
DeceptionNet: Network-Driven Domain Randomization

Sergey Zakharov *,=, Wadim Kehl C, and Slobodan Ilic *,=

* Technical University of Munich C Toyota Research Institute = Siemens Corporate Technology
sergey.zakharov@tum.de, wadim.kehl@tri.global, slobodan.ilic@siemens.com

Abstract

We present a novel approach to tackle domain adapta-
tion between synthetic and real data. Instead, of employ-
ing ”blind” domain randomization, i.e., augmenting syn-
thetic renderings with random backgrounds or changing il-
lumination and colorization, we leverage the task network
as its own adversarial guide toward useful augmentations
that maximize the uncertainty of the output. To this end, we
design a min-max optimization scheme where a given task
competes against a special deception network to minimize
the task error subject to the specific constraints enforced by
the deceiver. The deception network samples from a family
of differentiable pixel-level perturbations and exploits the
task architecture to find the most destructive augmentations.
Unlike GAN-based approaches that require unlabeled data
from the target domain, our method achieves robust map-
pings that scale well to multiple target distributions from
source data alone. We apply our framework to the tasks of
digit recognition on enhanced MNIST variants, classifica-
tion and object pose estimation on the Cropped LineMOD
dataset as well as semantic segmentation on the Cityscapes
dataset and compare it to a number of domain adaptation
approaches, thereby demonstrating similar results with su-
perior generalization capabilities.

1. Introduction
The alluring possibility of training machine learning

models on purely synthetic data allows for a theoretically
infinite supply of both input data samples and associated la-
bel information. Unfortunately, for computer vision appli-
cations, the domain gap between synthetic renderings and
real-world imagery poses serious challenges for generaliza-
tion. Despite the apparent visual similarity, synthetic im-
ages structurally differ from real camera sensor data. First,
synthetic image formation produces clear edges with ap-
proximate physical shading and illumination, whereas real
images undergo many types of noise, such as optical aber-

rations, Bayer demosaicing, or compression artifacts. Sec-
ond, the visual differences between synthetic CAD models
and their actual physical counterparts can be quite signifi-
cant. Apart from the visual gap, supervised approaches also
require cumbersome and error-prone human labeling of real
training data in the form of 2D bounding boxes, segmenta-
tion masks, or 6D poses [25, 17]. For other approaches,
such as robotic control learning, solutions must be found
by exploration in tight simulation-based feedback loops that
require synthetic rendering [28, 41, 31].

The gap between the visual domains is nowadays mainly
bridged with adaptation and/or randomization techniques.
In the case of supervised domain adaptation approaches [57,
32, 3, 30], a certain amount of labeled data from the tar-
get domain exists, while in unsupervised approaches [13,
48, 43, 4] the target data are available but unlabeled. In
both cases, the goal is to match the source and target
distributions by finding either a direct mapping, a com-
mon latent space, or through regularization of task net-
works trained on the source data. Recent unsupervised ap-
proaches are mostly based on generalized adversarial net-
works (GANs) [4, 22, 26, 48, 51, 24, 45, 38, 1] and although
these methods perform proper target domain transfers, they
can overfit to the chosen target domain and exhibit a decline
in performance for unfamiliar out-of-distribution samples.

Domain randomization methods [49, 21, 29, 55, 47]
have no access to any target domain and employ the rather
simple technique of randomly perturbing (synthetic) source
data during training to make the tasks networks robust to
perceptual differences. This approach can be effective, but
is generally unguided, and needs an exhaustive evaluation
to find meaningful augmentations that increase the target
domain performance. Last but not least, results from pixel-
level adversarial attacks [6, 46] suggest the existence of
architecture-dependent effects that cannot be addressed by
”blind” domain randomization for robust transfer.

We propose herein a general framework that performs
guided randomization with the help of an auxiliary decep-
tion network trained in a similar min-max fashion as GAN

ar
X

iv
:s

ub
m

it/
28

12
04

7 
 [

cs
.C

V
] 

 2
0 

A
ug

 2
01

9



Input

Input + Transformed Input

Transformed Input

Deception Net (Fixed)

Deception Net Recognition Net (Fixed)

Class

Pose

Recognition Net

CNN

Class

Pose

1

2

G
ra

d
ie

n
t 

R
e

ve
rs

al

CNN

DecoderEncoder

M1

M2

M3

Mn

DecoderEncoder

M1

M2

M3

Mn

Figure 1: Training pipeline. Training is performed in two alternating phases. Phase 1: The weights of the deception network
are updated, while those of the recognition network are frozen. The recognition network’s objective is maximized instead
of being minimized, forcing the deception network to produce increasingly confusing images. Phase 2: The generated
deceptive images provided by the deception network, whose weights are now frozen, are passed to the recognition network
and its weights are updated such that the loss is minimized. As a result of this min-max optimization, the input images are
automatically altered by the deception network, forcing the recognition network to be robust to these domain changes.

networks. This is done in two alternating phases, as illus-
trated in Fig. 1. In the first phase, the synthetic input is
fed to our deception network responsible for producing aug-
mented images that are then passed to a recognition network
to compute the final task-specific loss with provided labels.
Then, instead of minimizing the loss, we maximize it via
gradient reversal [12] and only back-propagate an update
to the deception network parameters. The deception net-
work parameters are steering a set of differentiable modules
M1, ...,MN , from which augmentations are sampled. In the
next phase, we feed the augmented images to the recogni-
tion network together with the original images to minimize
the task-specific loss and update the recognition network.
In this way, the deception network is encouraged to pro-
duce domain randomization by confusing the recognition
network, and the recognition network is made resilient to
such random changes. By adding different modules and
constraints we can influence how much and which parts of
the image the deception network alters. In this way, our
method outputs images completely independent from the
target domain and therefore generalizes much better to new
unseen domains than related approaches. In summary, our
contributions are:

• DeceptionNet framework that performs a min-max opti-
mization for guided domain randomization;

• Various pixel-level perturbation modules employed in
such a framework suited for synthetic data;

• Novel sequences: MNIST-COCO and Extended
Cropped LineMOD that allow to demonstrate our strong
generalization capabilities to unseen domains.

In the experimental section we will show that steered ran-
domization by leveraging the network structure actually
generalizes much better to new domains than unsupervised
approaches with access to the target data while performing
comparably well to them on known target domains.

2. Related Work
Domain Adaptation. Various domain adaptation works
put their efforts to bridge the gap between the domains
mostly based on unsupervised conditional generative adver-
sarial networks (GANs) [48, 43, 4, 1] or style-transfer solu-
tions [14]. These methods use an unlabeled subset of target
data to improve the synthetic data performance. For exam-
ple, the authors of [4, 1] proposed to use GANs to learn the
mapping from synthetic images to real. Extending this idea,
approaches of [45, 38] use GANs to tune the parameters of
user-defined transformations to fit to the target distribution.
As opposed to GANs, work [11] used a sequence autoen-
coder to extract the feature vector pairs from the available
data, which are then decoded to generate new data samples.

Alternatively, domain-invariant features that work well
for both real and synthetic domains can be learned. [37]
mapped real image features to the feature space of synthetic
images and used the mapped information as an input to a
task-specific network, trained on synthetic data only.

Another example is DSN [5], which proposes the extrac-
tion of image representations that are partitioned into two
subspaces: private to each domain and one which is shared
across domains (learning domain-invariant features). The
shared subspace is then used to train a classifier that per-



forms well on both domains. Similarly, DRIT [23] em-
beds images on a domain-invariant content space (capturing
shared information across domains) and a domain-specific
attribute space by introducing a cross-cycle consistency loss
based on disentangled representations. Other approaches,
such as DANN [13] or ADDA [51] instead focus on adapt-
ing the recognition methods themselves to make them more
robust to the domain changes.

Domain Randomization. However, what if one does not
have real data available? The answer for this case is do-
main randomization. Domain randomization is a popular
approach [49, 21, 55, 36, 47, 40] that aims to randomize
parts of the domain that we do not want our algorithm to
be sensitive to. For example, [49] and [40] trained com-
plex recognition methods by means of adding variability
to the input render data, i.e., different illumination condi-
tions, texture changes, scene decomposition, etc. This sort
of parameterization allows to learn features that are invari-
ant to the particular properties of the domain. The authors of
[55] used a sophisticated depth augmentation pipeline try-
ing to cover possible artifacts of the common commodity
depth sensors. It was then used to train a network remov-
ing these artifacts from the input and generating a clean,
synthetically-looking image. Building on top of this idea,
the methods of [36, 47] extended this to the RGB domain.

Nevertheless, the main question remains unsolved: What
is the main cause of confusion given the domain change?
Domain randomization tries to target all possible scenarios,
but we do not really know which of them are actually useful
to bridge the domain gap. Moreover, covering all possible
variations present in the real world by applying simple aug-
mentations is almost impossible.

Our approach can be placed between domain random-
ization and GAN methods, however, instead of forcing ran-
domization without any clear guidance on its usefulness, we
propose to delegate this to a neural network, which we call
deception network, which tries to alter the images in an au-
tomated fashion, such that the task network is maximally
confused. Moreover, to do so, we do not require any im-
ages, labeled or unlabeled, from the target domain.

3. Methodology
As outlined, our approach towards steered domain ran-

domization is essentially an extension of the task algorithm.
Therefore, we have the actual task network T (x ; θT )→ ŷ,
which, given an input image x, returns an estimated label ŷ
(e.g., class, pose, segmentation mask, etc.), and (2) a decep-
tion network D that takes the source image xs and returns
the deceptive image xd, which, when provided to the task
net T (D(xs)) → ŷd, maximizes the difference between
ŷd and ys. While the recognition network architectures are
standard and follow related work [4, 12], we will first focus

herein on our structured deception network first, and then
describe the optimization objective and the training.

To formalize our pipeline, let Xs
c := xs

c,i ∀i ∈ Ns
c be

a source dataset composed of Ns
c source images xsc for an

object of class c. Then, Xs := Xs
c ∀c ∈ C is the source

dataset covering all object classes C. A dataset of real im-
ages Xr (not used by us for training) is similarly defined.

3.1. Deception Modules

The deception network D follows the encoder-decoder
architecture where input xs is encoded to a lower-
dimensional 2D latent space vector z and given as an in-
put to multiple decoding modules M1, ...,Mn. The final
output of D is then a weighted sum of decoded outputs
xd :=

∑
iwi ·Mi(z) where wi ∈ [0, 1]H×W act as spa-

tial masking operations. While such a formulation allows
for flexibility, the decoders must follow a set of predefined
constraints to create meaningful outputs and leverage an in-
herent image structure instead of finding trivial mappings
to decrease the task performance (e.g., by decoding always
to 0). Note that our proposed framework is general and,
thus, requires instantiations of the deception network for
specific datasets. Similar to architecture search, discov-
ering the ”best” instantiation is infeasible, but good ones
can be found by analyzing the data source. After a reason-
able experimentation we settled on certain configurations
for MNIST (RGB) and LineMOD (RGB-D), depicted in
Fig. 2. We continue by providing more detail on the used
decoder modules and their constraint ranges.

3.1.1 Background Module (BG)

Since our source images have black backgrounds, they
hardly transfer over to the real world with infinite back-
ground variety, resulting in a significant accuracy drop.
[21, 29] tackle this problem by rendering objects on top of
images from large-scale datasets (e.g., MS COCO [25]).

Instead, our background module produces its output by
chaining multiple upsampling and convolution operations.
While the output is rather simple at start, the module re-
gresses very complex and visually confusing structures in
the advanced stages of training.

For MNIST, we used a simpler variant that outputs a sin-
gle RGB background color ∈ [0, 1] and an RGB foreground
bias ∈ [0.1, 0.9] (restricted not to intersect with the back-
ground color). To form the output, we first apply the back-
ground color and then add the foreground bias using the
mask. We ensure that the final values are in the range [0, 1].

3.1.2 Distortion Module (DS)

The module is based on the idea of the elastic distortions
first presented in [44]. Essentially, a 2D deformation field is
randomly initialized from [−1, 1] and then convolved with



(a) Deception Modules for MNIST

Input Deception Net

Distort
Decoder

Encoder

RGB

BG/FG 
Decoder

Noise
Decoder

(b) Deception Modules for LineMOD

Input Deception Net

Noise
Decoder

Encoder

BG
Decoder

RGB-D

Normals

Distort 
Decoder

Light
Decoder

Figure 2: Architecture of the deception networks used for the presented experiments. For the case of MNIST classifica-
tion, three deception modules are used: the distortion module applying elastic deformations on the image, the BG/FG module
responsible for generating background and foreground colors, and the noise module additionally distorting the image by
applying slight noise. The LineMOD dataset requires a more sophisticated treatment and features four deception modules:
noise and distortion (applied on depth channel only), modules similar to the previous case, pixel-wise BG module and light
module generating different illumination conditions based on the Phong model.

a Gaussian filter of standard deviation σ. For large values of
σ, the resulting field approaches 0, whereas smaller values
of σ keep the field mostly random. However, the moderate
values of σ make the resulting field perform elastic defor-
mations, where σ defines the elasticity coefficient. The re-
sulting field is then multiplied by a scaling factor α, which
controls the deformation intensity.

Our implementation closely follows the described ap-
proach but we use the decoder output as the distortion field
and apply resampling, similar to spatial transformer net-
works [20]. We fix σ = 4, but learn both α ∈ (0, 5] and the
general decoder parameters. This means that the network
itself controls where and how much to deform the object.

3.1.3 Noise Module (NS)

Applying slight random noise augmentation to the network
input during training is common practice. In a similar fash-
ion, we use the noise decoder to add generated values to the
input. The noise decoder regresses a tensor of the input size
with values in the range [−0.01, 0.01], which are then added
to the input of the module.

3.1.4 Light Module (L)

Another feature not well covered by synthetic data is proper
illumination. Recent methods [21, 29, 16, 56] prerender a
number of synthetic images featuring different light condi-
tions. Here, we instead implement differentiable lighting
based on the simple Phong model [35], which is fully oper-
ated by the network. While more complex parametric and

differentiable illumination models do exist, we found this
basic approach to already work quite well.

The module requires surface information which is pro-
vided in form of normal maps. From this, we generate three
different types of illumination, namely ambient, diffusive,
and specular. The light decoder outputs a block of 9 param-
eters that are used to define the final light properties, i.e.,
a 3D light direction, an RGB light color (restricted to the
range of [0.8, 1]), and a weight for each of the three illumi-
nation types (wa ∈ [0.6, 1],wd ∈ [0, 1],ws ∈ [0, 1]).

3.2. Optimization Objective

The optimization objective of the deception network is
essentially the loss of the recognition network; however,
instead of minimizing it, we maximize it by updating the
parameters in the direction of the positive gradient. This
is achieved by adding a gradient reversal layer [12] be-
tween the deception and recognition nets as shown in Fig. 1.
The layer only negates the gradient when back-propagating,
thereby resulting in the reversed optimization objective for
a given loss. Therefore, the general optimization objective
can be written as follows:

min
θT

max
θD

Lt(T (D(x; θD)),y; θT ) (1)

subject to CMn for n = 1, . . . , Nm (2)

where x is the input image, y is the ground truth label, T
is the task network, Lt is the task loss, D is the deception
network, andCm denotes the hard constraints defined by the
deception modules enforced by projection after a gradient
step. In this framework, the deception network’s objective



(a) MNIST (b) MNIST-M (c) MNIST-COCO (d) PixelDA [4] (e) Ours

Figure 3: Example samples of the MNIST modalities: MNIST (Source), MNIST-M (Target), and MNIST-COCO (Gener-
alization) on the left; and example augmentation images generated by PixelDA and our method respectively.

only depends on the objective of the recognition task and
can, therefore, be easily applied to any other task.

3.3. Training Procedure

We use two different SGD solvers, where the actual task
network has a learning rate of 0.001 with a decaying factor
of 0.95 every 20000th iteration. The learning rate of the
deception network was found to work well with a constant
value of 0.01. We train with a batch size of 64 for all the
experiments and we stop training after 500 epochs. During
the experimentation, we also discovered that concatenating
real and perturbed images led to a consistent improvement
in numbers.

4. Evaluation
In this section, we conduct a series of experiments to

compare the capabilities of our pipeline with the state-of-
the-art domain adaptation methods. We first compare our-
selves against these baselines for the problem of adaptation
and will then compare in terms of generalization. We will
conclude with an ablative analysis to measure the impact of
each module and modality on the final performance.

As the first dataset, we used the popular handwritten dig-
its dataset MNIST as well as MNIST-M, introduced in [13]
for unsupervised domain adaptation (depicted in Figs. 3a
3b). MNIST-M blends digits from the original monochrome
set with random color patches from BSDS500 [2] by sim-
ply inverting the color values for the pixels belonging to the
digit. The training split containing 59001 target images is
then used for domain adaptation. The remaining 9001 tar-
get images are used for evaluation. That means that around
86% of the target data is used for training. Note that while
MNIST is not technically synthetic, its clean and homoge-
neous appearance is typical for synthetic data.

The second dataset is the Cropped LineMOD dataset
[53] consisting of small centered, cropped 64×64 patches
of 11 different objects in cluttered indoor settings displayed
in various of poses. It is based on the LineMOD dataset
[15] featuring a collection of annotated RGB-D sequences

recorded using the Primesense Carmine sensor and asso-
ciated 3D object reconstructions. The dataset also fea-
tures a synthetic set of crops of the same objects in var-
ious poses on a black background. We will treat this Syn-
thetic Cropped LineMOD as the source dataset and the Real
Cropped LineMOD as the target dataset. Domain adapta-
tion methods use a split of 109208 rendered source images
and 9673 real-world target images, 1000 real images for val-
idation, and a target domain test set of 2655 images for test-
ing. We show examples in Figs. 4a and 4b.

The last dataset pair we used for the experiments is SYN-
THIA [39] and Cityscapes [10]. SYNTHIA is a collec-
tion of pixel-annotated road scene frames rendered from
a virtual city. Cityscapes is its real counterpart acquired
in the street scenes of 50 different actual cities. Follow-
ing a common evaluation protocol, we used a subset of
9400 SYNTHIA images, also known as SYNTHIA-RAND-
CITYSCAPES, as the source data and 500 Cityscapes vali-
dation images as the target data.

4.1. Adaptation Tests

All domain adaptation methods use a significant portion
of the target data for training, making the resulting mapped
source images very similar to the target images (e.g., Fig. 3b
vs 3d and Fig. 4b vs 4d). A common benchmark for domain
adaptation is then to compare the performance of a classifier
trained on the mapped data against a classifier trained on
the source data only (lower baseline) and against a classifier
trained directly on the target data (upper baseline).

Our approach is generally disadvantaged since we can
structure our domain mapping only through the source data
and the deception architecture. To show that our learned
randomization is indeed guided, we additionally implement
an unguided randomization variant that applies train time
augmentation similar to the related work. It employs the
same modules and constraints as our deception network, but
its perturbations are conditioned on random values in each
forward pass instead of latent codes from the input.



(a) Synthetic (b) Real (c) Extended (d) PixelDA [4] (e) Ours

Figure 4: Example samples of the LineMOD modalities: Synthetic (Source), Real (Target), and Extended (Generalization)
on the left; and example augmentation images generated by PixelDA and our method respectively.

4.1.1 Classification on MNIST

In Table 1 we collect the results of the most relevant meth-
ods tested on the MNIST → MNIST-M scenario and split
them according to the type of data used. Since domain adap-
tation methods use both source and target data for training,
they are allocated to a separate group (S + T). Both our
method and the unguided randomization variant only have
access to the source data and are therefore grouped in S.
The task network follows the architecture presented in [12],
which is also used by the other methods. The task’s objec-
tive Lt is a simple cross entropy loss between the predicted
and the ground truth label distributions.

We can identify three key observations: (1) our method
shows very competitive results (90.4% classification) and is
on par with the latest domain adaptation pipelines: DSN –
83.2%, DRIT – 91.5% and PixelDA – 95.9%. Moreover,
we outperform most of the methods by a significant margin
despite the fact that they had access to a large portion of the
target data to minimize the domain shift. (2) Guiding the
randomization leads to 7% higher accuracy which supports
our claim convincingly. (3) Surprisingly, unguided random-
ization (with appropriate modules) alone is in fact enough
to outperform most methods on MNIST.

4.1.2 Classification and Pose Estimation on LineMOD

As before, the domain adaptation methods are trained on
a mix of source (Synthetic Cropped LineMOD) and target
(Real Cropped LineMOD) data and we compare to the pre-
defined baselines. We use the common task network for this
benchmark from [12] and the associated task loss:

Lt(G) = Exs,ys

[
− ys> log ŷd + ξ log(1− qs>q̂d)

]
(3)

where the first term is the classification loss and the sec-
ond term is the log of a quaternion rotation metric [19]. ξ
weighs both terms whereas qs and q̂d are the ground truth
and predicted quaternions, respectively.

The results in Table 1 present a more nuanced case. On
this visually complex dataset, unguided randomization per-

forms only above the lower baseline and is far behind any
other method. Our guided randomization, on the other hand,
with – 95.8% classification and 51.9◦ angle error is com-
petitive with those of the latest domain adaptation methods
using target data: DSN – 100% & 53.3◦, DRIT – 98.1%
& 34.4◦, and PixelDA – 99.9% & 23.5◦. Nonetheless, we
believe that both DRIT and PixelDA are not fully reachable
by target-agnostic methods like ours since the space of all
needed adaptations (e.g., aberrations or JPEG artifacts) has
to be spanned by our deception modules. The augmentation
differences between PixelDA and our method (Figs. 4d and
4e) suggest the existance of some visual phenomena we are
still not accounting for with our deception network.

4.2. Generalization Tests

For the second set of experiments, we test the general-
ization capabilities of our method as well as the competing
approaches. The major advantage of our pipeline is its in-
dependence from any target domain by design. To support
our case we designed two new datasets:

MNIST→
MNIST-M

Synthetic Cropped LineMOD→
Real Cropped LineMOD

Model
Classification
Accuracy (%)

Classification
Accuracy (%)

Mean
Angle Error (◦)

Source (S) 56.6 42.9 73.7

S Unguided 83.1 53.1 52.6
Ours 90.4 95.8 51.9

S
+

T

CycleGAN [59] 74.5 68.2 47.5
MMD [52, 27] 76.9 72.4 70.6

DANN [13] 77.4 99.9 56.6
DSN [5] 83.2 100 53.3

DRIT [23] 91.5 98.1 34.4
PixelDA [4] 95.9 99.9 23.5

Target (T) 96.5 100 12.3

Table 1: Baseline tests: While performing slightly worse
than the leading state-of-the-art domain adaptation methods
using target data, we still manage to achieve very competi-
tive performance without access to target data.



• MNIST-COCO The data collection follows the exact
same generation procedure of MNIST-M and has the
same exact number of images for both training and test-
ing. The only difference here is that instead of the
BSDS500 dataset, we use crops from MS COCO. Fig. 3e
demonstrates some of the newly generated images.

• Extended Real Cropped LineMOD Thanks to the help
of the authors of the original LineMOD dataset [15],
we were able to get some of the original LineMOD ob-
jects, namely ”phone”, ”benchvise”, and ”driller”. We
repeated the physical acquisition setup and generated an
annotated scene for each object. Each scene depicts a
specific object placed on a white markerboard atop a
turntable and coarsely surrounded by a small number of
cluttered objects, slightly occluding the object at times.
Each sequence contains 130 RGB-D images covering the
full 360◦ rotation at an elevation angle of approximately
60◦. Given the acquired and refined poses, we again
crop the images in the same fashion as in the Cropped
LineMOD dataset [53]. All 390 images are used for eval-
uation, with some examples shown in Fig. 4c.

For a comparison with the strongest related methods, i.e.,
DSN, DRIT, and PixelDA, we used open source implemen-
tations and diligently ensured that we are able to properly
train and reproduce the reported numbers from Table 1.
While the DRIT implementation worked well for the adap-
tation experiments, we failed to produce reasonably high
numbers for the generalization experiment and chose to ex-
clude it from the comparison.

Similar to before, we train them using the target data
from MNIST-M and Real Cropped LineMOD. After the
training is finished and the corresponding accuracies on the
target test splits are achieved, we test them on the newly
acquired dataset. While different, these extended datasets
still bear a certain resemblance to the target dataset and we
could expect to see a certain amount of generalization. For
our randomization methods, we can immediately test on the

MNIST→
MNIST-COCO

Synthetic Cropped LineMOD→
Extended Real Cropped LineMOD

Model
Classification
Accuracy (%)

Classification
Accuracy (%)

Mean
Angle Error (◦)

Source (S) 57.2 63.1 78.3

S Unguided 85.8 77.2 48.5
Ours 89.4 99.0 46.5

S
+

T DSN [5] 73.2 45.7 76.3
PixelDA [4] 72.5 76.0 84.2

Target (T) 96.1 100 14.7

Table 2: Generalization tests: Our method generalizes
well to the extended datasets, while the adaptation methods
underperform due to overfitting.

new data, since retraining is not necessary.
As is evident from Table 2, the accuracy of our method

on MNIST-COCO is very close to the MNIST-M number
(90.4% and 89.4% respectively). For the case of Extended
Real Cropped LineMOD, we get even better results than
for the Real Cropped LineMOD for both accuracy and an-
gle error: We only need to classify 3 objects instead of 11
with a much smaller pose space, and the scenes are in gen-
eral cleaner and less occluded. These results underline our
claim with respect to generalization. This is, however, not
the case for the domain adaptation methods showing dras-
tically worse results. Interestingly, we observe an inverse
trend where better results on the original target data lead
to a more significant drop. Despite of having a very high
accuracy on the target data and the ability to generate addi-
tional samples that do not exist in the dataset, these methods
present typical signs of overfit mappings that cannot gener-
alize well to the extensions of the same data acquired in a
similar manner. The simple reason for this might be the na-
ture of these methods: they do not generalize to the features
that matter the most for the recognition task, but to simply
replicate the target distribution as close as possible. As a
result, it is not clear what the classifier exactly focuses on
during inference; however, it could very likely be the par-
ticular type of images (e.g., in case of MNIST-COCO) or a
specific type of backgrounds and illumination (e.g., in case
of Extended Real Cropped LineMOD). In contrast to do-
main adaptation methods, our pipeline is designed not to
replicate the target distribution, but to make the classifier
invariant to the changes that should not affect classification,
which is the reason why our results remain stable.

4.3. Ablation Studies

In this section, we perform a set of ablation studies
to gain more insight into the impact of each module in-
side the deception network. Obviously, our modules model
only a fraction of possible perturbations and it is important
to understand the individual contributions. Moreover, we
demonstrate how well we perform provided different types
of input modalities for the LineMOD datasets.

MNIST→
MNIST-M

Synthetic Cropped LineMOD→
Real Cropped LineMOD

Modules
Classification
Accuracy (%)

Classification
Accuracy (%)

Mean
Angle Error (◦)

None 56.6 42.9 73.7

BG 82.4 74.8 50.4
BG + NS 86.5 77.6 52.8

BG + NS + DS 90.4 78.7 48.2
BG + NS + DS + L - 95.8 51.9

Table 3: Module ablation: Evaluation of the importance of
the deception network’s modules. BG – background, NS –
noise, DS – distortion, L – light.



Road SW BLDG Wall Fence Pole TL TS VEG Sky PRSN Rider Car Bus Mbike Bike mIoU mIoU*

Source (S) 3.8 10.2 46.3 1.8 0.3 19.1 4.0 7.5 71.8 72.2 44.6 3.4 24.9 5.2 0.0 2.5 19.8 22.8

S

Unguided 17.9 8.8 59.2 0.8 0.4 22.1 3.5 6.1 71.4 70.4 40.3 7.3 37.9 3.3 0.2 7.3 22.3 25.7
Ours 51.4 17.8 62.5 1.6 0.4 22.6 6.0 11.9 70.9 73.5 42.1 8.2 40.9 8.1 3.9 18.4 27.5 32.0

S
+

T

FCNs Wld [18] 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.1 22.9
CDA [58] 65.2 26.1 74.9 0.1 0.5 10.7 3.7 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 29.0 34.8

Cross-City [9] 62.7 25.6 78.3 - - - 1.2 5.4 81.3 81.0 37.4 6.4 63.5 16.1 1.2 4.6 - 35.7
Tsai et al. [50] 78.9 29.2 75.5 - - - 0.1 4.8 72.6 76.7 43.4 8.8 71.1 16.0 3.6 8.4 - 37.6
ROAD-Net [8] 77.7 30.0 77.5 9.6 0.3 25.8 10.3 15.6 77.6 79.8 44.5 16.6 67.8 14.5 7.0 23.8 36.1 41.7
LSD-seg [42] 80.1 29.1 77.5 2.8 0.4 26.8 11.1 18.0 78.1 76.7 48.2 15.2 70.5 17.4 8.7 16.7 36.1 42.1

Chen et al. [7] 78.3 29.2 76.9 11.4 0.3 26.5 10.8 17.2 81.7 81.9 45.8 15.4 68.0 15.9 7.5 30.4 37.3 43.0

Target (T) 96.5 74.6 86.1 37.1 33.2 30.2 39.7 51.6 87.3 90.4 60.1 31.7 88.4 52.3 33.6 59.1 59.5 65.5

Table 4: Real-world application: Segmentation performance on SYNTHIA→ Cityscapes benchmark based on Intersection
over Union (IoU) tested on 16 (mIoU) and 13 (mIoU*) classes of the Cityscapes dataset. Our method outperforms source
and unguided by a significant margin and remains competitive to the methods relying on the target data.

4.3.1 Deception Modules

We tested 4 different variations of the deception net that
use varying combinations of the deception modules: back-
ground (BG), noise (NS), distortion (DS), and light (L).
The exact combinations and the results on both datasets are
listed in Table 3.

It can be clearly seen that each additional module in the
deception network adds to the discriminative power of the
final task network. The most important modules can also be
easily distinguished based on the results. Apparently, the
background module always makes a significant difference:
the purely black backgrounds of the source data are dras-
tically different from the real imagery. Another interesting
observation is the strong impact the lighting perturbation
has in the case of the Cropped LineMOD dataset. This en-
forces the notion that real sequences undergo many kinds of
lighting changes that are not well-represented by synthetic
renderings without any additional relighting. Note that the
MNIST deception network does not employ lighting.

4.3.2 Input Modalities

For the task of simultaneous instance classification and pose
estimation, we (as well as the other methods) always use the
full RGB-D information. This ablation aims to show how
well we fare provided only a certain type of data and the im-
pact on the final results. Table 5 shows that RGB allows for
better classification, whereas depth provides better pose es-
timates. We can further boost the classification enormously
and reduce the pose error by combining both modalities.

Synthetic Cropped LineMOD→
Real Cropped LineMOD

Synthetic Cropped LineMOD→
Extended Real Cropped LineMOD

Input
Classification
Accuracy (%)

Mean
Angle Error (◦)

Classification
Accuracy (%)

Mean
Angle Error (◦)

D 73.3 36.6 78.7 34.9
RGB 84.8 57.4 85.9 49.4

RGB-D 95.8 51.9 99.0 46.5

Table 5: Input modality ablation: Performance evaluation
based on the input data type used: depth, RGB, or RGB-D.

4.4. Real-world Scenario

We demonstrate a real-world application of our approach
on a more practical problem of semantic segmentation using
the common SYNTHIA→ Cityscapes benchmark. Having
only synthetic SYNTHIA renderings, we try to generalize
to the real Cityscapes data by evaluating our method on 13
and 16 classes using the Intersection over Union (IoU) met-
ric. This setup is particularly difficult since the domain gap
problem here is intensified by a completely different set of
segmentation instances and camera views. For a fair com-
parison, all methods use a VGG-16 base (FCN-8s) recogni-
tion network. The deception modules used in this case are
as follows: 2D noise (NS), elastic distortion (DS), and light
(L). Normal maps for the light module are generated from
the available synthetic depth data.

Table 4 shows that even without access to target domain
data, our pipeline remains competitive with the methods re-
lying on target data, showing mIoU of 27.5% and mIoU* of
32% (16 and 13 classes) – well above source and unguided.
The results also confirm the generality of the approach with
respect to the different task architectures and datasets.

5. Conclusion
In this paper we presented a new framework to tackle

the domain gap problem when no target data is available.
Using a task network and its objective, we show how to
extend it with a simple encoder-decoder deception network
and bind both in a min-max game in order to achieve guided
domain randomization. As a result, we obtain increasingly
more robust task networks. We demonstrate a comparable
performance to domain adaptation methods on two datasets
and, most importantly, show superior generalization capa-
bilities where the domain adaptation methods tend to drop
in performance due to overfitting to the target distribution.
Our results suggest that guided randomization, because of
its simple but effective nature, should become a standard
procedure to define baselines for domain transfer and adap-
tation techniques.



Figure 5: DeceptionNet architecture. Our network features a typical encoder-decoder architecture. The encoder part
consists of 2 consecutive downsamplings followed by a sequence of convolutional blocks CB . The decoder part shares a
similar architecture for all presented augmentation modules. Arrows show the skip connections between blocks.

A. Supplementary Material

A.1. Network Architecture

Let CBk be a convolutional block composed of the fol-
lowing layers: 3×3 convolution with k filters, BatchNorm
(BN), and ReLU activation function. Similarly, let UPB be
a decoding block made of: 2-factor upsampling transposed
convolution, BatchNorm (BN), and ReLU.

DeceptionNet D: Using the defined nomenclature, the
encoding part of the DeceptionNet can be described as:
CB64−MP −CB128−CB128−MP −CB128−CB128; and its de-
coding part as: UP64−CB64−CB64−UP64−CB64−CB64−MB .
WhereMB is defined by the specific module type, andMP
stands for a 2-factor max-pooling layer. Encoding blocks
have skip connections concatenating the channels with the
opposite decoding blocks. The visual representation of the
DeceptionNet’s architecture is depicted in Fig. 5.

Figure 6: MNIST Classifier: Simple LeNet-like architec-
ture, where 2 convolutional layers followed by ReLUs and
max-poolings are finalized by 3 fully-connected layers.

Task Network T: In both cases, i.e., for MNIST classifi-
cation and Cropped LineMOD classification and pose esti-
mation, T follows a simple LeNet-like architecture. As for
MNIST (see Fig. 6), the final layer outputs the 10D vector,
whereas for Cropped LineMOD (see Fig. 7) there is a 11D
classification output as well as 4D quaternion output.

A.2. Unguided Randomization: BG Filling

One of the modalities we have compared our results with
is unguided randomization that applies augmentations dur-
ing the data preprocessing step. While using the same mod-
ules and constraints as our deception network, its pertur-
bations are conditioned on random values instead of latent
codes from the input.

Since our DeceptionNet is capable of generating very
complex backgrounds, we have also used complex noise
types for unguided randomization to make the comparison
more fair (see Fig. 9). Apart from a uniform white noise,
two additional noise types were used: Perlin [34] and cellu-
lar noises [54]. Sample frequencies were sampled from the

Figure 7: Cropped LineMOD Task Network: Simple
LeNet-like architecture followed by a dropout layer with a
50% rate and outputting both a class and pose vector.



Figure 9: Unguided samples: We provide a sample of un-
guided augmentations for MNIST and LineMOD.

uniform distribution [0.0001, 0.1]. Both noise types were
generated using the open source FastNoise library [33].

A.3. Additional Qualitative Results

In this section, we present additional output examples
of the deception networks for Synthetic Cropped LineMOD
and SYNTHIA test cases.

The LineMOD deception network uses all of the decep-
tion modules presented in the paper, whereas the SYNTHIA
deception network uses three modules: light (L), elastic dis-
tortions (DS), and foreground noise (N). The sample out-

Original Noise (N) Light (L) Distortion (D)

Figure 10: Deceptive augmentations: Augmentations ap-
plied for the SYNTHIA→ Cityscapes scenario.

puts from each of the above-mentioned modules are shown
in Fig. 10. Moreover, Fig. 8 demonstrates the output of the
deception network during the training process. One can see
that the output becomes increasingly more sophisticated for
recognition by the task network.

Ape Bench. Camera Can Cat Driller Duck Holep. Iron Lamp Phone

It
er
at
io
n
s

Figure 8: Deceptive images xd over consecutive iterations: The output becomes increasingly more complex for T .



References
[1] Antreas Antoniou, Amos Storkey, and Harrison Edwards.

Data augmentation generative adversarial networks. arXiv
preprint arXiv:1711.04340, 2017.

[2] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Ji-
tendra Malik. Contour detection and hierarchical image seg-
mentation. TPAMI, 2011.

[3] Artem Babenko, Anton Slesarev, Alexander Chigorin, and
Victor S. Lempitsky. Neural codes for image retrieval.
CoRR, 2014.

[4] Konstantinos Bousmalis, Nathan Silberman, David Dohan,
Dumitru Erhan, and Dilip Krishnan. Unsupervised pixel-
level domain adaptation with generative adversarial net-
works. In CVPR, 2017.

[5] Konstantinos Bousmalis, George Trigeorgis, Nathan Silber-
man, Dilip Krishnan, and Dumitru Erhan. Domain separa-
tion networks. In NIPS, 2016.

[6] Tom B. Brown, Dandelion Man, Aurko Roy, Martn Abadi,
and Justin Gilmer. Adversarial patch. In NIPS, 2017.

[7] Yuhua Chen, Wen Li, Xiaoran Chen, and Luc Van Gool.
Learning semantic segmentation from synthetic data: A ge-
ometrically guided input-output adaptation approach. In
CVPR, 2019.

[8] Yuhua Chen, Wen Li, and Luc Van Gool. Road: Reality ori-
ented adaptation for semantic segmentation of urban scenes.
In CVPR, 2018.

[9] Yi-Hsin Chen, Wei-Yu Chen, Yu-Ting Chen, Bo-Cheng Tsai,
Yu-Chiang Frank Wang, and Min Sun. No more discrimi-
nation: Cross city adaptation of road scene segmenters. In
ICCV, 2017.

[10] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In CVPR,
2016.

[11] Terrance DeVries and Graham W Taylor. Dataset augmen-
tation in feature space. arXiv preprint arXiv:1702.05538,
2017.

[12] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain
adaptation by backpropagation. In ICML, 2015.

[13] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. JMLR, 2016.

[14] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-
age style transfer using convolutional neural networks. In
CVPR, 2016.

[15] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Ste-
fan Holzer, Gary Bradski, Kurt Konolige, and Nassir Navab.
Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes. In ACCV,
2012.

[16] Stefan Hinterstoisser, Vincent Lepetit, Paul Wohlhart, and
Kurt Konolige. On pre-trained image features and synthetic
images for deep learning. 2017.

[17] Tomáš Hodan, Pavel Haluza, Štepán Obdržálek, Jiri Matas,
Manolis Lourakis, and Xenophon Zabulis. T-less: An rgb-
d dataset for 6d pose estimation of texture-less objects. In
WACV, 2017.

[18] Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor Darrell.
Fcns in the wild: Pixel-level adversarial and constraint-based
adaptation. arXiv preprint arXiv:1612.02649, 2016.

[19] Du Q Huynh. Metrics for 3d rotations: Comparison and anal-
ysis. Journal of Mathematical Imaging and Vision, 2009.

[20] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and
Koray Kavukcuoglu. Spatial transformer networks. In NIPS,
2015.

[21] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan
Ilic, and Nassir Navab. Ssd-6d: Making rgb-based 3d detec-
tion and 6d pose estimation great again. In ICCV, 2017.

[22] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero,
Andrew P. Aitken, Alykhan Tejani, Johannes Totz, Zehan
Wang, and Wenzhe Shi. Photo-realistic single image super-
resolution using a generative adversarial network. CoRR,
2016.

[23] Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh
Singh, and Ming-Hsuan Yang. Diverse image-to-image
translation via disentangled representations. In ECCV, 2018.

[24] Kuan-Hui Lee, German Ros, Jie Li, and Adrien Gaidon. Spi-
gan: Privileged adversarial learning from simulation. ICLR,
2019.

[25] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: common objects in context. In
ECCV, 2014.

[26] Ming-Yu Liu and Oncel Tuzel. Coupled generative adversar-
ial networks. CoRR, 2016.

[27] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I
Jordan. Learning transferable features with deep adaptation
networks. ICML, 2015.

[28] Jeffrey Mahler and Ken Goldberg. Learning deep policies for
robot bin picking by simulating robust grasping sequences.
In CoRL, 2017.

[29] Fabian Manhardt, Wadim Kehl, Nassir Navab, and Federico
Tombari. Deep model-based 6d pose refinement in rgb. In
ECCV, 2018.

[30] Saeid Motiian, Marco Piccirilli, Donald A. Adjeroh, and Gi-
anfranco Doretto. Unified deep supervised domain adapta-
tion and generalization. ICCV, 2017.

[31] OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek
Chociej, Rafal Józefowicz, Bob McGrew, Jakub W. Pa-
chocki, Jakub Pachocki, Arthur Petron, Matthias Plappert,
Glenn Powell, Alex Ray, Jonas Schneider, Szymon Sidor,
Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech
Zaremba. Learning dexterous in-hand manipulation. CoRR,
2018.

[32] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic.
Learning and transferring mid-level image representations
using convolutional neural networks. In CVPR, 2014.

[33] Jordan Peck. Fastnoise library. https://github.com/
Auburns/FastNoise, 2016.

https://github.com/Auburns/FastNoise
https://github.com/Auburns/FastNoise


[34] Ken Perlin. Improving noise. In ACM Transactions on
Graphics (TOG), 2002.

[35] Bui Tuong Phong. Illumination for computer generated pic-
tures. Communications of the ACM, 1975.

[36] Benjamin Planche, Sergey Zakharov, Ziyan Wu, Andreas
Hutter, Harald Kosch, and Slobodan Ilic. Seeing beyond
appearance-mapping real images into geometrical domains
for unsupervised cad-based recognition. IROS, 2019.

[37] Mahdi Rad, Markus Oberweger, and Vincent Lepetit. Fea-
ture mapping for learning fast and accurate 3d pose inference
from synthetic images. In CVPR, 2018.

[38] Alexander J Ratner, Henry Ehrenberg, Zeshan Hussain,
Jared Dunnmon, and Christopher Ré. Learning to compose
domain-specific transformations for data augmentation. In
Advances in neural information processing systems, 2017.

[39] German Ros, Laura Sellart, Joanna Materzynska, David
Vazquez, and Antonio M Lopez. The synthia dataset: A large
collection of synthetic images for semantic segmentation of
urban scenes. In CVPR, 2016.

[40] Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-
image flight without a single real image. arXiv preprint
arXiv:1611.04201, 2016.

[41] Fereshteh Sadeghi and Sergey Levine. CAD2RL: Real
single-image flight without a single real image. In Robotics:
Science and Systems(RSS), 2017.

[42] Swami Sankaranarayanan, Yogesh Balaji, Arpit Jain, Ser
Nam Lim, and Rama Chellappa. Learning from synthetic
data: Addressing domain shift for semantic segmentation. In
CVPR, 2018.

[43] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh
Susskind, Wenda Wang, and Russ Webb. Learning from sim-
ulated and unsupervised images through adversarial training.
In CVPR, 2017.

[44] Patrice Y Simard, David Steinkraus, John C Platt, et al. Best
practices for convolutional neural networks applied to visual
document analysis. In ICDAR, 2003.

[45] Leon Sixt, Benjamin Wild, and Tim Landgraf. Rendergan:
Generating realistic labeled data. Frontiers in Robotics and
AI, 2018.

[46] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai.
One pixel attack for fooling deep neural networks. IEEE
Transactions on Evolutionary Computation, 2019.

[47] Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian
Durner, Manuel Brucker, and Rudolph Triebel. Implicit 3D
Orientation Learning for 6D Object Detection from RGB Im-
ages. In ECCV, 2018.

[48] Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised
cross-domain image generation. ICLR, 2017.

[49] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Woj-
ciech Zaremba, and Pieter Abbeel. Domain randomization
for transferring deep neural networks from simulation to the
real world. IROS, 2017.

[50] Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Ki-
hyuk Sohn, Ming-Hsuan Yang, and Manmohan Chandraker.
Learning to adapt structured output space for semantic seg-
mentation. In CVPR, 2018.

[51] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell.
Adversarial discriminative domain adaptation. CVPR, 2017.

[52] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and
Trevor Darrell. Deep domain confusion: Maximizing for
domain invariance. CoRR, 2014.

[53] Paul Wohlhart and Vincent Lepetit. Learning descriptors for
object recognition and 3d pose estimation. In CVPR, 2015.

[54] Steven Worley. A cellular texture basis function. In Proceed-
ings of the 23rd annual conference on Computer graphics
and interactive techniques, pages 291–294. ACM, 1996.

[55] Sergey Zakharov, Benjamin Planche, Ziyan Wu, Andreas
Hutter, Harald Kosch, and Slobodan Ilic. Keep it unreal:
Bridging the realism gap for 2.5d recognition with geometry
priors only. 3DV, 2018.

[56] Sergey Zakharov, Ivan Shugurov, and Slobodan Ilic. Dpod:
6d pose object detector and refiner. In ICCV, 2019.

[57] Matthew D. Zeiler and Rob Fergus. Visualizing and under-
standing convolutional networks. CoRR, 2013.

[58] Yang Zhang, Philip David, and Boqing Gong. Curricu-
lum domain adaptation for semantic segmentation of urban
scenes. In ICCV, 2017.

[59] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In ICCV, 2017.


