Estimation of Localization Uncertainty for Scale Invariant Feature Points

BMVC 2009 8.9.2009

Bernhard Zeisl¹

Pierre Fite Georgel¹

Florian Schweiger²

bernhard.zeisl@mytum.de

georgel@in.tum.de

florian.schweiger@tum.de

Eckehard Steinbach² eckehard.steinbach@tum.de Nassir Navab¹ navab@cs.tum.edu

¹Chair for Computer Aided Medical Procedures and Augmented Reality ²Institute for Media Technology Technische Universität München, Munich, Germany

Introduction

Motivation and Problem Statement

Local features are state-of-theart for a number of computer vision problems, e.g.:

4

5

6

2 3

CAMP

Object detection and localization

Object recognition and Image retrieval

Wide baseline matching and 3D reconstruction

Common assumptions for detected local features:

- Accurately detected or same deviation in localization error ($N(\mu, \sigma \mathbf{I})$)
- \rightarrow Does not hold for image detectors searching in scale space.

Introduction

Motivation and Problem Statement

Repeated detection of same local feature under noise in the image:

5

6

2 3

4

CAMP

Our method: Estimation of individual localization error for each feature found parameterized by a covariance matrix.

Invariant Local Feature Detection

Uncertainty Estimation Framework

Experiments and Results

Conclusion

CAMP

1 2 3 4 5 6

Localization Error

Inaccuracy is caused by pixel noise and the detection algorithm itself

Pixel Intensity Noise

Noise in pixel intensity values results from the image capturing process.

 \rightarrow In different images a ground truth point will be mapped to different points $\hat{\mathbf{x}}$.

Detection Algorithm

5

6

3

2

4

CAM

Feature point detection algorithms use approximations in their calculation for complexity reasons.

 \rightarrow Additional error introduced for the feature point $\hat{\mathbf{x}}$ depending on the algorithmic noise.

Scale Invariant Feature Detection

The same feature can be detected at different scales

CAMP

5

6

3

2

Uncertainty Evaluation Framework

Covariance is estimated from the detector response curvature

low curvature \rightarrow error due to the missing discriminative behavior of $D(\bullet, \sigma_i)$ in $\mathcal{N}_{\mathbf{p}}$. high curvature \rightarrow detection process more accurate

CAMP

4

2

5

Framework Application

Application is identical for SIFT and SURF

		SIFT	SURF	
Dete	ector function	$D(\mathbf{x}, \sigma_i) = \underbrace{(G(\mathbf{x}, \sigma_{i+1}) - G(\mathbf{x}, \sigma_i))}_{\approx \nabla^2 G(\mathbf{x}, \sigma_i)} * I(\mathbf{x})$	$D(\mathbf{x}, \sigma_i) = \det \begin{bmatrix} L_{xx}(\mathbf{x}, \sigma_i) & L_{xy}(\mathbf{x}, \sigma_i) \\ L_{xy}(\mathbf{x}, \sigma_i) & L_{yy}(\mathbf{x}, \sigma_i) \end{bmatrix}$	
=	Covariance calculation	$\Sigma = \left(\sum_{i,j\in\mathcal{N}_{\mathbf{P}}} w(i,j) \cdot \begin{bmatrix} D_{xx}(i,j,\sigma) & D_{xy}(i,j,\sigma) \\ D_{xy}(i,j,\sigma) & D_{yy}(i,j,\sigma) \end{bmatrix} \right)^{-1}$		
		$D_{xx} = d_{xx} \cdot D(\mathcal{N}_{\mathbf{p}}, \sigma_i)$		
Back projection		$\Sigma^{(0)} = \Sigma \cdot (2^{octave})^2$		

2 3

1

4 5

6

ПП

CAMP

Statistical Error Modeling

Maximum likelihood estimate and our covariance coincide

The covariance estimates fit the modeled error distribution

Schweiger, F. et. al., Maximum Detector Response Markers for SIFT and SURF, VMV 2009

CAMT

3

2

5

Covariance Dependence on Scale

Feature points are localized better on smaller scales

T DE

small covariances large covariances

2 3 4 5 6

CAMP

Change of Frobenius norm over detection scale for feature points detected in real images.

Feature points with small ($\sigma < 2.1$) and large ($\sigma > 8$) covariances.

Blobs are worse localized than distinctive image points.

Covariance Dependence on Scale

Covariances imply automatic scale normalization

High and low resolution images:

800x600 pixel

Covariances of matching feature points in the two images: (covariances are projected with the underlying homography)

Corresponding feature points are detected at different scales; but (projected) covariances of features are almost identically

 \rightarrow Localization error is similar in both images *in relation to their size*

Covariances normalize and weight the error in an optimization and thus differently sized images can be used

CAMP

5

6

3

Results for Model Fitting

Bundle Adjustment

Bundle adjustment simultaneously refines the 3D coordinates describing the scene geometry as well as camera poses and intrinsic camera parameters.

2 3

5

Bundle Adjustment

Performance is evaluated with the reprojection error of corner points

CAMP

5

6

4

2 3

Reprojection error of 3D corner points:

$$e = \frac{1}{4} \sum_{i=1}^{4} \left\| \bar{\mathbf{c}}_i - w(\hat{\mathbf{T}}\bar{\mathbf{C}}_i) \right\|$$

 $\bar{\mathbf{c}}_i \dots$ ground truth 2D corner point

- $\bar{\mathbf{C}}_i \dots$ ground truth 3D corner point
- $\hat{\mathbf{T}}$...estimated projection

Mean performance as pixel offset for about 100 different image pairs:

	mean all patches		
covariance usage	no	yes	
SIFT	2.031	1.759	
SURF	2.554	2.363	

We get a performance improvement for the reconstruction with bundle adjustment using our feature point covariances.

Conclusion

Main Contributions

3

5

2

- Derivation of general formulation for feature detection in scale space
- Computation of stable covariances for scale invariant image features
- Justification of correctness for our covariance estimates
- Inherent scale normalization
- Performance improvement for bundle adjustment

We would like to encourage you to test and use our results:

Code and binaries for SIFT and SURF local feature detection and covariance estimation are available at: http://campar.in.tum.de/Main/CovarianceEstimator

AM