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Abstract. With recent advances in numerical methods and experimen-
tal validation, cardiac electrophysiology models can become surrogate
tools for improved diagnostics and therapy planning. However, day-to-
day clinical applications require models that are accurate and detailed
enough to capture the main pathological patterns, but at the same time
fast, with near real-time computation time. In particular, the models
should be computed in a reasonable amount of time to enable personal-
ization and on-line therapy guidance. Towards this goal, we present in
this manuscript a novel algorithm adapted to graphics processing units
(GPU) that enables near real-time cardiac electrophysiology computa-
tion with state-of-the-art cellular models. Our method relies on LBM-EP,
a Lattice-Boltzmann method, which is naturally scalable to massively
parallel architectures. Tested on a synthetic case and on a patient geom-
etry, our experiments demonstrate the high scalability of the algorithm,
reaching 10× speed up with respect to the CPU implementation of the
algorithm.

1 Introduction

In the last decade, intense efforts have been put to apply complex computa-
tional models of cardiac electrophysiology to clinical problems. As models mature
(see [1] for a comprehensive review), their application for planning and guidance
of electrophysiology therapies is being investigated. For instance, in [4, 7], mod-
els were employed to plan radio-frequency ablation of ventricular tachycardia,
whereas in [6] cardiac resynchronization therapy was investigated, all studies
showing promising results.

A crucial requirement for clinical use is accuracy and computational effi-
ciency. Because the models are applied to complex pathologies, simplified meth-
ods like those based on the Eikonal equation may not be suited. Phenomeno-
logical or even ionic models would be required [1]. Yet, the later models are
often computationally demanding, in particular when solved using the finite ele-
ment method. Recently, implementations on massively parallel architectures, like
graphics processing units (GPU) have been investigated. In [8], the authors par-
allelized a finite element solver and implemented it on GPU, achieving a speed-up
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Fig. 1: Workflow for building the computational domain. From left to right: Automatic
segmentation of the bi-ventricular myocardium, Rule-based model of fiber architecture,
Rule-based model of cellular parameter heterogeneity (here τclose), Rasterization to
Cartesian domain

factor of 9 to 17 times with respect to a central processing unit (CPU) implemen-
tation. However, the overall computation time was still 160 times slower than
real-time. Finite element methods have also been optimized in [7]. There, the
system is solved using an explicit scheme, especially optimized for GPU process-
ing, yielding a computation time of 3-7s. However, it is not clear how scalable is
the approach when the number of tetrahedra increases and complex phenomena
arise, as a smaller time step and conjugate gradient tolerance would be required
to achieve accuracy.

Inspired from computational fluid dynamics approaches, Rapaka et al. [5]
proposed a different solver to compute cardiac electrophysiology mono-domain
models based on the Lattice-Boltzmann method, called LBM-EP. The key fea-
tures of LBM-EP are: 1) the equations are solved on a Cartesian grid, which is of
particular interest when dealing with patient-specific problems where the geom-
etry is obtained from imaging data; 2) the algorithm is node-wise, and therefore
suited for parallel architectures without significant modifications to the solver;
3) the method is accurate: results are invariant with respect to the preferred dif-
fusion direction and, by use of a level-set representation of domain boundaries,
is second-order accurate in space. In this manuscript, we investigate and quan-
tify the scalability of LBM-EP. We propose an implementation that is suitable
for both multi-core and GPU architectures (Sec. 2). The method is evaluated
on a synthetic setup as well as on one patient data (Sec. 3). . In particular,
we demonstrate that GPU implementation of LBM-EP can reach near real-time
computation, with a computation time of about 3s/beat. Sec. 4 concludes the
manuscript.

2 Methods

2.1 Computational Domain Preparation from Medical Images

The first step of the proposed method consists in building the computational do-
main from patient’s images. LBM-EP being solved on Cartesian grids (Sec. 2.3),
its application to clinical images is relatively immediate. Starting from a car-
diac image (e.g. from magnetic resonance imaging (MRI)), the left endocardium,
right endocardium and epicardium are automatically segmented using a machine



learning approach [11]. The resulting surface meshes are fused in one surface rep-
resenting the myocardium while preserving their anatomical label. A level-set
representation of that surface is then computed on an isotropic Cartesian grid
whose resolution is controlled by the user. Based on the labels, grid nodes lying
at the heart endocardia are marked for fast conductivity, to mimic the Purk-
inje network. The nodes lying at the septal endocardia are identified as pacing
sites, to capture the effects of the His bundle. Tissue anisotropy is taken into ac-
count through a model of fiber architecture, computed from the patient-specific
anatomy by linearly interpolating fiber elevation angle, defined as the angle with
respect to the short axis plane, from the epicardium to the endocardium (−60◦

to +60◦ for the left ventricle, −80◦ to +80◦ for the right ventricle [1]). If scars
are present, they can be reported in the domain through level set. Finally, spa-
tial heterogeneity of the action potential duration is modeled based on literature
reports, including endo-, mid- and epi-cells, as illustrated in Fig. (1).

2.2 Lattice-Boltzmann Model of Cardiac Electrophysiology

We concern ourselves with general mono-domain equations of the form:

χ

(
Cm

∂v

∂t
+ Iion

)
= ∇ · (D(f)∇v) + Istim (1)

where, χ is the surface-to-volume ratio, Cm is the capacitance of the tissue,
Iion is the sum of ionic currents from the cell model, D is the conductivity of
the tissue which depends on the local fiber direction vector f , v is the trans-
membrane potential and Istim is an applied stimulus current. The ionic currents
Iion are usually modeled using systems of ordinary differential equations for a
set of gating variables. In this work, the Mitchell-Schaeffer model (MS) [3] is
employed, which is a simplified cell-model using only a single gating variable, h.
Another key advantage of the MS model is the fact that it is characterized by
only 4 parameters, each of which is directly related to the shape of the action
potential, enabling ease of personalization for patient-specific computations. It
should be noted though that the proposed method is not limited to the MS
model, any cellular model could be used.

Using the MS model, the general equation Eq. (1) becomes:

∂v

∂t
= ∇ ·D(f)∇v + Iin + Iout + Istim (2)

Iin = hv2(1− v)/τin (3)

Iout = −v/τout (4)

dh

dt
=

{
(1− h)/τopen, if v < vgate

−h/τclose, otherwise
(5)

Eq. (2-5) are solved on the Cartesian grid computed from the images (Sec. 2.1)
according to a 7-connectivity topology (6 connections + central position). Eq. (5)



is solved at every node of the grid using a forward Euler scheme while Eq. (2) is
solved using the Lattice-Boltzmann method (LBM) under Neumann boundary
conditions (isolated heart). The fundamental variable of LBM is the vector of
distribution functions f(x) = {fi(x)}i=1...7, where fi(x) represents the proba-
bility of finding a particle travelling along the edge ei of node x. The governing
equation at x for the edge ei is composed of two successive steps:

fi = fi −Aij (fj − ωjv) + δtωi(Jin + Jout + Jstim), (6)

fi(x + ei, t+ δt) = fi(x, t) (7)

where, the collision matrix A = (Aij)i,j∈J1,7K relaxes the distribution function
fi towards the local value of the potential, v, and ωi is a weighting factor that
depends on lattice connectivity, here ωi = 1/8 for the edges to the six n eighbors
and ωi = 1/4 for the central position. The transmembrane potential is related
to the fi’s through v(x, t) =

∑
i fi(x, t). In each computational time step δt,

a simple and strictly local collision rule is applied to the distribution functions
at each node (Eq. (6)). Post-collision, the distribution functions stream along
their corresponding edges to the neighboring nodes (Eq. (7)). In the simplest
form, the collision matrix A relaxes each component towards the local potential
by a characteristic relaxation time τ , A = (1/τ)I, where I is the 7 × 7 identity
matrix. With D = (2τ−1)/8Id, it has been shown that this algorithm solves the
isotropic reaction diffusion Eq. (2) [2]. The model is extended to the anisotropic
diffusion by using the collision matrix A = M−1SM [9], with

M =



1 1 1 1 1 1 1
1 −1 0 0 0 0 0
0 0 1 −1 0 0 0
0 0 0 0 1 −1 0
1 1 1 1 1 1 −6
1 1 −1 −1 0 0 0
1 1 1 1 −2 −2 0

S−1 =



τ1 0 0 0 0 0 0
0 τ11 τ12 τ13 0 0 0
0 τ21 τ22 τ23 0 0 0
0 τ31 τ32 τ33 0 0 0
0 0 0 0 τ5 0 0
0 0 0 0 0 τ6 0
0 0 0 0 0 0 τ7


M can be interpreted as follows. The first row corresponds to v =

∑
i fi,

rows 2 to 4 compute the gradient of the potential and rows 5 to 7 are higher-
order quantities which do not affect the diffusion problem but rather control the
stability of the algorithm. The relaxation times (τij)i,j∈J1,3K are related to the
components of the diffusion tensor D: τij = δij/2 + 4Dijδt/δx

2, while τ1 = 1
is related to the potential and τ5, τ6 and τ7 do not directly effect the diffusion
solution, but effect the stability of the method (here τ5 = τ6 = τ7 = 1.33).

Neumann boundary conditions are implemented by adding at the boundaries
an additional incoming distribution function that is equivalent to the outgoing
one. More precisely, it can be shown that the Neumann boundary condition
for potential on a surface writes

∑
i fiei · n = 0. This simple relation naturally

yields the incoming potential distribution to add in the case where the boundary
surface is parallel to the grid. In more complex geometries, a level-set represen-
tation of the boundary is used to compute the incoming potential using linear
interpolation [10], thus enabling simulations in complex domain without requir-



ing advanced meshing algorithms. The main steps of the solver are reported in
Algo. 1.

Algorithm 1 LBM-EP: Lattice-Boltzmann Model of Cardiac Electrophysiology

Require: Cartesian grid, level-set domain boundaries, δt, tstop, model parameters
1: while t < tstop do
2: t← t+ δt
3: for all node x do
4: ∀i, collide: fi(x) (Eq. 6)
5: Update h(x) (Eq. 5)
6: for every node x do
7: ∀i, stream and apply boundary conditions: fi(x) (Eq. 7)
8: return v =

∑
i fi, h.

2.3 GPU Implementation of LBM-EP

Since the volume occupied by the myocardium is only a small fraction of the
total domain volume, the computational method and data structures have been
specifically designed to exploit this sparsity. More precisely, the nodes belonging
to the domain are encoded by a flat array. The mapping from the 3D space
to the data-structure is ensured by an array of pairs of indices. Another array
is used to get, for each node, the index of its six neighbors. The algorithm is
then adapted as follows. The collide and stream computations are implemented
in one unique kernel to maximize the amount of computation per byte of data
transferred from global memory. To avoid racing condition, a temporary, swap
array is locally used by each kernel to copy the results of the collide step, which
are then processed by the stream step. Finally, data communication between
CPU and GPU are minimized to their maximum: input data are transfered
prior to the computation. The simulation is performed entirely on the GPU card.
Results are then transfered to the CPU memory at the very end. Multi-core CPU
implementation is straightforwardly obtained by using OpenMP routines.

3 Experiments and Results

To test the ability to model anisotropic tissue conductivity, we stimulated a
square sample of tissue 30mm×30mm in the center. The longitudinal conductiv-
ity was set to 100mm2/s and the transverse conductivity was set to 20 mm2/s.
The computation was run up to t = 0.03 s. The domain was discretized at reso-
lutions of 0.6mm, 0.3mm, 0.15mm and 0.075mm. This test, even though simple,
is a good indicator of anisotropic modeling capabilities since other Cartesian-
grid based Finite-Difference Methods have shown some difficulty in modeling
the eccentricity exactly([1]). The finite-difference results for a similar problem
show the largest errors when the fiber direction is diagonal, which is the chosen



Fig. 2: Anisotropic conduction in a 30mm×30mm tissue with fiber direction along the
diagonal direction. The resolutions are, from left to right, 0.6mm, 0.3mm, 0.15mm and
0.075mm.

orientation for our problem. The results of the computation are shown in Fig.
(2).

All experiments were executed on a standard Windows desktop machine (In-
tel Xeon, 2.66GHz octo-core, 4GB RAM). LBM-EP was tested for both CPU
(with OpenMP parallelization) and GPU implementation using a NVidia GTX
680 graphics card. A semi-implicit, anisotropic finite element implementation of
Mitchell-Schaeffer model, called FEM-EP, was used for comparisons. FEM-EP
was based on linear tetrahedra and parallel optimization (OpenMP). The run-
times, in seconds, for the two implementations at a resolution of 0.075mm are
shown in Table 1. It can be seen that the OpenMP implementation of LBM-EP
achieves a factor of 6x speedup with 8 computational cores and an additional
factor of 12x speedup for the GPU implementation using single precision arith-
metic.

FEM-EP 1 core 4 cores 8 cores GPU (double) GPU (float)
142 117 30.8 21.4 3.11 1.67

Table 1: The run-times (in seconds) for a reference FEM-EP implementation
(first column) and LBM-EP with different configurations.

We now consider the application of LBM-EP to real patient geometries. The
algorithm was applied to compute the action-potential propagation in a patient
during sinus rhythm. Starting from medical images, a model of the anatomy was
extracted and the different anatomical zones identified automatically as shown in
Fig.(1). A level-set representation was then produced on a Cartesian grid, using
which the lattice-Boltzmann computations were performed. To observe how the
computation time scales with the number of nodes, the geometry was discretized
at resolutions of 2.0mm, 1.5mm, 1.2mm, 1.0mm, 0.9mm, 0.8mm and 0.7mm.

The resulting contours of the depolarization time and the average computa-
tional time for 1 heart cycle are shown in Fig. (3). It is seen that with modern
graphical processing units and an algorithm which can exploit them efficiently,
an entire heart cycle can be modeled (at 0.7mm resolution) in 15 secs/beat.
This resolution is already finer than the resolution at which the medical im-
ages are typically acquired (1.5mm). At this resolution, the computation time



Fig. 3: Left: Contours of depolarization time computed using LBM-EP on a real patient
geometry, Right: the dependence of the average computational time for 1 heart cycle
on the number of computational nodes (in thousands)

reduces to only 3 secs/beat, making the model nearly real-time and applicable
to patient-specific therapy planning and guidance.

4 Conclusions

In this paper, we have presented a novel algorithm for fast and accurate patient-
specific simulations of cardiac electrophysiology utilizing the power of modern
graphical processing units. The approach relies on Lattice-Boltzmann method
for integrating any general monodomain electrophysiological cell models. Un-
like other Cartesian-grid based methods, LBM-EP is able to model anisotropic
conductivity in the tissue without losing accuracy. Using a level-set based formu-
lation for representing the complex geometry, we have shown the ability to model
real patient geometries without numerical artifacts. For the simplified Mitchell-
Schaeffer cell model, we have achieved a remarkable computational time of 16
secs/beat at 0.7mm resolution and 3 secs/beat at 1.5mm, making the model
nearly real-time. This opens many possibilities for patient-specific therapy plan-
ning and real-time guidance, which will be explored in the future.
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