model parameters on the ECG features.161

ii Results of benchmark experiments allow insights on the computational162

performance of our approach.163

iii A comparison with other statistical learning techniques justifies the choice164

of multivariate polynomial regression.165

iv For a quantitative evaluation of the diffusion estimation method, we use166

a significantly more extensive dataset of synthetic and real case data,167

allowing to capture a bigger variety of individual physiologies.168

2. Methods169

This section presents the details of the proposed data-driven EP pa-170

rameter estimation framework. Section 2.1 describes how a patient-specific171
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Figure 1: Steps of proposed forward model of ECG.

anatomical model is derived from clinical images. In Sec. 2.2, a fast forward172

model of cardiac electrophysiology, body surface potentials and electrocar-173

diogram, as shown in Fig. 1, is detailed. Thereafter, Sec. 2.3 describes the174

proposed data-driven diffusion estimation procedure. Implementation details175

are reported in Sec. 2.4.176

2.1. Patient-Specific Model of Cardiac Anatomy177

The complete workflow of anatomical model generation is depicted in178

Fig. 2. First, we employ the framework presented in Zheng et al. (2008)179

to automatically estimate, under expert guidance, heart morphology from180

cine magnetic resonance images (MRI). For anatomical structure localiza-181

tion, the Marginal Space Learning (MSL) framework intuitively finds control182

points representing important landmarks such as valves and ventricular sep-183

tum cusps using Haar- and steerable features. Then, a point-distribution184

model of biventricular geometry is mapped to these control points and suc-185

cessively deformed according to learning-based boundary delineation through186

a Probabilistic Boosting Tree (PBT). Using a manifold-based motion model,187

the resulting surface meshes are tracked over the cardiac sequence such that188

point correspondences are maintained. To form a closed surface mesh of the189

biventricular myocardium, the segmented triangulations of the epicardium190

and endocardia are fused together. The myocardium at end-diastole is fi-191

nally mapped onto a Cartesian grid with isotropic spacing and represented192

as a level-set.193

Based on the original segmentation meshes and point-to-point distances,194

we consider five domains in our anatomical model: The left and right ventric-195

ular septum, which mimics the His bundle and serves as initialization zone196

of the electrophysiological wave, the left and right endocardia mimicking the197
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Purkinje system of fast electrical diffusivity, and finally the myocardium with198

slower diffusivity.199

cMyo

Segmentation EP Domains Fiber Architecture

Anatomical Model
cRV

cLV

Torso Geometry

Figure 2: Workflow of anatomical model generation. See text for details.

As diffusion tensor imaging (DTI) is not yet clinically available (Wu et al.,200

2009), the rule-based strategy described by Bayer et al. (2012) is extended201

as proposed by Zettinig et al. (2013b) to compute a generic model of my-202

ocardium fiber architecture. Below the basal plane, identified automatically203

using the point correspondences of the initial triangulations, the fiber eleva-204

tion angle αf is assigned to all grid nodes. Defined as the angle with respect205

to the short axis, αf varies linearly across the myocardium from -70◦ on the206

epicardium to +70◦ on the endocardium. Around the valves, fiber directions207

are fixed (longitudinal around the aortic valve, tangential otherwise), and208

between the basal plane and the valves finally interpolated first following209

the myocardium surface, then transmurally (Moireau, 2008; Zettinig et al.,210

2013b). All interpolations throughout the myocardium rely on geodesic dis-211

tances and the Log-Euclidean framework (Arsigny et al., 2006). Figure 2212

illustrates the myocardium fiber model and the electrophysiology zones.213

A body surface triangulation is obtained using a manual, two-step pro-214

cedure. First, the contours of the torso are outlined in coronal, sagittal and215

transverse slices of the survey MR image, and visualized together with the216

heart model. Second, a manual affine registration of an atlas of torso geome-217

try to the contours is performed as illustrated in Fig. 3. The atlas is obtained218

from a full-body CT dataset of a subject within normal weight range.219

2.2. Fast Forward Model of Cardiac Electrocardiogram220

Our forward model consists of three sequential steps described in the fol-221

lowing sections (Fig. 1). First, we compute cardiac electrophysiology using222

the LBM-EP algorithm proposed by Rapaka et al. (2012). Second, we esti-223

mate extracellular potentials at the epicardium using an elliptic formulation224
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a b c

Figure 3: a) Sagittal image slice and manually outlined contour. b) Atlas of torso geometry
before registration and c) after manual registration to body contours in coronal, sagittal
and transverse image slices.

and project them to the torso by means of a Boundary Element Method225

technique. Ultimately, ECG traces are computed and ECG features auto-226

matically calculated.227

2.2.1. LBM-EP: Lattice-Boltzmann Model of Myocardium Transmembrane228

Potentials229

Cardiac EP is computed according to the phenomenological mono-domain230

model proposed by Mitchell and Schaeffer (2003), which describes the nor-231

malized transmembrane potential (TMP) v(t) ∈ [0, 1] throughout the my-232

ocardium with the following equation:233

∂v

∂t
= Jin + Jout + Jstim + c∇ ·D∇v (1)

Electrical diffusion is formulated anisotropically with the diffusion coef-234

ficient c and the anisotropy ratio ρ, defining the anisotropic diffusion tensor235

D = ρI + (1 − ρ)ffᵀ with f denoting the fiber direction. The EP zones as236

defined in Sec. 2.1 are assigned three different diffusion coefficients: cLV and237

cRV for the left and right endocardium, respectively (fast conducting Purkinje238

network), and cMyo for the myocardium.239

The model simplifies all ion channel interactions to only an inward current
Jin and an outward current Jout (Eqs. 2-3). The former captures the fast
acting ionic currents in the myocyte and depends on the gating variable h(t)
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Figure 4: Four stages of the myocyte action potential and the relating parameters of the
Mitchell-Schaeffer model.

that models the state of the ion channels.

Jin =
h(t)v2(1− v)

τin
, with

dh

dt
=

{
1−h
τopen

, if v < vgate
−h
τclose

, otherwise
(2)

Jout =
−v
τout

(3)

The time constants τin � τout � τopen, τclose are directly related to the240

shape and duration of the action potential, allowing for personalization from241

clinical data. As illustrated in Fig. 4, τclose relates to the action potential du-242

ration (APD), for which a linear transmural gradient as described by Glukhov243

et al. (2010) is employed. The remaining model parameters, including the244

change-over voltage vgate, are obtained from literature (Mitchell and Schaef-245

fer, 2003) and kept constant throughout the myocardium. Table 1 lists all246

fixed model parameters.247

Table 1: Parameters used for the Mitchell-Schaeffer model (Mitchell and Schaeffer, 2003;
Glukhov et al., 2010). Note that vgate is dimensionless because v(t) is normalized to [0, 1].

Parameter
vgate 0.13
τin 0.3 ms
τout 6 ms
τopen 120 ms
τcloseendo 130 ms
τcloseepi 90 ms
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The complex PDE (Eq. 1) is solved using the LBM-EP algorithm, an
efficient Lattice-Boltzmann method, proposed by Rapaka et al. (2012). It
should be noted, though, that the LBM-EP algorithm is generic and would
allow any mono-domain cell model to be solved. In short, the method main-
tains a vector of distribution functions f(x) = {fi(x)}i=1...7, where fi(x)
represents the probability of finding a particle traveling along the edge ei of
node x. The seven indices correspond to the central position and the six
principal connections on the Cartesian grid, respectively. Its computation is
decomposed into two consecutive steps, namely the collision phase, yielding
intermediate post-collision states f ∗

i and the streaming phase, propagating
the distribution functions along their corresponding edges:

f ∗
i = fi − Aij (fj − ωjv) + δt ωi(Jin + Jout + Jstim), (4)

fi(x + ei, t+ δt) = f ∗
i (x, t) (5)

The collision matrix A = (Aij) relaxes the distribution function fi toward248

the local value of the potential v and is defined such that anisotropic fiber-249

related diffusion is taken into account. The weighting factors ωi are utilized250

to emphasize the center position. We refer the reader to Rapaka et al. (2012)251

for further details. Using a forward Euler scheme, the gating variable h(t) can252

easily be updated at every node. Eventually, the transmembrane potential253

v(x, t) is defined as the sum of the distribution functions: v(x, t) =
∑

i fi(x, t)254

and transferred to the range [−70 mV, 30 mV] using the scaling factors given255

in Mitchell and Schaeffer (2003). The depolarization times Td(x) are obtained256

as the points in time when the potential first exceeds the change-over voltage:257

Td(x) = arg min
t
{v(x, t) ≥ vgate} (6)

2.2.2. Boundary Element Model of Torso Potentials258

For the propagation of electrical potentials through the body, it is neces-259

sary to estimate cardiac extracellular potentials φe(t) from the TMP v(t). To260

that end, we employ the elliptic formulation proposed by Chhay et al. (2012),261

which assumes a constant diffusion anisotropy ratio λ = ci(x)/ce(x), with ci262

and ce denoting the intra- and extracellular diffusion coefficients respectively.263

Within the entire myocardium domain Ω, the extracellular potential φe is ex-264

pressed as:265

φe(x, t) =
λ

1 + λ

1

|Ω|

∫
Ω

(v(y, t)− v(x, t))dy (7)
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Figure 5: a) For any given observation point in the thoracic domain, both torso and heart
surfaces need to be integrated as defined in Eq. 8. b) After discretization, geometric
coefficients of the P matrices in Eq. 10 require the evaluation of solid angles.

Next, we utilize a boundary element method (BEM) as described in Barr266

et al. (1977) and refined in Shou et al. (2009) to project the potentials φe from267

the epicardium to the torso. Before, tri-linear interpolation is used to map268

φe from the Cartesian grid back to the epicardial surface mesh. Following269

Green’s second identity, the potential φ(x) at any observation point x of the270

thoracic domain is given as:271

φ(x) =
1

4π

∫
SB

φB
r · n
‖r‖3dSB +

1

4π

∫
SH

[
φe

r · n
‖r‖3 +

∇φe · n
‖r‖

]
dSH (8)

Hereby, subscripts B denote the body surface and the potentials there-272

upon, SH the epicardial heart surface. The surface normals n face outward273

of the domain under consideration (i.e. outward at the torso and inward at274

the epicardium). r is defined as the vector from x to the point of integration275

as illustrated in Fig. 5a. Note that Eq. 8 assumes that ∇φB = 0.276

After placing the observation point x only onto the two surfaces, dis-
cretization in triangular meshes, and reformulation in matrix form, a system
of linear equations can be constructed (Barr et al., 1977):

PBB φB + PBH φe + GBH ΓH = 0 (9)

PHB φB + PHH φe + GHH ΓH = 0 (10)

Obtaining the geometric coefficients of matrices P and G requires the277

evaluation of two integrals. The integral
∫

(r · n)/ ‖r‖3 dS in fact describes278

the solid angle dΩ subtended at any observation point by a surface element279
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dS (see Fig. 5b), and can be efficiently computed with the following closed280

form formula (Van Oosterom and Strackee, 1983):281

tan
dΩ

2
=

a1 · (a2 × a3)∏3
i=1 ‖ai‖+ ‖a1‖ (a2 · a3) + ‖a2‖ (a3 · a1) + ‖a3‖ (a1 · a2)

(11)

Hereby, vectors ai denote the vectors from the observation point to the three282

vertices of the triangulated surface element dS. The surface-over-distance in-283

tegral
∫
dS/r, on the other hand, is solved using Gaussian quadrature. Can-284

celing out the matrix ΓH , which contains the gradients∇φe, a precomputable285

transfer matrix that entirely depends on the geometry can be defined:286

ZBH =
(
PBB −GBHG−1

HHPHB

)−1 (
GBHG−1

HHPHH − PBH

)
(12)

This allows to express body surface potentials by means of a simple matrix287

multiplication: φB = ZBH φe.288

2.2.3. Electrocardiogram Calculation289

From the potentials φB at the torso, the standard Einthoven, Goldberger290

and Wilson leads (Chung, 1989) are computed. For the sake of simplicity,291

electrode positions were chosen to coincide with manually selected torso mesh292

vertex positions.293

In this work, we focus on two meaningful ECG features. On the one hand,294

the duration of the QRS complex ∆QRS is dependent on the total time the295

electrical wave requires to propagate throughout the entire myocardium. On296

the other hand, the mean electrical axis angle α is suited to detect imbalances297

between left and right ventricular wave conduction. From the computed ECG298

signals, ∆QRS and α are derived as follows:299

• For numerical stability, the QRS complex is detected using the depo-300

larization times computed by LBM-EP. Assuming one full heart cycle,301

it is computed as follows: ∆QRS = maxx Td(x)−minx Td(x).302

• The electrical axis is computed using the Einthoven leads I and II:303

α = arctan
[
(2hII − hI)/(

√
3hI)

]
, where the hi’s are the sum of the304

automatically detected R and S peak amplitudes (minimum and max-305

imum) in the respective leads during the QRS complex.306
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Figure 6: Schematic diagram of the data-driven backward ECG model.

2.3. Data-Driven Estimation of Myocardium EP Diffusion307

The forward model as described above can be seen as a dynamic system308

y = f(θ) with the diffusion coefficients θ = (cMyo, cLV , cRV ) as free parame-309

ters and the ECG features y = (∆QRS, α) as outputs of the system. Estimat-310

ing diffusion parameters from ECG features therefore consists in evaluating311

a function g(y) that approximates the inverse problem θ = g(y) ≈ f−1(y),312

as shown in Fig. 6. In contrast to solving the inverse problem numerically313

using an optimization strategy such as Dössel et al. (2011), we propose to314

learn the inverse function instead.315

Table 2: Diffusion coefficient configurations for normalization forward runs.

Configuration Diffusion coefficients (mm2/s)
cMyo cLV cRV

F1 100 4,900 4,900
F2 100 100 4,900
F3 100 4,900 100

The ECG features ∆QRS and α vary significantly within the population,316

even in healthy subjects, due to a variety of factors including heart mor-317

phology and position. To cope with this geometrical variety, our algorithm318

scouts the parameter space using three forward model runs with the pre-319

defined diffusion coefficients listed in Tab. 2. The resulting ECG features320

are then used for an effective normalization scheme, intrinsically considering321

geometrical features of a particular patient:322

• Configuration F1 contains nominal EP diffusion parameters and thus323

entails a normal wave propagation. Provided the same diffusivity, the324

electrical wave will take longer to propagate through the entire my-325

ocardium in larger hearts, which is why we use ∆QRSF1
to normalize326

the QRS duration: ∆QRS = ∆QRS/∆QRSF1
.327
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• The other two configurations contain extremely low LV and RV diffu-328

sivity (LBBB-like scenario: F2; RBBB-like scenario: F3). The obtained329

electrical axis parameters αF2 and αF3 scout the patient-specific space330

of axis deviation, because we assume that the vast majority of forward331

model runs with arbitrary physiological diffusion coefficients will yield332

an electrical axis between them: αF2 ≤ α ≤ αF3 . Therefore, we perform333

normalization as follows: α = (α− αF2)/(αF3 − αF2).334

Note that our normalization scheme does not lead to the same numerical335

ranges of ∆QRS and α. The purpose of the normalization is only to com-336

pensate for inter-patient variability; the regression framework will cope with337

scaling of the input values. Finally, multivariate polynomial regression of338

degree N is employed to learn the model θ = g(∆QRS, α). One regression339

function of the form340

g(∆QRS, α) =
N∑
i=0

N∑
j=0

βi,j
(
∆QRS

)i
(α)j + ε (13)

is learned for each diffusivity parameter independently, g = (gMyo, gLV , gRV ).341

During training, the regression coefficients βi,j are determined using QR de-342

composition such that the data is explained with minimal error ε. During343

testing, the diffusivity parameters are estimated for unseen data using mea-344

sured and normalized ECG features:345  ˆcMyo

ˆcLV
ˆcRV

 =

gMyo

gLV
gRV

(∆QRS

α

)
(14)

2.4. Implementation346

The strictly local stream-and-collide rules of the LBM-EP algorithm are347

inherently node-wise and can be implemented very efficiently in a single ker-348

nel on a GPU architecture. We use NVIDIA CUDA1, version 5.5, as our349

development environment. As shown by Georgescu et al. (2013), the sim-350

ulation of transmembrane and extracellular potentials for a complete heart351

cycle on a Cartesian grid with an isotropic resolution of 1.5 mm only requires352

1Compute Unified Device Architecture, http://developer.nvidia.com/

cuda-toolkit
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≈ 3 seconds on an NVIDIA GeForce GTX 580 graphics card. The boundary353

element solver relies on the C++ Eigen library (Guennebaud et al., 2010).354

Training of and prediction with the regression model was performed using355

the MATLAB and Statistics Toolbox Release 2013b (MathWorks, Inc.)356

3. Experiments and Results357

Before evaluating the method, clinical acceptance criteria were defined. In358

a study by Surawicz et al. (2009), the normal range for QRS duration in adult359

males was found to be between 74 and 114 ms (average 95 ms). Investigating360

intra-patient variability in electrocardiograms, Michaels and Cadoret (1967)361

defined the maximum permissible day-to-day difference in QRS duration as362

20 ms. We assume predictions of QRS durations to be successful if within this363

range. The electrical axis, which is dependent on age and body physiology, is364

considered to be normal within −30◦ and 90◦. A rough rule-based diagnosis365

scheme is often applied in clinical routine. Left axis deviation, for instance,366

is present if lead I is positive and aVF is negative. Because such a scheme367

divides the QRS front plane in sectors of no less than 30◦, prediction of the368

electrical axis was assumed to be successful if within this range.369

3.1. Evaluation of the Proposed Forward Model370

A quantitative evaluation of the proposed forward model was carried out371

to understand model behavior but also to identify the optimal numerical372

parameters. For an extensive analysis of the LBM-EP solver, the reader is373

referred to Rapaka et al. (2012). The following sections therefore focus on374

the mapping of cardiac potentials onto the body surface and on the impact375

of EP parameters on the computed ECG.376

3.1.1. Quantitative Evaluation and Convergence Analysis of Torso Mapping377

For the evaluation of the boundary element mapping from the epicardium378

to the torso, we chose a setup where an analytical solution to Eq. 8 exists.379

Both epicardium and torso were assumed to be concentric spheres, with radii380

rH for the heart sphere and rB for the body sphere. If not stated otherwise,381

Gaussian quadrature of order 37 was used. Homogeneous material between382

the two surfaces was also assumed. Using a spherical coordinate system with383

θ as the polar angle to the Cartesian z-direction and ϕ as the azimuth angle384

in the x-y-plane (Fig. 7a), we defined the extracellular potentials on the385
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Figure 7: a) Definition of spherical coordinate system. b) Heart sphere (green) and body
sphere (semi-transparent) with mapped potentials φB .

heart surface: φe(θ, ϕ) = cos(θ) mV. Then, the potentials on the body φB386

were given as:387

φB(θ, ϕ) =
3

2
cos(θ)

1
rH
rB

+
r2
B

2r2
H

mV (15)

Fig. 7b illustrates the mapped potentials on the body sphere. In the388

reported experiments, rH = 100 mm to roughly represent the human heart.389

Figure 8a reports computed and analytical body potentials throughout a390

body sphere with rB = 300 mm. Mapping to different body spheres (see391

Tab. 3 for mesh resolution details) showed that the algorithm was able to392

correctly compute the potentials at various distances (Fig. 8b). Absolute393

errors were on average 4.1 ·10−5±1.4 ·10−4 mV (mean ± standard deviation),394

far below the clinical acceptance threshold.395

Table 3: Body spheres used for torso mapping evaluation. See text for details.

Radius rB (mm) Number of Vertices Avg. Edge Length l̄ (mm)
150 3,482 10.5
300 3,482 21.0
400 3,482 28.0
600 3,482 42.0

A convergence analysis with respect to the mesh resolution (Fig. 8c) in-396

dicated that with around 1,500 mesh vertices (average edge length 31.7 mm397

for rB = 300 mm) the ratio between BEM-based and analytical solutions398

is 99.70%, which relates to an absolute error of on average 9.3 · 10−4 mV399

and is below the sensitivity of ECG sensors. For subsequent experiments,400
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we therefore choose a similar resolution of 30 to 35 mm for the torso mesh.401

Similarly, the relative error also converged with increasing order of Gaussian402

quadrature as expected (Fig. 8d, experiments conducted with highest resolu-403

tion mesh). Yet, low orders already reached a high degree of precision. The404

following experiments were therefore carried out with an order of 6, which405

showed to be a good compromise between accuracy and runtime performance406

(more than 6× as fast as highest order under consideration).407

a) Body sphere with rB = 300mm b) φB at pole for various spheres

c) Convergence with mesh resolution d) Convergence with order of quadrature

Figure 8: Evaluation of BEM torso mapping. a) Potentials throughout a body sphere with
rB = 300 mm and b) potentials at the pole (θ = 0, location of maximum error) for various
body spheres (Tab. 3) matched the analytical solution. c) Ratio between BEM-based and
analytical solution for various mesh resolutions and average edge lengths l̄, d) and for
various orders of Gaussian quadrature, showing that the method converges rapidly with
increasing mesh resolution and order of quadrature.

3.1.2. Parameter Evaluation of Complete Forward Model408

Understanding the input parameters and output feature space of a given409

model is crucial before applying machine learning techniques and performing410

predictions. Therefore, we evaluated the influence of the most important411
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parameters of our forward model on the ECG features under consideration.412

On a representative patient case, the dependence of QRS duration ∆QRS and413

electrical axis α on diffusivity c, action potential duration (APD; governed by414

τclose) and fiber elevation angle ∠f was studied. In the following experiments,415

each of these parameters was varied, while the other parameters were fixed416

to their nominal value as given in Tab. 1-2.417

a) Varying myocardium diffusion cMyo, fixed LV/RV diffusion, cLV = cRV = 4900mm2/s

b) Varying LV/RV diffusion (cLV + cRV = 5000mm2/s), cMyo = 100mm2/s

Figure 9: Influence of diffusivity coefficients on ECG features. a) QRS duration was
linearly dependent on myocardium diffusion when LV and RV diffusion were fixed. Elec-
trical axis varied little except for very low myocardium diffusion. b) Electrical axis was
almost linearly dependent on LV/RV diffusion when myocardium diffusion was fixed. QRS
duration varied little except for low LV or RV diffusion (< 1, 500 mm2s, borders of plot).

First, the forward model was run with myocardium diffusion cMyo ranging418

from 100 to 1, 000 mm2/s, LV and RV diffusivity were fixed. As illustrated419

in Fig. 9a, and as expected, the QRS duration showed linear dependence on420

cMyo. After an initial drop, the electrical axis stabilized when cMyo > 400421

mm2/s. In total, the range of α in this experiment accounted for 92.9◦.422

This behavior was not surprising, because the electrical axis was entirely423

governed by LV and RV endocardium diffusion at very low cMyo values. As424
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cMyo increased, the effect of the Purkinje model was complemented by the425

fast myocardial diffusivity and the electrical axis value depended mostly on426

the geometrical configuration of the heart, i.e. its shape and relative position427

in the torso.428

cMyo was then fixed while the endocardial diffusion (cLV , cRV ) was varied429

between 100 and 4, 900 mm2/s with the constraint cLV +cRV = 5, 000 mm2/s.430

As illustrated in Fig 9b, an almost linear dependence of the electrical axis on431

endocardial diffusion was observed. This was also expected, as diffusion dif-432

ferences in the Purkinje fibers intuitively change the depolarization pattern.433

When cLV and cRV were similar (|cLV − cRV | < 1, 000 mm2/s), the depolar-434

ization was controlled by the Purkinje system, and a small range of 8.6 ms435

was observed for the QRS duration. Either cLV or cRV approaching a bundle436

branch block scenario and thus becoming closer to myocardial diffusion, the437

QRS duration increased. The total range of ∆QRS was found to be 35.8 ms.438

Next, the influence of different spatial distributions of τclose parameters,439

which control action potential duration, was investigated. The employed lin-440

ear transmural gradient of action potential duration (Glukhov et al., 2010)441

was compared to a model with M-cells as described by Wilson et al. (2011).442

Hereby, we assumed M-cells to be located in the center of the myocardial443

wall, τclosemid = 110% · τcloseendo and performed linear interpolation between444

endocardium and M-cells, and between M-cells and epicardium to obtain a445

spatially varying map of τclose values. For both scenarios (linear gradient446

throughout the wall and the M-cell model), we defined the parameter rT447

as the ratio between the APD parameters at epicardium and endocardium:448

rT = τcloseepi/τcloseendo . Figure 10a shows that the difference in the considered449

ECG features between the linear gradient model and the used M-cell model450

was marginal. This result was not surprising as τclose controls cardiac repo-451

larization, whereas the QRS duration and electrical axis depend mostly on452

cardiac depolarization. Furthermore, we also analyzed how regional differ-453

ences in APD can influence the ECG parameters. To that end, we created a454

base-to-apex gradient by defining an additional ratio rBA = τclosebase/τcloseapex .455

In Fig. 10b, the resulting variation in ∆QRS and α is illustrated. In this case,456

QRS duration was, as expected, only minimally affected (range 0.15 ms) but457

the electrical axis varied by 13.6◦.458

Finally, we investigated the effect of the fiber model on the ECG features.459

According to the study by Lombaert et al. (2012), fiber angles in human phys-460

iology range on average from about 50◦ to 80◦ on the epicardium. As shown461

in Fig. 11, the variation of ∆QRS in that range was small, with a range of462
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a) Comparision of linear gradient model and reference M-cell model

b) Evaluation of base-to-apex variability in action potential duration

Figure 10: Influence of action potential duration (τclose) on ECG features. a) The dif-
ference between the used linear gradient model and an M-cell model is negligible; the
transmural ratio does not seem to significantly influence QRS duration and electrical axis.
b) A downward gradient (base to apex) only causes slight variation in ECG features,
showing that regional differences in τclose cause low variation in ECG features. See text
for details.

8.2 ms. The electrical axis varied by 30.8◦ as the electrical activation pattern463

was modified due to the anisotropic diffusivity. However, that variation was464

still within the clinical range.465

Altogether, these finding – linear dependence of ∆QRS on myocardial466

diffusion, and linear dependence of α on LV/RV endocardial diffusion – con-467

firmed the assumptions made in Sec. 2.2.3 and justified the selection of the468

two features for the estimation of cardiac electrical diffusivity. However, as469

expected, the experiments also showed that multiple combinations of cMyo,470

cLV and cRV can yield the same set of ECG features. The resulting uncer-471

tainty of diffusion parameters given a set of ECG features will be quantified472

in Sec. 3.2.2. Because variation for different APD distributions and fiber el-473

evation angles was found to be relatively low or cannot be directly measured474
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Figure 11: Influence of fiber elevation angle αf within physiological range on ECG fea-
tures (the anatomical models are generated with αf on the endocardium and −αf on the
epicardium.)

in-vivo at the time of this study, we focused on the estimation of diffusion475

coefficients, keeping the other parameters at their nominal value.476

3.1.3. Analysis of Computational Efficiency477

Using one representative patient case, computational efficiency was ana-478

lyzed on a system with a 16-core Intel Xeon 64-bit CPU at 2.4 GHz and an479

NVIDIA GeForce GTX 580 graphics card. As described by Zettinig et al.480

(2013b), the computational times of image preparation and anatomical model481

creation, which has to be computed only once per patient, amounted to a482

total of 81.2 seconds. Table 4 reports the runtimes of the LBM-EP algo-483

rithm for a full heart cycle on differently spaced Cartesian grids (Georgescu484

et al., 2013). The projection of the extracellular potentials to the torso and485

the calculations of the ECG traces are simple matrix operations. Hence, the486

evaluation of the complete forward model could be done in less than 3 sec-487

onds for a grid with an isotropic resolution of 1.5 mm. As the evaluation of488

a polynomial function is almost immediate, the estimation of cardiac diffu-489

sivity required less than 10 seconds because of the three forward runs for the490

purpose of normalization.

Table 4: Full heart cycle runtimes of the LBM-EP algorithm for different grid spac-
ings (Georgescu et al., 2013)

Grid Spacing GPU Runtime
1.5 mm 2.8 sec.
0.7 mm 21.7 sec.

491
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Figure 12: Estimated diffusion standard deviation (SD) in % of total SD for known elec-
trical axis and QRS duration. The highest uncertainty is found in the healthy range of
parameters (center of plots).

3.2. Evaluation of the Proposed Data-Driven Estimation Framework492

3.2.1. Experimental Protocol493

In this study, datasets of 19 patients with dilated cardiomyopathy (DCM)494

and a QRS duration of at least 120 ms were used. For all of them, an anatom-495

ical model was created based on cine magnetic resonance images (MRI) as496

described in Sec. 2.1. Thereafter, 500 EP simulations were computed for497

each patient on a 1.5 mm-isotropic Cartesian grid, accounting for a total of498

9,500 forward model runs. Diffusivity coefficients were uniformly sampled499

between 50 mm2/s and 5, 000 mm2/s under the constraints cMyo ≤ cLV and500

cMyo ≤ cRV .501

3.2.2. Uncertainty Analysis in Cardiac Diffusion Parameters502

Before training the regression model, the intrinsic uncertainty of the ECG503

inverse problem under our forward model was quantified using the entire syn-504

thetic EP database (9,500 simulations). To minimize the effects of geometry,505

the analysis was conducted with normalized ECG parameters. All computed506

(∆QRS, α) tuples were grouped in 20 × 20 bins, and for each bin, the local507

standard deviation of the diffusion coefficients cMyo, cLV and cRV was calcu-508

lated. Table 5 reports the total standard deviation in the entire dataset, the509

average local standard deviation, and the uncertainty defined as their ratio.510

As illustrated in Fig. 12, which shows the uncertainty for each bin, the high-511

est variation can be found in the healthy range of QRS duration and electrical512

axis (up to 180%). The reported high uncertainties, especially for cLV and513

cRV , reflects the ill-posed nature of the ECG inverse problem if only QRS514
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duration and electrical axis are employed to personalize the model. That in-515

formation will be useful when evaluating the accuracy of the personalization516

techniques in the next sections.517

Table 5: Total, and average local (bin-wise) standard deviation, and the uncertainty de-
fined as their ratio for all three diffusion coefficients.

cMyo cLV cRV
Total SD (mm2/s) 1,482 1,095 1,191
Avg. local SD (mm2/s) 191 556 537
Uncertainty 12.9% 50.7% 45.1%

3.2.3. Evaluation on Synthetic Data518

a) Diffusion cMyo, cLV , cRV b) QRS Duration ∆QRS c) Electrical Axis α

Figure 13: Analysis of polynomial regression degree on prediction accuracy. Average test-
ing errors of leave-one-patient-out cross-validation in a) diffusion space, b) QRS duration
∆QRS , and c) electrical axis α. The regression model overfits at degrees ≥ 4, as the
prediction errors in ECG feature space increase again.

The proposed machine-learning personalization procedure was evaluated519

using a leave-one-patient-out cross-validation on the database, i.e. the re-520

gression models were trained using a subset of 18 patients and tested with521

the remaining one, for each of the 19 DCM cases respectively. Next, the522

average testing errors in the diffusion (parameter) space were calculated. To523

evaluate the accuracy of the regression model in the observable space of ECG524

parameters, ∆QRS and α were computed according to the estimated diffusiv-525

ity parameters and quantitatively compared with the known ground truth.526

In order to analyze the required dimensionality of the polynomial regression527

model, a cross-validation procedure with regression degrees ranging from 1528

to 8 was performed. While linear or quadratic regression models failed to529
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cRVcLVcMyo

Figure 14: Regressed surface for each diffusion parameter. The highlighted area (blue
contour) corresponds to the normalized parameter range in Fig. 12. As expected, all three
parameters are dependent on the QRS duration, and the electrical axis has little effect
on cMyo. Right axis deviations correctly lead to cRV < cLV , and vice versa. Beyond the
normalization range, all polynomials may drop below zero (non-physical diffusivity) for
certain parameter combinations. See text for details.

capture the ECG problem, as shown in Fig. 13, the model started to overfit530

at degrees higher than four, leading to again increasing prediction errors in531

ECG space. Thus, the best option is to use cubic regression.532

In Tab. 6, the final regression coefficients βi,j according to Eq. 13, trained533

using the entire synthetic dataset, are given. In Fig. 14, the regressed sur-534

faces for each of the diffusion parameters are visualized. Myocardial diffusion535

cMyo is, as expected, almost exclusively dependent on the QRS duration. In-536

terestingly, for long QRS durations (∆QRS ≥ 1.7), cRV decreases for left axis537

deviations while still remaining higher than cLV . Nevertheless, axis devia-538

tions on both sides are correctly captured, i.e. cRV is clearly smaller than539

cLV for deviations to the right, and cLV is slightly smaller than cRV for de-540

viations to the left. Beyond the highlighted normalization range, all three541

polynomials may drop below zero for certain combinations of QRS duration542

and electrical axis, yielding non-physical diffusion coefficients. A test after543

the prediction can be used to discard these cases. The errors in estimated544

diffusion reported in Tab. 7 were obtained using this model. The relative545

errors in % of the total standard deviation of the dataset were in the same546

range as the estimated uncertainty of the inverse problem (Sec. 3.2.2). The547

proposed regression model was thus able to predict up to the intrinsic un-548

certainty of the problem. Furthermore, prediction errors were significantly549

higher when no normalization was applied, as illustrated in Tab. 7, suggest-550

ing the proposed model-based normalization procedure was able to partially551

compensate for inter-patient geometry variability.552

In addition to the diffusion parameters used in the forward model (cMyo,553
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cLV and cRV ), we tested how well the ratio between cLV /cRV can be recon-554

structed. Low prediction errors as listed in Tab. 7 were expected in light of555

the experiments carried out in the previous section, which showed a linear556

dependency of the electrical axis on cLV when cLV + cRV is kept constant.557

However, the ratio alone is not sufficient for a complete model personalization558

as the two values are needed.559

Table 6: Learned regression coefficients βi,j rounded to 5th decimal position (Eq. 13, ∆QRS

and α to be given in seconds and radians, respectively). Full double-precision coefficients
are available from supplementary material.

i j gMyo gLV gRV
3 0 -4397.72303 -2224.80345 -2372.28284
2 1 947.10794 -217.53110 -111.83210
2 0 20619.61231 8748.58856 10659.98012
1 2 -339.47629 884.12470 -1849.11181
1 1 -2138.03900 -556.40419 1168.22703
1 0 -31323.62564 -13516.54750 -15836.31353
0 3 -125.51341 -238.65933 513.65578
0 2 688.60647 -215.02537 1004.99532
0 1 1070.11229 585.32229 -900.63528
0 0 15662.21934 9621.33473 10454.35893

Table 7: Diffusion space prediction errors on the synthetic dataset, absolute in mm2/s and
relative in % of the total standard deviation. In addition to the three parameters, also the
ratio between cLV and cRV was tested.

cMyo cLV cRV cLV /cRV
With Normalization 356 451 533

24.0% 41.2% 44.7% 21.3%
Without normalization 571 540 597

38.5% 49.3% 50.0% 23.9%

Comparison Against Nominal Values. Table 8 reports the average absolute560

errors in ECG feature space for forward model simulations with nominal dif-561

fusion parameters from literature and parameters obtained with the proposed562

regression framework. Likewise, the error distributions are shown in Fig. 15.563

Calibrated simulations using our framework were not only in the range of564
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clinical variability but also significantly (t-test p-value < 0.001) more pre-565

cise than those obtained with nominal diffusivity values. In addition, our566

predictions were on average centered around the ground truth QRS dura-567

tion (average bias: +0.7ms), the ∆QRS calculated with default parameters568

was on average 28.9ms too short. As the default parameters correspond to569

healthy physiology whereas conduction abnormalities cause prolonged QRS570

durations, this result was expected. Using our diffusion estimation frame-571

work may thus be preferable to using nominal parameters when only ECG572

is available.573

Nominal Parameters

NEWUOA Optimization

Polynomial Regression

Gradient Boosting

MARS

Figure 15: QRS duration and electrical axis error distributions for ECG simulations with
nominal, NEWUOA-estimated and predicted diffusivity parameters using a machine learn-
ing technique. On each box, the central mark is the median, the edges of the box are the
quartiles, and the whiskers extend to the most extreme data points not considered outliers.
The range between the whiskers covers approximately 99.3% of the normally distributed
data.

Table 8: Average absolute ECG feature space errors for ECG simulations with nomi-
nal, NEWUOA-estimated and predicted diffusivity parameters using a machine learning
technique.

Diffusivity ∆QRS [ms] α [deg]
Nominal Parameters 33.7 ±15.7 53.2 ±33.8
NEWUOA Optimization 7.4 ±11.3 16.1 ±31.4
MARS 4.6 ±5.1 9.8 ±23.0
Gradient Boosting 4.9 ±5.8 9.5 ±19.8
Polynomial Regression 4.8 ±6.0 8.9 ±19.7
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Comparison against Alternative Machine Learning Techniques. In this study,574

the predictive power of the proposed polynomial regression framework is com-575

pared against two non-parametric non-linear methods: multivariate adaptive576

regression splines (MARS) and Gradient Boosting, as described in Hastie577

et al. (2009). The former, MARS, is a non-parametric regression method578

with explicative capabilities, which intuitively extends linear regression by579

fitting splines to the predictors to capture data non-linearities and variable580

interactions. For our evaluation, the ARESLab toolbox (Jekabsons, 2011)581

was used. Gradient Boosting, on the other hand, is based on an ensemble582

of weak prediction models, in our case 100 decision trees (LSBoost function583

of MATLAB). Tab. 9 lists the diffusion space errors for all tested machine584

learning algorithms. The errors in ECG feature space can be found in Tab. 8585

and Fig. 15. Both approaches yielded very similar diffusion error distribu-586

tions compared to the proposed polynomial regression framework. Also the587

error distributions of ∆QRS and α obtained by MARS and Gradient Boosting588

were similar to those obtained by polynomial regression.589

Table 9: Diffusion space prediction errors on the synthetic dataset, relative in % of the
total standard deviation, for the tested machine learning algorithms.

cMyo cLV cRV
MARS 23.2% 40.2% 43.7%
Gradient Boosting 24.3% 46.1% 49.1%
Polynomial Regression 24.0% 41.2% 44.7%

Comparison against an Alternative Inverse-Problem Method. We compared590

the performance of the regression framework with a personalization approach591

that is based on NEWUOA (Powell, 2006, 2008), a gradient-free inverse prob-592

lem method. An algorithm similar to the approach proposed by Neumann593

et al. (2014) is followed. The diffusion coefficients c0
Myo, c

0
LV , c0

RV are initial-594

ized with parameters associated with healthy EP (Tab. 2, configuration F1).595

The initial step size is set to 500 mm2/s. Cardiac diffusivity is then estimated596

using NEWUOA such that both the QRS durations and the electrical axis597

match:598

(c∗Myo, c
∗
LV , c

∗
RV ) = arg mincMyo,cLV ,cRV

C
[
f∆QRS ,α (cMyo, cLV , cRV )

]
(16)

Hereby, f∆QRS ,α(·) denotes the ECG features obtained by running the EP599

forward model. In the cost function C, the values ∆m
QRS and αm are the600
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measured QRS duration and electrical axis, respectively, and the parameter601

λ = 0.1 accounts for the different orders of magnitude between QRS duration602

(in seconds) and electrical axis (in radians):603

C(∆i
QRS, α

i) = |∆m
QRS −∆i

QRS|+ λ |αm − αi| (17)

As shown in Tab. 8, the errors in ∆QRS and α calculated using the NEWUOA-604

personalized forward model were higher compared to the data-driven estima-605

tion framework. In addition, the obtained values for the electrical axis were606

less centered around the ground truth (average bias: 8.1◦). Note that the607

table lists higher standard deviations (11.3 ms and 31.4◦ for ∆QRS and α,608

respectively) than Fig. 15 suggests because of numerous outliers (16%) in the609

NEWUOA predictions.610

Because the optimizer was sensitive to local minima, NEWUOA typically611

required up to 50 iterations to converge to a stable optimum. Thus, the612

total time for optimization using a fully optimized version of the code would613

take up to 2.5 min, while our approach requires only 10 s to calculate the614

three forward simulations for the normalization. Our approach was therefore615

not only at least 15× more computationally efficient but also yielded more616

predictive diffusivity parameters.617

3.2.4. Evaluation on Real DCM Cases618

Finally, we evaluated the machine-learning personalization with the clin-619

ical ECG data which were available for all 19 DCM cases. The trained re-620

gression models from the cross-validation were employed to estimate diffusion621

coefficients based on measured QRS duration and electrical axis. In three622

cases, the prediction was not successful and yielded negative diffusivity for at623

least one of the diffusion parameters because the measured electrical axis was624

outside the normalization range. These cases are easily identifiable and could625

therefore be processed using other approaches if needed. For the remaining626

16 patients, plausible diffusion coefficients (between 141 and 582 mm2/s for627

cMyo, and between 678 and 2769 mm2/s for cLV and cRV ) were estimated.628

Table 10 reports the average absolute errors between clinical ground truth629

and ECG features obtained with forward model computations using the es-630

timated diffusion parameters for the remaining 16 patients. Figure 16 shows631

the obtained error distributions, indicating that the simulated QRS dura-632

tion was on average 18 ms too long, while the electrical axis was closely633

centered (average bias: 3.1◦) around the measurements, both values being634
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within clinical acceptability as defined prior to the study. Finally, Fig. 17635

illustrates the simulated ECG chest leads overlaid on the measured ones for636

one representative patient.637

Table 10: Average absolute ECG feature space errors for ECG computations with
regression-predicted diffusivity parameters from clinically measured ECG features.

Diffusivity ∆QRS [ms] α [deg]
Regression-based Prediction 18.7 ±16.2 6.5 ±7.6

Figure 16: QRS duration and electrical axis error distributions for ECG simulations dif-
fusivity parameters estimated from clinical ground truth measurements.

4. Discussion and Conclusions638

4.1. Discussion639

In this manuscript, we described a data-driven method for the person-640

alization of a cardiac electrophysiology model from ECG features. As sup-641

ported by reported results, the method achieves the same accuracy as tra-642

ditional inverse problem algorithm with the advantage of 1) being computa-643

tionally efficient (evaluation of a polynomial function is almost immediate)644

and 2) providing an estimate of parameter uncertainty, an additional variable645

that could be employed clinically.646

While the anatomical model was obtained from cine MR images in this647

work, the approach is easily applicable to other modalities such as computed648

tomography (CT) or echocardiography (Zheng et al., 2008), provided the full649

bi-ventricular myocardium is visible. In this study, a synthetic model of fiber650

architecture was employed. Nevertheless, our framework is ready to incor-651

porate diffusion tensor imaging (DTI) data and thus remove this additional652

uncertainty. It will be important to quantify the difference between ex-vivo653

measurements (Helm et al., 2005) and in-vivo measurements in order to learn654
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Figure 17: Clinically measured, and computed ECG chest leads after model estimation of
cardiac diffusivity for one representative patient, showing promising agreement during car-
diac depolarization, which we focused on in this study. For this case, obtained estimation
errors amounted to 1.6 ms for the QRS duration and 0.5◦ for the electrical axis.

a data-driven model for patient-specific diffusivity predictions. Furthermore,655

it would be interesting to investigate how the variances of the atlas gener-656

ated by Lombaert et al. (2012) can be used for a sensitivity analysis and657

uncertainty estimation in our model. In any case, the tremendous progress658

achieved in in-vivo DTI will soon enable to use patient-specific data (Tous-659

saint et al., 2013). For the mapping of potentials onto the body surface, an660

atlas of torso geometry was employed as 3D images of patient upper body661

were not available. The manual registration of the atlas against 2D contours662

outlined in the three sagittal, axial and longitudinal planes was performed by663

an expert. It should be noted however that slight mis-registration would not664

have impacted the performance of the algorithm as ECG leads are known to665

be tolerant with respect to electrode placement (Sheppard et al., 2011). In666

addition, the overall methodology would work on more detailed atlases based667

on populations or on the patient-specific geometry directly.668
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This work was performed using a mono-domain EP model with the ac-669

tion potential model proposed by Mitchell and Schaeffer (2003). It has been670

shown by Boulakia et al. (2010) and Plank et al. (2013) that anisotropic671

mono-domain models are able to preserve the essential ECG features, which672

were used for the subsequent personalization, when compared to orthotropic673

bi-domain models. It should be noted that the LBM-EP method can use any674

mono-domain model like for instance the TenTusscher model. Furthermore,675

the data-driven personalization algorithm is generic by design and can be676

applied to any cell model, or any bi-domain or graph-based/Eikonal model677

of cardiac electrophysiology, as far as the database can be computed in a678

realistic amount of time. Moreover, our focus on cardiac depolarization al-679

lowed decoupling the estimation of electrical diffusivity from repolarization680

EP parameters and assuming a static heart. Unlike during the ST-T period,681

the deformation of the myocardium due to cardiac motion has been shown682

to be marginal during the QRS complex (Jiang et al., 2009). Also, the influ-683

ence of the action potential duration on the ECG features used to estimate684

electrical diffusion (QRS duration and electrical axis) was confirmed to be685

negligible (Fig. 10).686

In this study, the mapping of extracellular potentials from the heart to the687

body surface relies on a boundary element approach. For our simulations, we688

applied constant homogeneous isotropic conductivity in the torso, including689

the chest cavity, thoracic cage, muscle tissue and skin. Minor sensitivity690

on body surface potentials for different organ conductivities as observed in691

the computational study by Geneser et al. (2008) justifies this assumption692

for our purposes. We verified our BEM implementation with analytically693

defined test cases and showed convergence with increasing mesh resolution694

and order of Gaussian quadrature for the evaluation of integrals without695

available closed-form formula (Fig. 8), suggesting that the uncertainty in696

diffusivity parameters is not related to BEM numerical approximations but697

rather intrinsic to the inverse ECG problem.698

From the ECG traces, two features were derived, namely the QRS du-699

ration ∆QRS and the electrical axis α. Provided the choice of appropriate700

electrode positions, experiments have shown that the electrical axis can be701

computed on either the epicardium mesh or the torso mesh. A thorough eval-702

uation of the influence of varying conductivities in the torso due to different703

organs (Geneser et al., 2008) onto the electrical axis measured at the torso704

would be interesting for future works. Regarding the computation of the QRS705

duration, we observed in our experiments a close match between the dura-706
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tion computed directly using the LBM-EP results as described in Sec. 2.2.3707

and the width of the QRS complex in the computed ECG leads. This work708

is based on the assumption that these two features are sufficient to explain709

various EP patterns. In addition, the selected features are commonly avail-710

able from clinical ECG traces and clinical reports, and would therefore allow711

the estimation of diffusion coefficients with little effort in clinical routine.712

The proposed method could therefore constitute a first model personaliza-713

tion step when no dense EP data is available, and would also provide more714

accurate results compared to generic parameters, as suggested by our exper-715

iments. Yet, the proposed framework is generic and allows the integration716

of an arbitrary number of features. If invasive or BSM measurements are717

available, more regional features could be used to facilitate the estimation of718

model parameters.719

The use of QRS duration and electrical axis was further supported by720

our parameter analysis. It has been shown in this paper that QRS dura-721

tion varies linearly with myocardial diffusion (cMyo), while the electrical axis722

varies linearly with increasing left endocardial diffusion (cLV ) when the right723

endocardial diffusion (cRV ) is decreased at the same time such that their sum724

is constant. However, these relationships are not decoupled as each diffusion725

parameter has influence on both features, which contributes to the quanti-726

fied uncertainty of the inverse problem: different diffusivity configurations727

can lead to the same ECG parameters. In particular, we showed that left728

and right endocardial diffusivity are subject to broad variations, especially729

in the region of healthy EP (Fig. 12). Clearly demonstrating the ill-posed730

nature of the inverse ECG problem under the assumptions of our EP model,731

the reported uncertainties constitute, to the best of our knowledge, the first732

estimates of the optimal bound in accuracy for any inverse problem to esti-733

mate myocardium diffusion that rely on ∆QRS and α only. We expect the734

uncertainty to decrease as more clinical features are considered. This study735

is thus subject to future work.736

The main contribution of this work is our novel data-driven framework737

to estimate cardiac diffusion parameters. Instead of solving the inverse ECG738

problem numerically, we proposed to employ statistical learning, and in par-739

ticular multivariate polynomial regression, to learn the relationship between740

ECG features and diffusivity. Compared to other statistical approaches, poly-741

nomial regression has the advantage that the regression coefficients can be742

given and the estimation of diffusion parameters is possible using a closed-743

form formula. The personalization formula can therefore be shared between744
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research groups. Error distributions obtained using multivariate adaptive re-745

gression splines (MARS) and Gradient Boosting were, as reported in Tab. 8,746

similar to those obtained by polynomial regression. An evaluation of the747

required polynomial degree revealed that the model starts over-fitting at de-748

gree 4 (Fig. 13). We therefore use cubic multivariate regression and report749

the final coefficients in Tab. 6.750

A key aspect of the approach is the model-based normalization of EP fea-751

tures to indirectly incorporate geometric information in the statistical model.752

The strategy consists in scouting the space of ∆QRS and α for a given patient753

by running three forward simulations with diffusion parameters relating to754

healthy EP, and left and right bundle branch block scenarios. As a result,755

although not directly based on anatomical or physiological features such as756

heart size or strength of myocardial contraction, we were able to show that757

the normalization scheme compensates for patient geometry and significantly758

improves prediction results (Tab. 7). For an unseen patient, three forward759

model runs are needed (computed in about 10 seconds using LBM-EP), which760

is still acceptable in a clinical setting but also far less than in conventional761

inverse-problem algorithms, which require often numerous model evaluations762

to converge.763

As expected, the regressed surfaces of the three diffusivities trained from764

a database of 9,500 simulations (Fig. 14) showed dependance of the QRS du-765

ration on all three diffusion parameters. For right axis deviations, the right766

endocardial diffusion was consistently lower than the left one, and vice versa.767

However, all three polynomials may yield negative, non-physical diffusion co-768

efficients for certain parameter combinations. As not reported, preliminary769

experiments have shown, regressing the logarithm of the diffusion coefficients770

(log c instead of c directly) could help in overcoming this limitation. Future771

work will therefore consider the investigation of regression methods with772

better generalization on unseen data. Prediction errors in diffusion space773

(leave-one-patient-out) were in the range of the estimated intrinsic uncer-774

tainty of the problem, especially for left and right endocardial diffusivity775

(Tab. 7). Only for myocardial diffusivity, the prediction was slightly worse776

(24% of total std. dev.) compared to the uncertainty (13% of total std. dev.)777

One reason for this result could be the dependence of myocardial diffusivity778

on both ECG features for diffusions of less than 400 mm2/s (Fig 9a).779

Yet, prediction errors in the ECG feature space for the synthetic dataset780

obtained by running forward simulations using the calibrated EP model were781

significantly better than those obtained by using nominal diffusion param-782
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eters from literature (Tab. 8). Furthermore, a comparison with an estima-783

tion algorithm based on the gradient-free inverse problem method NEWUOA784

showed that our method performs better (prediction errors in QRS duration785

and electrical axis were 54% and 80% higher, respectively) while being im-786

mediate to compute and providing uncertainty estimates. Altogether, the787

application of the proposed data-driven framework may thus be preferential788

to traditional approaches when only ECG data are available.789

Finally, an evaluation with clinically measured ECG features was con-790

ducted on all 19 patient cases. The model was successfully fitted in 16 cases791

out of 19 (84%), with promising prediction errors of 18.7± 16.2 ms for ∆QRS792

and 6.5 ± 7.6◦ for α, within clinical acceptability. The model could not be793

personalized in three cases as the measured electrical axis was outside the794

normalization range. Similar results were obtained in not reported, prelim-795

inary experiments on regressing the logarithm of the diffusion coefficients,796

as mentioned above. However, the cases that failed could not be recovered797

either, suggesting a more intrinsic difference between patient physiology and798

our model, for instance a potential line of blocks, etc. A more realistic in-799

corporation of geometrical features might improve the success rate and avoid800

such inconsistencies. Further investigation is needed for an optimal regression801

model.802

The results previously published by Zettinig et al. (2013a) showed smaller803

overall errors in ∆QRS and α, potentially because 1) fewer patients with a804

smaller range of anatomical and physiological variation were used, and 2) the805

original framework (multivariate polynomial regression of degree 7) might806

have been overfitting as shown in Fig. 13. In addition, estimation errors807

without normalization were better than previously reported, possibly due to808

the updated torso registration technique.809

4.2. Perspectives810

In this work, only the cardiac anatomy model was generated based on pa-811

tient data. Despite the contour-based registration, torso geometry was based812

on an atlas and does not entirely reflect patient-specific anatomy. Also the813

boundary element mapping of potentials assumes constant conductivity, ne-814

glecting thoracic organs and different tissue types. Future work could thus815

improve the anatomical model by incorporating more imaging data from the816

heart to the body surface and model the different tissues in the torso in-817

dependently (lung, bones, muscles). Furthermore, instead of the proposed818

normalization technique, explicitly integrating geometrical features directly819
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into the regression framework could potentially better cope with anatomical820

variability. In addition, the framework could be extended by using an elec-821

tromechanical model of the heart (Zettinig et al., 2013b) to cope with the822

influence of cardiac motion on the ECG. A comprehensive study is needed823

though to quantify that aspect and properly consider it into the estimation824

process. There are indeed no studies available to clarify how much mo-825

tion happens during the fast depolarization of the heart, to the best of our826

knowledge. Even though, a dynamic model would have great benefit when827

estimated cardiac repolarization features like action potential duration.828

As the uncertainty in diffusion parameters given QRS duration and elec-829

trical axis is high, the integration of more ECG features could improve es-830

timation precision and increase the success rate of the approach. Similarly,831

more ECG features may potentially allow the estimation of more local diffu-832

sion coefficients, rendering the estimation of regional diffusivity distributions833

possible.834

Finally, refining the forward model, in particular regarding cardiac elec-835

trophysiology, might lead to future extensions of our framework. More com-836

plex biophysical bi-domain models, integration of atrial geometry, more re-837

fined activation patterns, and coupling with mechanical models could po-838

tentially increase the predictive power of the framework and are subject to839

future work.840

4.3. Conclusion841

We have shown in this paper that the estimation of patient-specific car-842

diac diffusion parameters from standard 12-lead ECG measurements using843

machine learning techniques is possible, up to the intrinsic uncertainty of844

the problem. Based on QRS duration and electrical axis as ECG features,845

a data-driven regression model was trained and used to predict diffusivity846

parameters for left and right endocardium (mimicking the fast conducting847

Purkinje system), and the bulk myocardium tissue. Under the assumptions848

of our forward model, the prediction errors were in the range of the under-849

lying uncertainty in diffusivity, which we empirically quantified for the first850

time to the best of our knowledge. We evaluated the framework both on the851

synthetic dataset and on clinical measurements using a leave-one-patient-852

out cross-validation and computed the error in ECG feature space using853

forward simulations with estimated diffusion parameters. Significant im-854

provement with respect to nominal diffusivity values, which relate to healthy855

electrophysiology, were obtained. We also conducted a comparison with a856
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NEWUOA-based personalization approach, finding overall superior predic-857

tive power. Therefore, our framework can provide good preliminary person-858

alization, prior to more refined estimation if invasive or BSM measurements859

are available.860
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