
Keep it Unreal:
Bridging the Realism Gap for 2.5D Recognition with Geometry Priors Only

Sergey ZakharovCO ,1, Benjamin PlancheCO ,1, Ziyan Wu2, Andreas Hutter1, Harald Kosch3, Slobodan Ilic1
1Siemens Corporate Technology, Germany

{sergey.zakharov, benjamin.planche, andreas.hutter, slobodan.ilic}@siemens.com

2Siemens Corporate Technology, USA
ziyan.wu@siemens.com

3University of Passau, Germany
harald.kosch@uni-passau.de

Abstract

With the increasing availability of large databases of
3D CAD models, depth-based recognition methods can be
trained on an uncountable number of synthetically rendered
images. However, discrepancies with the real data ac-
quired from various depth sensors still noticeably impede
progress. Previous works adopted unsupervised approaches
to generate more realistic depth data, but they all require
real scans for training, even if unlabeled. This still rep-
resents a strong requirement, especially when considering
real-life/industrial settings where real training images are
hard or impossible to acquire, but texture-less 3D models
are available. We thus propose a novel approach leverag-
ing only CAD models to bridge the realism gap. Purely
trained on synthetic data, playing against an extensive aug-
mentation pipeline in an unsupervised manner, our genera-
tive adversarial network learns to effectively segment depth
images and recover the clean synthetic-looking depth infor-
mation even from partial occlusions. As our solution is not
only fully decoupled from the real domains but also from
the task-specific analytics, the pre-processed scans can be
handed to any kind and number of recognition methods also
trained on synthetic data. Through various experiments,
we demonstrate how this simplifies their training and con-
sistently enhances their performance, with results on par
with the same methods trained on real data, and better than
usual approaches doing the reverse mapping.

1. Introduction
Recent progress in computer vision has been dominated

by deep neural networks trained over large datasets of anno-
tated data. Collecting those is however a tedious if not im-
possible task. In practice, and especially in the industry, 3D

COThese authors contributed equally to the work.

real test image xr

pre-processed image xg = G (x)

task-specific labels T
s (x)

in
p

u
t

o
u

tp
u

t
G

T

Figure 1: Usage and results. Trained on augmented data from
3D models, our network G can map real scans (input, here from
LineMOD [23]) to the synthetic domain (output, compared to
ground-truth GT). The pre-processed data can then be handed to
various recognition methods (T s) to improve their performance.

CAD models are widely available, but access to real physi-
cal objects is limited and often impossible (e.g. one cannot
capture new image datasets for every new client, product,
part, environment, etc.). Moreover, appearance of industrial
objects changes during their use, which naturally imposes
the use of depth sensors as a logical choice for robust recog-

1

ar
X

iv
:1

80
4.

09
11

3v
2

 [
cs

.C
V

]
 2

4
M

ay
 2

01
8

black-box, fixed network

lrelu + conv 3x3

relu + convT 3x3 + batchnorm

lrelu + conv 3x3 + batchnorm

skip layer for U-Net

“pair-fakeness” d from D and ground-truth

synthetic image xs

augmented image xa

G-output image xg

 T s-estimated labels T s (xg) and T s (xs)

Figure 2: Training of the depth-processing network G. Following the conditional GAN architecture, a generator G is trained against
a discriminator D to recover the original noiseless image from a randomly augmented, synthetic one. Its loss combines similarity losses
Lg and Lf , the conditional discriminator loss Ld, and optionally a feature-similarity loss Lt if a task-specific method T s is provided at
training time (network architectures are detailed in Section 3.4).

nition. For these reasons, numerous recent studies started
using synthetic depth images rendered from databases of
pre-existing 3D models [12, 51, 59, 36, 60, 57, 4]. With no
theoretical upper bound on generating data to train complex
models for recognition [61, 42, 71, 54] or fill large databases
for retrieval tasks [18, 68], research continues to gain impe-
tus in this direction.

However, the performance of these approaches is of-
ten affected by the realism gap, i.e. the discrepancy be-
tween the synthetic depth (2.5D) data the recognition meth-
ods are learning from and the more complex real data
they have to face afterwards. Some approaches address
this matter by generating datasets in such a way that they
mimic captured ones, e.g. using sensor simulation meth-
ods [28, 21, 32, 31, 47]. This is however a non-trivial
problem, as it is extremely difficult to account for all the
physical variables affecting the sensing process. This led
to another recent trend that tries to teach neural networks
a direct mapping from synthetic to real images in order to
generate pseudo-realistic training data [35, 25, 63, 55, 2],
or tries to force the task-specific methods to learn domain-
independent features. But such methods require real images
for their training, circling back to the original problem. One
could also wonder if “tarnishing” noiseless synthetic data,
losing clarity and information for realism, is the best way to
tackle the problem (see supplementary material for a clear
visualization of those drawbacks). Would not the reverse

process be more beneficial, i.e. projecting complex data into
the simulated, synthetic domain we fully have control over?

Following this philosophy and considering the afore-
mentioned industrial use-cases, we introduce a novel ap-
proach (UnrealDA) to bridge the realism gap by mapping
unseen real images toward the synthetic image domain used
to train recognition methods, thus greatly improving their
performance. Our contributions can be summarized as fol-
lows:
(a) Depth data segmentation and recovery – To the best
of our knowledge, we propose the first end-to-end frame-
work for depth image denoising and segmentation based on
a custom GAN method purely trained on synthetic data i.e.
with only CAD models as prior. Not only our UnrealDA
method recognizes and segments the target objects out of
real scans, but it can also partially recover missing informa-
tion e.g. caused by occlusions or sensing errors (as shown
in Figure 1).
(b) Independence from recognition methods – Most do-
main adaptation methods re-train recognition networks or
constrain their architecture. Our solution converts real scans
into denoised uncluttered versions which can be handed
over to any task-specific networks already trained on noise-
less synthetic data, with no structural adaptation needed.
(c) Extensive data augmentation – Domain adaptation ap-
proaches usually require to have access to images from the
target domain. Completely decoupled from target real do-

mains, UnrealDA is trained on synthetic data only, gener-
ated from the 3D models of the target objects, and general-
izes well to the real environments these objects can be found
in. We leverage an extensive data augmentation pipeline to
teach our solution a mapping from any kind of tampered
images to their noise-free version.
(d) Performance improvement – Our solution consider-
ably improves the performance on real data for algorithms
pre-trained on noiseless synthetic data. More importantly
it offers better results when compared to the same methods
directly trained on images generated with our augmentation
pipeline. Performance even compares to solutions trained
on a subset of real images from the target domain and out-
performs related works doing the opposite i.e. generating
realistic images from synthetic renderings. By decoupling
data augmentation for domain invariance and feature learn-
ing, our pipeline thus makes recognition methods easier to
train, and overall more effective.
(e) Interpretability – Similarly to [63, 55, 2], our method
adapts images, so its results can be easily interpreted (unlike
adapted weights or features for instance).

The rest of the paper is organized as follows. In Sec-
tion 2, we provide a survey of pertinent work to the reader.
We then introduce our framework and its components in
Section 3. Section 4 shows the effectiveness and flexibil-
ity of our tool, pairing it with state-of-the-art methods for
various tasks, before concluding in Section 5.

2. Related Work
With the popular advocacy of structured-light sensors for

vision applications, depth information became the support
of active research. However, compared to the synthetic data
generated for the training of many deep learning methods,
real scans contain clutter and occlusions, and are corrupted
by noise varying from one sensor to another. In this section,
we present recent recognition approaches employing syn-
thetic scans for their training, and develop on the current
trends to deal with the discrepancy challenge.
3D Object Recognition in Depth Images: Current state-
of-the-art methods in visual recognition (e.g. classification,
pose estimation, segmentation, etc.) are view-based, i.e.
working on multiple 2D views covering the object’s surface.
A popular representative is the algorithm of Wohlhart et
al. [69], where images are mapped to a lower dimensional
descriptor space in which objects and their poses are sep-
arated. This mapping is learned by a convolutional neural
network (CNN) using a triplet loss function, which pulls
similar samples together and pushes dissimilar ones further
away from each other. During the test phase, the trained
CNN is used to get the descriptor of an unseen patch to find
its closest neighbors in a database of pre-stored descriptors
for which poses and classes are known. For some experi-
ments in this paper, we employ a more recent work by Za-

kharov et al. [75] which extends the method by including
in-plane rotations and introduces an improved loss function.
Such deep learning methods however need large amounts
of data for their training, which are extremely tedious to
collect and accurately label (especially when 3D poses are
considered for ground truth).
Bridging the Realism Gap: Renewed efforts were put into
the augmentation of existing datasets (e.g. by applying noise
or rendering unseen images [49, 62]), or into the generation
of purely synthetic datasets [71, 42, 61, 62] (e.g. leveraging
recent 3D model databases [71, 6]) to train more flexible es-
timators. As previously mentioned, the differences between
the synthetic domain they are trained on and the real domain
they are applied to still heavily affects their accuracy. A
first straightforward approach to reduce this discrepancy is
to improve the quality of the sensor output, e.g. by partially
compensating the sensor noise [26, 40, 38, 39], filling some
of the missing data [38, 39], or improving the overall res-
olution [72]. Common approaches employ filtering meth-
ods (e.g. Gaussian, anisotropic, morphological, or learned
through deep learning) [26, 38, 72, 76, 77, 22] and/or other
sensing modalities (e.g. aligned RGB data) to recover part
of the depth information [40, 76, 77, 22]. Though effective
at denoising, these methods can only partially declutter the
images and cannot make up for missing information.

Solutions tackling the realism gap by improving the re-
alism of the training data are divided into two complemen-
tary categories. While some researchers are coming up with
more advanced simulation pipeline [28, 21, 32, 31, 47] to
generate realistic images by imitating the sensors mecha-
nisms and taking into account environmental attributes; oth-
ers are trying to learn a mapping from synthetic to real im-
age domain using conditional GANs [35, 25, 63, 55, 2] or
CNN style transfer methods [15, 16]. The former solutions
however need precise sensor models and object representa-
tions (e.g. reflectance models) for the simulation to prop-
erly work; and even if unsupervised, the latter methods re-
quire real data to learn the target distribution. The same
goes for unsupervised domain adaptation methods [10] try-
ing to force recognition methods to learn domain-invariant
features [66, 65, 13, 14], or to learn a mapping from the tar-
get image domain back to the source one [63]: they all need
real data (even if unlabeled) for their training.

Sadeghi and Levine [52] as well as Tobin et al. [64]
managed to successfully train complex recognition methods
by adding enough variability to the rendered data (differ-
ent textures, lighting conditions, scene composition, etc.) so
that the methods learn domain-invariant features. We apply
the same principle, but to train a generative adversarial net-
work able to adapt images from any pseudo-realistic domain
to the noiseless synthetic one. Any recognition methods
themselves trained on noiseless data can then be plugged to
our pipeline with no need for any fine-tuning nor changes.

Generative Adversarial Networks (GANs): Introduced
by Goodfellow et al. [20], and quickly improved and de-
rived through numerous works, e.g. [48, 53, 34, 25, 74], the
GAN framework has proven itself a great choice for image
generation [20, 48, 8], edition [25, 78, 55, 2], or segmen-
tation [41, 43, 73]. The generator network in these solu-
tions benefits from competing against a discriminator one
(with adversarial losses) to properly sample sharp, realis-
tic images from the learned distribution. Methods condi-
tioned on noise vectors [17, 11], labels [17, 37, 8] and/or
images [25, 78, 37, 55, 3, 2] soon appeared to add control
over the generated data. Given these additions, recogni-
tion pipelines started integrating conditional GANs. Some
works are for instance using a classifier network along their
discriminator, to help the generator grasp the conditioned
image distribution by back-propagating the classification
results on generated data [35, 2]; while others are using
GANs to estimate the target domain distribution, to sample
training images for their classifier [13, 14, 63, 55, 3, 2].

The GAN our pipeline uses is based on the architecture
by Isola et al. [25], augmented with foreground-similarity
and task-specific losses similar to those introduced by Bous-
malis et al. [3, 2]. Their method however requires unlabeled
target data and trains a classifier network both on source and
augmented data; while our work assumes no access to tar-
get data at all, and only optionally uses a fixed recognition
network to train the GAN. This makes our solution faster to
train and much easier to deploy.

3. Methodology
Driven by the idea of learning from synthetic depth scans

for recognition applications, we developed a method that
brings real test images close to the noiseless uncluttered
synthetic data the recognition algorithms are used to. Itself
trained on a synthetic dataset rendered from the 3D CAD
models of the target objects, our UnrealDA solution is able
to denoise the real images, segment the objects, and par-
tially recover missing parts. Inspired by previous works on
GAN-based image generation, and making use of an ex-
tended data augmentation process for its training (as shown
in Figure 2), our pipeline is both straightforward and effec-
tive.

Formalizing our problem, letXs
c = {xsc,i | ∀i ∈ Ns

c } be
a dataset made of a large number Ns

c of noiseless synthetic
depth scans xsc, rendered from the 3D model of the class
c; and let Xs = {Xs

c | ∀c ∈ C } be the synthetic dataset
covering all object classes C. We similarly define Xr a
dataset of real images unavailable at training time.

Finally, let T s(x ; θT)→ ỹ be any recognition algorithm
which given a depth image x returns an estimate ỹ of a task-
specific label or feature y (e.g. class, pose, mask image,
hash vector, etc.). We suppose T s is pre-trained on syn-
thetic scans covering C and their labels. Its parameters θT

are considered fixed i.e. at no point do we alter its architec-
ture, trained weights, etc. We consider both cases when T s

is set and provided for the training of G, and when it is not.
Given this setup, we present how our pipeline trains

a function G purely on synthetic data Xs (and thus in
an unsupervised manner), to pre-process tampered or clut-
tered images of C instances, to consistently increase the
probability that T s(G(xr)) = ỹg is accurate compared to
T s(xr) = ỹr, given T s also trained on synthetic data (c.f .
Figure 1). Formally, if yr is a true, unknown label of xr;
then we want:

Pr
(
ỹg = yr | xr ∈ Xr

)
> Pr

(
ỹr = yr | xr ∈ Xr

)
(1)

To achieve this, we describe how G is trained against a data
augmentation pipelineA(xs, z)→ xaz , with z a noise vector
randomly defined at every training iteration and xaz the aug-
mented image (as shown in Figure 3). We demonstrate how
given a complex and stochastic procedure A, the mapping
learned by G transposes to the real images.

3.1. Unsupervised Learning from Synthetic Data
Only

Following recent works in domain adaptation [35, 25,
63, 55, 2], we adopt a generative adversarial architec-
ture. We define first a generator function G(x ; θG)→ xg ,
parametrized by a set of hyper-parameters θG and condi-
tioned by an image x to generate a version xg . During
training, the task of G is to restore the noiseless depth data
from its augmented version, i.e. to obtain xg ' xs given
x = A(xs, z). Then, provided an image x ∈ Xr, G gener-
ates an image xg which can be passed to T s for better recog-
nition results (as expressed in Assertion 1). We oppose toG
a discriminator network D(xaz , x ; θD)→ d defined by its
hyper-parameters θD which, given a pair of images (xaz , x)
with xaz = A(xs, z), estimates the probability d that x is the
original noiseless sample xs and not the recovered image
xg = G(xaz) [25].

The typical objective such a solution has to maximize is:

G∗ = argmin
G

max
D

αLd(G,D) + βLg(G) (2)

with

Ld(G,D) = Exs,z

[
logD(xaz , x

s ; θD)
]
+ (3)

Exs

[
log
(
1−D

(
xaz , G(x

a
z ; θG) ; θD

))]
Lg(G) = Exs,z

[∥∥xs −G(xaz ; θG)∥∥1] (4)

As explained in [25, 55, 2], the conditional loss function
Ld, weighted by a coefficient α represents the cross-entropy
error for a classification problem where D(xaz , x ; θD) esti-
mates if (xaz , x) is a “fake” or “real” pair (i.e. x generated
by G from xaz , or x original sample from Xs).

This is complemented by a simple similarity loss Lg , an
L1 distance weighted by a parameter β, to force the gener-
ator to stay close to the ground-truth. However, since the
images we are comparing are supposed to be noiseless with
no background, this loss can be augmented with another
one specifically targeting the foreground similarity (while
we still want Lg to compare the whole images to make sure
G deals properly with backgrounds). We thus introduce a
complementary foreground loss Lf weighted by a factor
γ, inspired by the content-similarity loss of Bousmalis et
al. [2]. Givenms the binary foreground mask obtained from
xs (ms

ij = 1 if xsij 6= 0 else ms
ij = 0) and � the Hadamard

product:

Lf (G) = Exs,z

[∥∥(xs −G(xaz ; θG))�ms
∥∥
1

]
(5)

In the case that the target recognition method T s(x) → ỹ
is provided ready-to-use for the GAN training, a third task-
specific loss can be applied (similarly to [2, 35], but with a
fixed pre-trained network). Weighted by another parameter
δ, Lt can be used to guide G, to make it more aware of the
information this specific T s tries to uncover:

Lt(G) = Exs,z

[∥∥T s(xs)− T s(G(xaz ; θG))∥∥2] (6)

This formulation has two advantages: no assumptions are
made regarding the nature of ỹ = T s(x), and no ground-
truth y is needed sinceLt only depends on the difference be-
tween the two estimations made by T s. Unlike PixelDA [2],
our training is thus both uncoupled from the real domain (no
real image xr used) and completely unsupervised (no prior
on the nature of the labels/features, and neither ground-truth
yr of xr nor ys of xs used). Taking into account the newly
introduced Lf and optional Lt, the expanded loss guiding
our method toward its objective is thus finally:

G∗ = αLd(G,D) + βLg(G) + γLf (G) + δLt(G) (7)

Following the standard procedure [20], the minmax op-
timization (with or without the term δLt) is achieved by al-
ternating at each training iteration between (1) fixing θG to
train D over a batch of (xaz , x

s) and
(
xaz , G(x

s ; θG)
)

pairs,
updating through gradient descent θD to maximize Ld; (2)
fixing θD to train G, updating through gradient descent θG
to minimize the combined loss.

3.2. Synthetic Data Generation

A key prior in this work is the unavailability of target real
images (not only target labels). Only synthetic depth images
xs are used to train our solution, and presumably the recog-
nition method (if anecdotal target images xr are however
available, they can obviously be used for fine-tuning). The
only requirement of our pipeline is thus the availability of

the synthetic data used to train T s, or at least the 3D models
of the class objects C to generate Xs from them.

The first step of our solution thus consists of a depth
image rendering pipeline, which offers several rendering
strategies (e.g. single-object rendering for classification or
pose estimation applications, or random multi-object gener-
ation for detection) and viewpoint sampling methods (e.g.
user-provided lists, simulated turntable, etc.). The most
straightforward strategy used for our experiments replicates
the method by Wohlhart et al. [69, 75]: viewpoints are de-
fined as vertices of an icosahedron centered on the target
object(s). By repeatedly subdividing each triangular face
of the icosahedron, additional viewpoints, and therefore a
denser representation, can be created. Furthermore, in-
plane rotations can be added at each position by rotating
the camera around the axis pointing at the object center.

Rotation invariances of the objects can also be taken into
account (e.g. for pose estimation applications), as samples
of rotation-invariant objects representing different poses
might look exactly the same, confusing the recognition
methods. To deal with this, the pipeline can be configured to
trim the number of poses for those objects, such that every
image is unique; as done in [27, 75].

3.3. Inline Data Augmentation

With no target images to teach the generator G how to
map the real images to their synthetic (noiseless and seg-
mented) equivalents, we make G play against A(xs, z) →
xaz . A is an extensive inline augmentation pipeline which
applies a series of transformations (as shown in Figure 3)
parametrized by a vector z randomly sampled for every im-
age in the training batches, at every iteration.

The goal of A is not to generate realistic images out of
Xs, i.e. not to obtain Xa = {A(xsi mod |Xs|, zi) | ∀i ∈
N iter } ≈ Xr, but instead to reach Xr (Xa approxi-
mately true for a large enough number of training iterations
N iter and a large enough set of stochastic transformations
applied. Since the vector z is sampled from a k-dimensional
finite set Zk = {0, ..., ni}ki=0 with k number of augmenta-
tion parameters and ni their maximum values; the proba-
bilities of random transformations to be applied, and their
amplitudes, are directly linked to |Zk| =

∑k
i=0(ni + 1).

Leaving N iter aside, the selection of n0, ..., nk can thus be
seen as a higher-level minmax procedure between the GAN
and the augmentation process. The GAN is trained to op-
timize G∗ while A tries to prevent it. This led to a series
of meta-iterations to make A challenging enough (i.e. to fix
Zk as large as possible without tampering images beyond
reversibility) so that G can learn robust features to discrim-
inate and recover the noiseless signal.

Inspired by the literature [56, 9, 7], the procedures com-
posing A are the following:
Sensor noise and 3D clutter: With the class and pose for

B
G

FG

O

C

in
p

u
t

au
gm

.
o

u
tp

u
t

G
T

in
p

u
t

o
u

tp
u

t

(A) Online Augmentation (B) Training on Synthetic Data (C) Testing on Real Data

Ø x 4, 0.05Hz x 4, 0.2Hz x 8, 0.05Hz x 8, 0.2Hz

Ø cell 0.01Hz cell 0.1Hz perlin 0.01Hz perlin 0.1Hz

Ø x 1 x 2 x 3 x 4

Figure 3: (A) Augmentation examples (BG background noise; FG foreground distortion; OC occlusions) for different noise amplitudes or
types; (B) Validation results, showing how our solution learns during training to recover the clean images (input, here from LineMOD [23])
from their augmented versions (augm.); (C) Test results on real data (compared to ground-truth GT).

every image xs easily available from the rendering engine,
a state-of-the-art simulation pipeline, e.g. DepthSynth pro-
vided by Planche et al. [47], can be used to generate a
pseudo-realistic depth image to replace the noiseless xs.
This simulation reproduces the mechanisms of structured-
light sensors to achieve similar noise (e.g. shadow noise,
missing data from improper pattern reflection, mismatching
during the stereo-matching process, etc.), and can also be
used to clutter the images by directly adding 3D elements
into the rendered scene (e.g. ground floor, random shapes,
etc.). This single augmentation step could be enough if the
simulation was indeed achieving proper realism. Experi-
ments however showed that it can be heavily affected by the
quality of the 3D models and by their actual lack of proper
reflectance model. Moreover, rendering cluttered 3D scenes
is computationally expensive. As a result, only a random
subset ofXs undergoes this process every iteration (the size
of the subset being defined by one of the random variables
of z); while the following two-dimensional transformations
do most of the augmentation, and partially compensate for
the biases of the simulation pipeline.
Background noise: To teach G to focus on the represen-
tations of the captured objects and ignore the rest, A fills
the background of the training data with several noise types
commonly used in procedural content generation e.g. fractal
Perlin noise [46], Voronoi texturing [70], and white noise.
These patterns are computed using a vast frequency range
(function of z), further increasing the number of possible
background variations.
Foreground distortion: Similarly to Simard et al. [56], im-
ages undergo random distortions (as an inexpensive way to
simulate sensor noise, objects wear-and-tear, etc.). A 3D
vector field is generated using the Perlin noise method [46]
and applied as offset values to each image pixel, causing the
warping. Since noise values range from −1 to 1 by design,
we introduce a multiplicative factor, which allows for more
severe distortions.
Random occlusions: Occlusions are introduced to serve
two different purposes: to teach G to reconstruct the parts

of the objects which may be partially occluded; and to
further enforce invariance within the depth scans to addi-
tional objects which don’t belong to the target classes C
(i.e. to ignore them, treat them as part of the background).
Based on [44], occlusion elements are generated by walking
around the circle taking random angular steps and random
radii at each step. Then the generated polygons are filled
with arbitrary depth values and painted on top of the patch.

3.4. Network Architectures

Though our UnrealDA is not bound to particular network
architectures, we opted for the work of Isola et al. [25], cho-
sen for its efficiency and popularity at the time of this paper.
The generator G is a U-Net [50] with skip connections be-
tween each encoding block and its opposite decoding one.
Building on Isola et al. formalism [25], each encoding block
BCk is made of the following layers: 2-factor downsam-
pling Convolution with k filters, BatchNorm (except for
1st block), then LeakyReLU. Each decoding block BDk is
made of: 2-factor upsampling Transposed Convolution with
k filters, BatchNorm, LeakyReLU, then 1

2 -rate Dropout lay-
ers. All Convolution layers have 4 × 4 filters, and Dropout
layers have a 0.2 slope. The generator thus consists of:
BC64−BC128−BC256−BC512−BC512−BC512−BC512−BC512−
BD512−BD1024−BD1024−BD1024−BD1024−BD512−BD256−BD128.
Similarly, the discriminator follows the 70× 70 PatchGAN
architecture [25]: BC64 −BC128 −BC256 −BC512. Further im-
plementation details (for the networks and also the augmen-
tations) can be found in the supplementary material.

4. Evaluation

In this section, we perform a thorough analysis to
demonstrate the effectiveness of our UnrealDA pipeline and
its components over a variety of datasets and tasks, and to
compare against state-of-the-art domain adaptation meth-
ods.

Table 1: Quantitative results on different tasks and datasets: (A) Classification accuracy of different instances of a simple LeNet
network Tle [33] over a subset of T-LESS (5 objects); (B) Classification and angular accuracy of different instances of the triplet method
Ttri [75] over LineMOD (15 objects). Instances were trained on various data modalities (noiseless synthetic for T s; synthetic augmented
for T a; or real for T r) and tested on the real datasets Xr

test with different pre-processing (none; pre-processing by Ga purely trained on
synthetic augmented data; or by Gr same method trained over a mix of real and augmented data). For each line, the angular accuracy is
computed only on the subset of properly classified data.

(A) IC on T-LESS (Tle = LeNet) (B) ICPE on LineMOD (Ttri = Triplet Method)

Input Method Classification
accuracy Input Method Angular accuracy Classification

accuracyMedian Mean

Xr
testXr
testXr
test T sleT

s
leT
s
le 20.48% Xr

testXr
testXr
test T striT striT stri 93.48◦ 100.28◦ 7.71%

Xr
testXr
testXr
test T aleT

a
leT
a
le 83.35% Xr

testXr
testXr
test T atriT atriT atri 13.45◦ 30.07◦ 82.14%

Ga(Xr
test)Ga(Xr
test)Ga(Xr
test) T sleT

s
leT
s
le 93.01% Ga(Xr

test)Ga(Xr
test)Ga(Xr
test) T striT striT stri 13.74◦ 31.14◦ 94.77%

Xr
testXr
testXr
test T rleT

r
leT
r
le 95.92% Xr

testXr
testXr
test T rtriT rtriT rtri 12.13◦ 27.80◦ 95.49%

Gr(Xr
test)Gr(Xr
test)Gr(Xr
test) T sleT

s
leT
s
le 96.67% Gr(Xr

test)Gr(Xr
test)Gr(Xr
test) T striT striT stri 11.64◦ 24.31◦ 98.44%

4.1. Datasets

T-LESS: T-LESS [24] is a challenging RGB-D dataset with
3D models for detection, containing industrial objects of
similar shapes, often heavily occluded. For a preliminary
experiment, we consider the first three scenes captured with
a Primesense Carmine sensor, building a subset of ∼2.000
depth patches from 5 objects, occluded up to 60%.
LineMOD: The LineMOD dataset [23] has been chosen as
the main evaluation dataset. It contains 15 mesh models
of distinctive objects and their RGB-D sequences together
with camera poses. This dataset has four symmetric ob-
jects (cup, bowl, glue, and eggbox), which result in ambigu-
ities for the task-specific pose estimation algorithm (similar
looking patches might have completely different poses). To
resolve this problem, we constrain real views by keeping
only unambiguous poses for these four objects.
Data preparation: Synthetic images are generated follow-
ing the exemplary procedure described in Section 3.2, using
a simple 3D engine to generate z-buffer scans from 3D mod-
els, obtaining patches centered on the objects of interest.
Since the test datasets contain in-plane rotations, we gen-
erate the training samples taking this additional degree of
freedom into account. For each dataset, the real images are
split in two subsets: 50% of them compose Xr

test, the test
set; while the other 50% (Xr

train) are used to train methods
our synthetic-only pipeline is set to compete against.

4.2. Task-Specific Algorithms

For quantitative evaluation, we integrate our pipeline
to different recognition methods, measuring the impact.
We first consider instance classification (IC) with a simple
method Tle. Based on the LeNet architecture [33], this net-
work takes a depth image as input and returns its estimated
class in the form of a softmax probability layer. A cross-
entropy loss is used for its training. We define as T sle the

algorithm purely trained on synthetic samples from Xs and
their labels.

Besides this simple classifier, we consider a more com-
plex recognition method to demonstrate that our solution
is not tailored to a specific pipeline. We thus choose
a method for instance classification and pose estimation
(ICPE) closely following the implementation of [75]. This
algorithm Ttri uses a so-called triplet CNN to map image
patches to a lower-dimensional descriptor space, where ob-
ject instances and their poses are well separated. To be able
to learn this mapping, the network weights are adjusted to
minimize the following loss:

Ltri =
∑

(xb,xp,xn)∈X

max

(
0, 1− ||Ttri(xb)− Ttri(xn)||22

||Ttri(xb)− Ttri(xp)||22 +m

)

where m =

{
2 arccos(|qb · qp|) if cb = cp,

n else, for n > π.
(8)

with xb the input image used as binding anchor , xp a posi-
tive or similar sample, and xn a negative or dissimilar one.
Ttri(x) is the feature returned by the network given the im-
age x, andm is the margin setting the minimum ratio for the
distance between similar and dissimilar pairs of samples.

Once trained, the network is used to compute the features
of a subset of Xs, stored together with object instances and
poses to form a feature-descriptor dataset Xs

db. Recognition
is done on test data by using the trained network to com-
pute the descriptor of each provided image (xr or G(xr))
then applying a nearest neighbor search algorithm to find
its closest descriptor in Xs

db.

Table 2: Comparison to opposite domain-adaptation GANs: given the two recognition tasks “(A) Instance Classification on T-lESS (5
objects) with Tle” and “(B) Instance Classification and Pose Estimation on LineMOD (15 objects) with Ttri” (defined for the experiment
in Table 1), we train several modalities of the networks T against diverse domain-adaptation GANs trained on real data Xr

train (50% of
the datasets), and compare their final accuracy with our results.

(A) IC on T-LESS with Tle (B) ICPE on LineMOD with Ttri
TTT Modality Classification

accuracy
Angular accuracy Classification

accuracyTrained on Applied to Median Mean

R
eq

ui
ri

ng
R

ea
lD

at
a CycleGAN Xr

testXr
testXr
test 40.97% 71.10◦ 86.73◦ 14.72%

SimGAN Xr
testXr
testXr
test 59.20% 20.44◦ 43.36◦ 73.20%

PixelDA Xr
testXr
testXr
test 89.75% 18.15◦ 39.06◦ 90.31%

XsXsXs Gr(Xr
test)Gr(Xr
test)Gr(Xr
test) 96.67% 11.64◦ 24.31◦ 98.44%

XsXsXs Ga(Xr
test)Ga(Xr
test)Ga(Xr
test) 93.01% 13.74◦ 31.14◦ 94.77%

4.3. Experiments and Discussions

4.3.1 Comparisons with Different Baselines

We first demonstrate the effectiveness of our data pre-
processing on a set of different tasks, and show the benefits
of decoupling this operation from recognition itself. As a
preliminary experiment, we define an instance classification
task on the T-LESS patch dataset, with the LeNet network.

One could argue that directly training Tle on augmented
synthetic data could be more straight-forward than train-
ing G against A and plugging it in over T sle afterwards.
To prove that our solution not only has the advantage of
uncoupling the training of recognition methods to the data
augmentation but also improves the end accuracy, we in-
troduce T ale the algorithm trained on augmented data from
A. We additionally define method T rle trained on 50% of
the real data. During test time, the real depth patches are
either directly handed to the classifiers, pre-processed by
our generator G (exclusively trained on synthetic data, re-
named Ga here for clarity), or pre-processed by a generator
Gr. Using the same pipeline, Gr is trained on a combi-
nation of augmented synthetic data and real data (Xr

train);
and thus serves as a theoretical upper performance bound
for the GANs. Evaluation is done for different combina-
tions of pre-processing and recognition modalities, comput-
ing the final classification accuracy for each. Results are
shown in Table 1-A. To demonstrate how UnrealDA gener-
alizes both to different datasets (with diverse classes and en-
vironments) and to distinctive task-specific applications, we
reproduce the same experimental protocol on a more com-
plex ICPE task. Following the previous notations, we de-
fine as T stri the triplet method trained on synthetic data Xs;
T atri the same algorithm trained on augmented one; and T rtri
trained on real data Xr

train. These different instances are
used along their respective feature-descriptor datasetXs

db to
classify instances from LineMOD (15 objects) and estimate
their 3D poses. Once again, the networks are either handed

unprocessed test data, data pre-processed by Ga, or data
pre-processed by Gr. If the class of each returned descrip-
tor agrees with the ground-truth, we compute the angular er-
ror between their poses. Once this procedure performed on
the entire set Xr

test, the classification and angular accuracy
(as median and mean angles) are used for the comparison
shown Table 1-B.

For both experiments, we consistently observe the posi-
tive impact UnrealDA’s pre-processing has on the recogni-
tion. The performance of the algorithms using our modal-
ity Ga (trained exclusively on synthetic data) matches the
results of those plugged to Gr, trained on real data. This
demonstrates the effectiveness of our advanced depth data
augmentation pipeline. Improvements could be done to
match this higher-bound baseline by tailoring the augmen-
tation pipeline to a specific sensor or environment. Our cur-
rent augmentation pipeline has however the advantage of
genericity. WhileGr is only trained for the sensor and back-
ground type(s) of the provided real dataset, our solution Ga

has been trained over A for domain invariance.

We extended this study by also performing the ICPE on
the real LineMOD scans with their backgrounds perfectly
removed. The accuracy using T stri trained on pure synthetic
data was only 67.32% for classification, and 24.56◦ median
/ 51.58◦ mean for the pose estimation. This is well below
the results on images processed by UnrealDA; attesting that
our pipeline not only does background subtraction but also
effectively uses the CADs prior to recover clean geometry
from noisy scans, improving recognition.

Finally, Table 1 also reveals the accuracy improvements
obtained by decoupling data augmentation and recognition
training. Both recognition methods T sle and T stri trained on
“pure” noise-free Xs performs better when used on top of
our solution, compared to their respective architectures T a

directly trained on augmented data. It is even comparable
to their respective T r trained on real images. This confirms
our initial intuition regarding the advantages of teaching

Table 3: Quantitative ablation study: given the two recognition tasks “(A) Instance Classification on T-lESS (5 objects) with Tle” and
“(B) Instance Classification and Pose Estimation on LineMOD (15 objects) with Ttri” (defined for the experiment in Table 1), we train
both networks on noiseless data and evaluate them on the outputs of different modalities of Ga. Each is either trained (A) with different
augmentation combinations (BG background noise; FG foreground distortion; OC occlusions; SI sensor simulation); or (B) with different
loss combinations (Ld + Lg vanilla GAN loss; Lf foreground-similarity loss; Lt task-specific loss).

(A) IC on T-LESS with T sle (B) ICPE on LineMOD with T stri

Modality Classification
accuracy

Angular accuracy Classification
accuracyMedian Mean

(i)
A

ug
m

en
t. BG 79.93% 17.64◦ 38.90◦ 83.78%

BG+SI 84.09% 17.60◦ 42.22◦ 85.26%
BG+FG 89.42% 15.25◦ 34.90◦ 92.33%
BG+FG+OC 93.01% 13.74◦ 31.14◦ 94.77%

(ii
)

L
os

se
s Ld + LgLd + LgLd + Lg 91.09% 14.49◦ 33.91◦ 92.89%

Ld + Lg + LfLd + Lg + LfLd + Lg + Lf 92.17% 14.34◦ 32.21◦ 93.39%
Ld + Lg + Lf + LtLd + Lg + Lf + LtLd + Lg + Lf + Lt 93.01% 13.74◦ 31.14◦ 94.77%

recognition methods in a noise-free controlled environment,
to then map the real data into this known domain. Besides,
this decoupling allows once again for greater reusability.
Augmentation needs to be done only once to train G, which
can then be part of any number of recognition pipelines.

4.3.2 Comparison to Usual Domain Adaptation GANs

As previous GAN-based methods to bridge the realism gap
are using a subset of real data to learn a mapping from syn-
thetic to realistic, it seems difficult to present a fair com-
parison to our opposite solution, trained on synthetic data
only. We opted for a practical study on the aforementioned
tasks, considering the end results given the same recogni-
tion methods and test sets. Selecting prominent solutions,
SimGAN [55], CycleGAN [78] and PixelDA [2], we trained
them on Xs and Xr

train (50% of the real datasets) so they
learn to generate pseudo-realistic images to train the meth-
ods T on. For each task, we measure the modalities’ ac-
curacy on Xr

test, comparing with T s applied to Ga(Xr
test)

and Gr(Xr
test).

As SimGAN is designed to refine the pre-existing con-
tent of images and not to generate new elements like back-
grounds and occlusions, we help this method by filling the
images with random background noise beforehand. Still,
the refiner doesn’t seem able to deal with the lack of con-
crete information and fails to converge properly. Unlike the
other candidates, CycleGAN neither constrains the original
foreground appearance nor tries to regress semantic infor-
mation to improve the adaptation. Even though the result-
ing images are filled with some pseudo-realistic clutter, the
target objects are often distorted beyond recognition, im-
pairing the task networks training. Finally, PixelDA results
look more realistic while preserving most of the semantic

information, out of the box. This is achieved by training T sle
along its GAN. However, this training procedure is not di-
rectly compatible to some recognition architectures like T stri
(as it requires a specific batch-generation process), which is
thus trained afterwards on the adapted data.

These observations are confirmed by the results pre-
sented in Table 2, which attest of the effectiveness of our
reverse processing compared to state-of-the-art methods for
these challenging tasks (similar-looking manufactured ob-
jects, occlusions, clutter, etc.).

4.3.3 Evaluation of the Solution Components

Performing an ablation study, we first demonstrate the im-
portance of each component of the depth data augmenta-
tion pipeline on the final results. Using the same two tasks
(“IC on T-LESS” and “ICPE on LineMOD”), we train five
different UnrealDA instances using various degrees of data
augmentation. The results are shown in Table 3-A, with a
steady increase in recognition accuracy for each augmenta-
tion component added to the training pipeline. This experi-
ment also justifies our choice to replace sensor noise simu-
lation by foreground distortion. Given the current state-of-
the-art in 2.5D simulation (heavily affected by the quality of
the 3D models themselves and often too deterministic), our
warping solution is both lighter and more stochastic, and
thus a better challenge to prepare G.

We set up another experiment to evaluate the influence of
the supplementary losses on the end results, as displayed in
Table 3-B. It shows for instance that the classification error
rate on LineMOD drops from 7.11% with the vanilla losses
to 5.23% with Lf and Lt, i.e. a 26% relative drop which
is rather significant, given the upper-bound error rates, c.f .
Table 1. If our augmentation pipeline and vanilla GAN al-

Figure 4: Further qualitative results on T-LESS [24] and LineMOD [23]. Processing of real scans (input) by our purely-synthetic
method, compared to the rendered ground-truth (GT). More results can be found in the supplementary material

ready achieve great results, Lf and Lt can further improve
them, depending on the sensor type for Lf or the specific
tasks for Lt, and so covering a wider range of sensors and
applications.

Leveraging these components, our pipeline not only
learns purely from synthetic data (and thus in a completely
unsupervised manner) how to qualitatively denoise and de-
clutter depth scans (c.f . qualitative results in Figure 4), but
also considerably improves the performance of recognition
methods using it to pre-process their input. We demon-
strated how our solution makes such algorithms, simply
trained on rendered images, almost on a par with the same
methods trained in a supervised manner, on images from the
real target domain.

5. Conclusion
We presented an end-to-end pipeline requiring only the

3D models of the target objects to learn how to pre-process
their real depth scans. Without accessing any real data or
constraining the recognition methods during training, our
solution tackles the realism gap problem in a simple, yet
novel and effective manner. Adapting a GAN architecture
and relying on an extensive data augmentation process, our
pipeline not only generalizes to many tasks by decoupling
recognition and domain invariance, but also improves their
end results. We believe this concept will prove itself greatly
useful to the community, and intend to apply it to other ap-
plications in the future.

Supplementary Material
A. Schematic Overview of the Different Gap-

Bridging Methods
Table S1 contains a schematic comparison of the train-

ing and testing solutions for recognition tasks addressed in
the paper, when real images from the target domain(s) are
available for training or not.

Our UnrealDA is the only approach focusing on pre-
processing the real test scans instead of the synthetic train-
ing dataset, and on leveraging augmentation operations to
perform well when no real data are available for training.
Furthermore, as the task-specific networks can be trained
separately on pure synthetic data (not augmented or pro-
cessed by another GAN), our solution can directly be ap-
plied to various models, even when already trained.

B. Additional Experiments and Comparisons
B.1. Qualitative Comparison of the Opposite

Domain-Adaptation GANs

To support the quantitative results and observations of
the comparison between UnrealDA and some state-of-the-
art GAN-based domain-adaptation methods (in Section 4.3
of the paper), we provide a qualitative juxtaposition of re-
sults from SimGAN [55], CycleGAN [78], and PixelDA [3]
for LineMOD [23] in Figure S1.

As discussed in the paper, we can note that despite fill-
ing the background with random noise to help the method,
SimGAN’s refiner fails to compensate for the missing in-
formation. CycleGAN does succeed at generating clutter,
but at the expense of the foreground, which often ends up
too distorted for recognition. Thanks to its foreground loss
and integrated classifier, PixelDA fares the best, though one
can still notice artifacts and a slight lack of variability in the
backgrounds.

B.2. Scalability on BigBIRD Dataset

To demonstrate that our UnrealDA method can pre-
process images from a large number of classes, we proceed

Table S1: Visual comparison of training and testing schemes.
Training Testing

R
ea

lD
at

a
Av

ai
la

bl
e

fo
r

Tr
ai

ni
ng

N
ai

ve
A

pp
ro

ac
h

B A B A ✓
T B A B ✓

B A B A ×
T

Pr
ev

io
us

G
A

N
A

pp
ro

ac
he

s
[5

5,
3,

78
]

B A B A ✓
T B A B ✓

G
B A B A ✓

T

Pr
op

os
ed

A
pp

ro
ac

h

G

B A B A ✓
T B A B ✓

B A B A ✓
T

R
ea

lD
at

a
U

na
va

ila
bl

e
fo

r
Tr

ai
ni

ng

N
ai

ve
A

pp
ro

ac
h

B A B A ✓
T B A B ✓

B A B A ×
T

A
ug

m
en

ta
tio

n
A

pp
ro

ac
he

s
[5

2,
64

]

B A B A ✓
T A B A B A ×

T

Pr
op

os
ed

A
pp

ro
ac

h

G

B A B A ✓
T B A B ✓

A

G

T B A B A ✓

G
T

×

A
✓ real

synthetic

augmented

pseudo-real

task results

un-real processed

trained on

generated

augmentation
pipeline

task-specific
network

image
generator

Le
ge

n
d

re
al

(t

ar
ge

t)

sy
n

th
.

(s
o

u
rc

e
)

Si
m

G
A

N

C
yc

le
-

G
A

N

P
ix

e
lD

A

Figure S1: Qualitative results of opposite domain adaptation GANs [55, 78, 3] on LineMOD [23]. First row contains indicative real
images from the target domain; second row contains the synthetic depth images provided as sources; followed by the corresponding GANs
outputs below.

with an experiment on BigBIRD [58]. BigBIRD is a dataset
of RGB-D sequences and reconstructed 3D models of more
than 100 objects. It is however extremely challenging, espe-
cially when only considering the depth modality for recog-
nition (as pointed out in other works e.g. [19, 5]). The vari-
ability in terms of geometry is quite small (e.g. boxes and
bottles which cannot be distinguished among themselves
without the color texture, c.f . Figure S2-B), and more than
twenty 3D models are corrupted (misconstructed because of
the reflectivity of some materials e.g. for glass and plastic
bottles). The reflectivity of these objects and the turn-table
itself (used to capture the dataset) also heavily impaired the
quality of the test set, with vast portions of missing data in
the scans.

For those reasons (and similarly to [19, 5]), we selected
a sub-set of 50 objects for 1) their clean 3D models (to gen-
erate our training data); 2) their relative geometrical vari-
ability (to make the pre-processing task more challenging
for our UnrealDA / to have a dataset more adequate to a
depth-only experiment). Considering a single-view classi-
fication task on these scans using the triplet method Ttri
(c.f . experiments in paper), we applied the following exper-
imental protocol to isolate the contributions of UnrealDA
and demonstrate that even for a larger number of classes,
our pre-processing consistently improves recognition.

Assuming no real data available, we train a single in-
stance Ga of our UnrealDA pipeline on synthetic aug-
mented images of the 50 objects. We then train several
instances of Ttri to classify among an increasingly larger
number of objects (i.e. one Ttri trained to classify a subset
of 10 objects, one for a subset of 20, etc. up to 50). For
each sub-task, we compare the performance of T atri on the
real scans Xr, and T stri on Ga(Xr). Results are presented
in Figure S2.

As expected, we can observe that the accuracy of Ttri
decreases when the number of (rather ambiguous) classes
increases. However, the performance boost provided by our
UnrealDA trained on all 50 objects stays almost constant,
with an increase of ∼5% in classification accuracy com-
pared to the T atri modality.

C. Implementation Details

C.1. GAN Architecture and Parameters

As mentioned in Subsection 3.4 of the paper: though our
solution is not bound to particular network architectures, we
opted for the work of Isola et al. [25], given its efficiency
and popularity at the time of this paper. As shown in Fig-
ure S3, the generator G is an adaptation of the U-Net archi-
tecture [50], and the discriminator of the 70×70 PatchGAN
architecture [25].

Let BCk be an encoding block made of the following
layers: 2-factor downsampling Convolution with k filters,
BatchNorm, then LeakyReLU. LetBDk be a decoding block
made of: 2-factor upsampling Transposed Convolution with
k filters, BatchNorm, LeakyReLU, then Dropout layers.
Generator G: The encoding part of the generator is made
ofBC64−BC128−BC256−BC512−BC512−BC512−BC512−BC512,
and its decoding part of BD512 − BD1024 − BD1024 − BD1024 −
BD1024 − BD512 − BD256 − BD128. Each encoding block has
a skip connection toward the opposite decoding block to
concatenate the channels.
Discriminator D: It is a simple CNN made ofBC64−BC128−
BC256 −BC512, followed by a last convolution layer mapping
to an one-dimensional output, and by a sigmoid function
layer [25].

All networks are implemented using the TensorFlow
framework [1] in Python.

32,39%
41,44%

52,33%
58,98%

69,27%

36,93%

47,48%

56,39%

64,88%

75,43%

50 40 30 20 10

cl
as

si
fi

e
r

ac
cu

ra
cy

number of objects

 T

a(X

r)

T

s(G

a(X

r))

(A) Quantitative Accuracy Results (B) Qualitative Evaluation

in
p

u
t

o
u

tp
u

t
G

T
in

p
u

t
o

u
tp

u
t

G
T

Figure S2: (A) Quantitative results for a classification task on BigBIRD [58]. Comparing the performance of T a
tri on the real scans

Xr , and T s
tri on Ga(Xr) for different number of objects to classify (with Ga constant, trained once for the 50 objects); (B) Qualitative

results of GaGaGa pre-processing on the test set. Note that every input image comes from a different class, highlighting the high inter-class
similarities in this dataset. More images can be found in Figures S7 & S8 (GT = ground-truth).

Hyper-parameters: The network architectures are further
defined by the following parameters:

• All Convolution layers have 4× 4 filter kernels;

• All Dropout layers have a dropout rate of 50%;

• All LeakyReLU layers have a leakiness of 0.2;

• All depth images (input and output) are single-layer
64× 64px patches, normalized between 0 and 1;

• The batch size is set to 1.1

Training parameters are:

• Weights are initialized from a zero-centered Gaussian
with a standard deviation of 0.02;

• The Adam optimizer [30] is used, with β1 = 0.5;

• The base learning rate is set at 0.0002.

Finally, the different loss components are weighted as
follows in our experiments:

• The discriminative loss Ld is weighted by α = 1;

• The L1 similarity loss Lg is weighted by β = 100;

• The foreground loss Lf is weighted by δ = 200;

• The task-specific loss Lt is weighted by γ = 10 when
used.

1Batch normalization with a batch size of 1 is known as “instance nor-
malization” and seems to be effective for image generation [25, 67]

C.2. Augmentation Pipeline Details

Background noise: All the noise types used for our aug-
mentation pipeline are generated using the open-source
FastNoise library [45]. In particular, three noise modali-
ties provided by the framework are used: Perlin noise [46],
cellular noise [70], and white noise. Noise frequencies for
all modalities are sampled from the uniform distribution
U(0.0001, 0.1).
Foreground distortion: The foreground distortion compo-
nent warps the input image using a random vector field. As
a first step, three Perlin noise images are generated using
the FastNoise library [45] to form a three-dimensional off-
set vector field vd. The first two dimensions are used for
depth value distortions in X and Y axes of the image space,
whereas the third dimension is applied to the Z image depth
values directly. Since values of vd vary between −1 and 1,
warping factors w ∈ R3 that control the distortion effect
are introduced. Once the 3D offset vector generated, it is
applied to the input image x to generate the output image
xa. The pseudocode is presented in Algorithm 1.

In our pipeline, the noise frequencies as well as the warp-
ing factors are defined by the randomly sampled vector z.
More precisely, for the presented experiments, fX and fY
are sampled at each iteration from the uniform distribution
U(0.0001, 0.1), fZ from U(0.01, 0.1) (higher frequencies),
wXY from U(0, 10), and wZ from U(0, 0.005).
Random occlusions: Our occlusion generation function

1
 6

4
 1

2
8

2

5
6

5

1
2

1

1

1
6

7

1 64 128 256 512 512 512 512 512 512 1024 1024 1024 1024 512 256 128 1

Figure S3: Overview of the networks architectures. conv k4s2 stands for a convolutional layer with 4× 4 filters and a stride of 2, convT
stands for a transposed convolution, bn for a batch-normalization layer, fc for a fully-connected one. Arrows represent the skip connections
between blocks.

Algorithm 1: Foreground distortion

Input: x ∈ Rlx×ly depth image, z ∈ Zk noise vector
Output: xa ∈ Rlx×ly augmented depth image
/* sampling distortion parameters

from the noise vector: */
1 fX , fY , fZ , wXY , wZ ← sampleFromVector(z);
/* generating 3D vector field: */

2 vd[0]← fast2DNoise(fX);
3 vd[1]← fast2DNoise(fY);
4 vd[2]← fast2DNoise(fZ);
/* applying 3D distortion: */

5 for i ∈ {1, . . . , lx} do
6 for j ∈ {1, . . . , ly} do

7

xa(i, j)← x(i+ wXY ∗ vd[0][i, j],
j + wXY ∗ vd[1](i, j))
+ wZ ∗ vd[2](i, j)

8 end
9 end

10 return xa

is based on the algorithm used in [44], where they gener-

ate 2D obstacles of various complexity levels applied to a
drone moving planning simulation. As mentioned in Sub-
section 3.3 of the paper, the main idea is to sample points by
walking around the circle taking random angular steps and
random radii at each step. When points p are generated,
they are used to form a polygon filled with depth values
varying between 0 and the shortest distance to the object’s
surface. The procedure can be repeated several times de-
pending on the desired occlusion level.

The complexity of each polygon is defined by parameters
ε (”irregularity”), which sets an error to the default uniform
angular distribution, and σ (”spikeyness”), which controls
how much point coordinates vary from the radius rave. The
pseudocode is listed in Algorithm 2.

Variables cX and cY define the polygon center; rave its
average radius; δθ and θ are a vector of angle steps, and
a vector of angles respectively; and lx × ly are the image
dimensions (equal to 64× 64 px here).

As for every augmentation step, each of these occlusion
parameters is defined by the noise vector z. For our experi-
ments, we chose the following sampling distributions (with
B – Bernoulli, U – Uniform, and N – Gaussian):

• B
(
U(0, lx/4), U(lx/4, l)

)
for cX ;

Algorithm 2: Random polygon generation [44]

Input: z ∈ Zk noise vector
Output: p = {pi ∈ R2}Nvert

i=0 polygon points
/* sampling occlusion parameters

from the noise vector: */
1 cx, cy, rave, Nvert, ε, σ ← sampleFromVector2(z);
/* generating angle steps: */

2 sum = 0 ;
3 for i ∈ {1, . . . , Nvert} do
4 δθi ← U(2π/Nvert − ε, 2π/Nvert + ε) ;
5 sum← sum+ step ;
6 end
/* normalizing the steps: */

7 k ← sum/(2π) ;
8 for i ∈ {1, . . . , Nvert} do
9 δθi ← δθi/k ;

10 end
/* generating polygon points: */

11 θ1 ← U(0, 2π) ;
12 for i ∈ {1, . . . , Nvert} do
13 r ← N (rave, σ) ;
14 pi ← (cX + r cos(θi), cY + r sin(θi)) ;
15 θi ← θi + δθi
16 end
17 return p

• B
(
U(0, ly/4), U(ly/4, l)

)
for cY ;

• U(10, l/4) for rave, with l = min(lx, ly);

• U(3, 10) for Nvert;

• U(0, 0.5) for σ.

C.3. Depth Image Rendering

As explained in Subsections 3.2 and 4.1 of the paper, the
generation of noiseless synthetic depth images from the 3D
models was simply done using OpenGL [29], printing the
z-buffer content into an image for every viewpoint. View-
points were sampled by selecting the vertices of an icosahe-
dron centered on the target objects. Finer sampling can be
achieved by subdividing each triangular face of the icosahe-
dron into four smaller triangles; and in-plane rotations can
be added by rotating the camera around the axis pointing to
the object for each vertex.

For the LineMOD [23] synthetic dataset, we chose an
icosahedron of radius 600mm with 3 consecutive subdi-
visions, and we considered only the vertices of its upper
half (i.e. no images shot from below the object). Seven in-
plane rotations were added for each vertex, from -45◦ to
45◦ with a stride of 15◦. Rotation invariance of four out of
fifteen (cup, bowl, glue, and eggbox) LineMOD objects was
also taken into account by limiting the amount of sampling

points, such that each patch is unique. Figure S4 demon-
strates the results of the output vertex sampling for differ-
ent object types. We thus generated 2359 depth images for
each of the 11 regular objects, 1239 for 3 plane symmetric
objects (cup, glue, and eggbox) and 119 for the axis sym-
metric bowl.

(a) Axis symmetric (b) Plane symmetric (c) Regular

Figure S4: Vertices sampling for different objects types of
LineMOD objects – each vertex represents a camera position
from which the object is rendered.

Similarly for each of the 50 objects selected from Big-
BIRD [58], we considered the upper half of an icosahedron
subdivided 3 times but with no in-plane rotations (as the test
set contains none).

For T-LESS [24] synthetic data, the whole icosahedron,
with a radius of 600mm and 2 subdivisions, was considered
(since objects in this dataset can lie on different sides from
one scene to another). Since the test dataset contains no in-
plane rotations, none were added to the training data neither.
This led to the generation of 162 depth images per object
(for 5 objects — numbers 2, 6, 7, 25, and 29).

D. Additional Qualitative Results
Figures S5, S6, S7, and S8 contain further visual re-

sults, for the processing by our pipeline of LineMOD [23],
T-LESS [24], and BigBIRD [58] real depth images.

in
p

u
t

o
u

tp
u

t
G

T
in

p
u

t
o

u
tp

u
t

G
T

in
p

u
t

o
u

tp
u

t
G

T

Figure S5: Results on LineMOD [23] – real scans (input) processed by our method, compared to the ground-truth (GT).

in
p

u
t

o
u

tp
u

t
G

T
in

p
u

t
o

u
tp

u
t

G
T

Figure S6: Results on T-LESS [24] – real scans (input) processed by our method, compared to the ground-truth (GT).

in
p

u
t

o
u

tp
u

t
G

T
in

p
u

t
o

u
tp

u
t

G
T

in
p

u
t

o
u

tp
u

t
G

T
in

p
u

t
o

u
tp

u
t

G
T

in
p

u
t

o
u

tp
u

t
G

T

Figure S7: Results on BigBIRD [58] (1/2) – real scans (input) processed by our method, compared to the ground-truth (GT). Each of the
50 selected objects is displayed twice with different poses.

in
p

u
t

o
u

tp
u

t
G

T
in

p
u

t
o

u
tp

u
t

G
T

in
p

u
t

o
u

tp
u

t
G

T
in

p
u

t
o

u
tp

u
t

G
T

Figure S8: Results on BigBIRD [58] (2/2) – real scans (input) processed by our method, compared to the ground-truth (GT). Each of the
50 selected objects is displayed twice with different poses.

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al.
Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467, 2016.
12

[2] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and
D. Krishnan. Unsupervised pixel-level domain adapta-
tion with generative adversarial networks. arXiv preprint
arXiv:1612.05424, 2016. 2, 3, 4, 5, 9

[3] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and
D. Erhan. Domain separation networks. In Advances in Neu-
ral Information Processing Systems, pages 343–351, 2016.
4, 10, 11, 12

[4] F. M. Carlucci, P. Russo, and B. Caputo. A deep represen-
tation for depth images from synthetic data. arXiv preprint
arXiv:1609.09713, 2016. 2

[5] F. M. Carlucci, P. Russo, and B. Caputo. (de)2co: Deep depth
colorization. IEEE Robotics and Automation Letters, 2018.
12

[6] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,
Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,
J. Xiao, L. Yi, and F. Yu. ShapeNet: An Information-Rich
3D Model Repository. Technical Report arXiv:1512.03012
[cs.GR], Stanford University — Princeton University —
Toyota Technological Institute at Chicago, 2015. 3

[7] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.
Return of the devil in the details: Delving deep into convo-
lutional nets. arXiv preprint arXiv:1405.3531, 2014. 5

[8] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever,
and P. Abbeel. Infogan: Interpretable representation learning
by information maximizing generative adversarial nets. In
Advances in Neural Information Processing Systems, pages
2172–2180, 2016. 4

[9] D. Ciregan, U. Meier, and J. Schmidhuber. Multi-column
deep neural networks for image classification. In Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Confer-
ence on, pages 3642–3649. IEEE, 2012. 5

[10] G. Csurka. Domain adaptation for visual applications: A
comprehensive survey. arXiv preprint arXiv:1702.05374,
2017. 3

[11] E. L. Denton, S. Chintala, R. Fergus, et al. Deep genera-
tive image models using a laplacian pyramid of adversarial
networks. In Advances in neural information processing sys-
tems, pages 1486–1494, 2015. 4

[12] S. Fidler, S. Dickinson, and R. Urtasun. 3d object detec-
tion and viewpoint estimation with a deformable 3d cuboid
model. In NIPS, pages 611–619, 2012. 2

[13] Y. Ganin and V. Lempitsky. Unsupervised domain adap-
tation by backpropagation. In International Conference on
Machine Learning, pages 1180–1189, 2015. 3, 4

[14] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,
F. Laviolette, M. Marchand, and V. Lempitsky. Domain-
adversarial training of neural networks. Journal of Machine
Learning Research, 17(59):1–35, 2016. 3, 4

[15] L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm
of artistic style. arXiv preprint arXiv:1508.06576, 2015. 3

[16] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer
using convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2414–2423, 2016. 3

[17] J. Gauthier. Conditional generative adversarial nets for
convolutional face generation. Class Project for Stanford
CS231N: Convolutional Neural Networks for Visual Recog-
nition, Winter semester, 2014(5):2, 2014. 4

[18] A. Geiger, M. Roser, and R. Urtasun. Efficient large-scale
stereo matching. In ACCV, pages 25–38, 2011. 2

[19] G. Georgakis, A. Mousavian, A. C. Berg, and J. Kosecka.
Synthesizing training data for object detection in indoor
scenes. arXiv preprint arXiv:1702.07836, 2017. 12

[20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In Advances in neural information
processing systems, pages 2672–2680, 2014. 4, 5

[21] M. Gschwandtner, R. Kwitt, A. Uhl, and W. Pree. Blensor:
blender sensor simulation toolbox. In Advances in Visual
Computing, pages 199–208. Springer, 2011. 2, 3

[22] S. Gu, W. Zuo, S. Guo, Y. Chen, C. Chen, and L. Zhang.
Learning dynamic guidance for depth image enhancement.
Analysis, 10(y2):2, 2017. 3

[23] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski,
K. Konolige, and N. Navab. Model based training, detection
and pose estimation of texture-less 3d objects in heavily clut-
tered scenes. In ACCV. Springer, 2012. 1, 6, 7, 10, 12, 15,
16

[24] T. Hodan, P. Haluza, Š. Obdržálek, J. Matas, M. Lourakis,
and X. Zabulis. T-less: An rgb-d dataset for 6d pose estima-
tion of texture-less objects. In Applications of Computer Vi-
sion (WACV), 2017 IEEE Winter Conference on, pages 880–
888. IEEE, 2017. 7, 10, 15, 16

[25] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-
to-image translation with conditional adversarial networks.
arXiv preprint arXiv:1611.07004, 2016. 2, 3, 4, 6, 12, 13

[26] J. Jung, J.-Y. Lee, and I. S. Kweon. Noise aware depth de-
noising for a time-of-flight camera. In Frontiers of Computer
Vision (FCV), 2014 Korea-Japan Joint Workshop on. IEEE,
2014. 3

[27] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab.
Ssd-6d: Making rgb-based 3d detection and 6d pose esti-
mation great again. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1521–
1529, 2017. 5

[28] M. Keller and A. Kolb. Real-time simulation of time-of-
flight sensors. Simulation Modelling Practice and Theory,
17(5):967–978, 2009. 2, 3

[29] Khronos Group. Open graphics library (opengl). https:
//opengl.org, 2006-2017. 15

[30] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014. 13

[31] M. J. Landau. Optimal 6D Object Pose Estimation with Com-
modity Depth Sensors. PhD thesis, University of Virginia,
2016. 2, 3

[32] M. J. Landau, B. Y. Choo, and P. A. Beling. Simulating
kinect infrared and depth images. 2015. 2, 3

https://opengl.org
https://opengl.org

[33] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. 7

[34] C. Li and M. Wand. Precomputed real-time texture synthesis
with markovian generative adversarial networks. In ECCV,
pages 702–716. Springer, 2016. 4

[35] C. Li, K. Xu, J. Zhu, and B. Zhang. Triple generative adver-
sarial nets. arXiv preprint arXiv:1703.02291, 2017. 2, 3, 4,
5

[36] J. J. Lim, H. Pirsiavash, and A. Torralba. Parsing ikea ob-
jects: Fine pose estimation. In IEEE ICCV, pages 2992–
2999. IEEE, 2013. 2

[37] M.-Y. Liu and O. Tuzel. Coupled generative adversarial net-
works. In Advances in neural information processing sys-
tems, pages 469–477, 2016. 4

[38] S. Liu, C. Chen, and N. Kehtarnavaz. A computationally
efficient denoising and hole-filling method for depth image
enhancement. In Real-Time Image and Video Processing,
page 98970V, 2016. 3

[39] W. Liu, L. Ma, B. Qiu, M. Cui, and J. Ding. An efficient
depth map preprocessing method based on structure-aided
domain transform smoothing for 3d view generation. PloS
one, 12(4):e0175910, 2017. 3

[40] S. Lu, X. Ren, and F. Liu. Depth enhancement via low-rank
matrix completion. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3390–
3397, 2014. 3

[41] P. Luc, C. Couprie, S. Chintala, and J. Verbeek. Seman-
tic segmentation using adversarial networks. arXiv preprint
arXiv:1611.08408, 2016. 4

[42] D. Maturana and S. Scherer. Voxnet: A 3d convolutional
neural network for real-time object recognition. In IEEE
IROS, September 2015. 2, 3

[43] D. Nie, R. Trullo, J. Lian, C. Petitjean, S. Ruan, Q. Wang,
and D. Shen. Medical image synthesis with context-aware
generative adversarial networks. In International Confer-
ence on Medical Image Computing and Computer-Assisted
Intervention, pages 417–425. Springer, 2017. 4

[44] M. Ounsworth. Anticipatory Movement Planning for
Quadrotor Visual Servoeing. PhD thesis, McGill University
Libraries, 2015. 6, 14, 15

[45] J. Peck. Fastnoise library. https://github.com/
Auburns/FastNoise, 2016. 13

[46] K. Perlin. Improving noise. In ACM Transactions on Graph-
ics (TOG), volume 21, pages 681–682. ACM, 2002. 6, 13

[47] B. Planche, Z. Wu, K. Ma, S. Sun, S. Kluckner, T. Chen,
A. Hutter, S. Zakharov, H. Kosch, and J. Ernst. Depthsynth:
Real-time realistic synthetic data generation from cad mod-
els for 2.5 d recognition. In 3D Vision (3DV), 2017 Fifth
International Conference on. IEEE, 2017. 2, 3, 6

[48] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. arXiv preprint arXiv:1511.06434, 2015. 4

[49] K. Rematas, T. Ritschel, M. Fritz, and T. Tuytelaars. Image-
based synthesis and re-synthesis of viewpoints guided by
3d models. In Computer Vision and Pattern Recogni-
tion (CVPR), 2014 IEEE Conference on, pages 3898–3905.
IEEE, 2014. 3

[50] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In In-
ternational Conference on Medical Image Computing and
Computer-Assisted Intervention, pages 234–241. Springer,
2015. 6, 12

[51] A. Rozantsev, V. Lepetit, and P. Fua. On rendering synthetic
images for training an object detector. Computer Vision and
Image Understanding, 2015. 2

[52] F. Sadeghi and S. Levine. (cad)2rl: Real single-
image flight without a single real image. arXiv preprint
arXiv:1611.04201, 2016. 3, 11

[53] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-
ford, and X. Chen. Improved techniques for training gans. In
Advances in Neural Information Processing Systems, pages
2234–2242, 2016. 4

[54] A. Saxena, J. Driemeyer, and A. Y. Ng. Learning 3-d object
orientation from images. In IEEE ICRA, pages 4266–4272,
2009. 2

[55] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang,
and R. Webb. Learning from simulated and unsuper-
vised images through adversarial training. arXiv preprint
arXiv:1612.07828, 2016. 2, 3, 4, 9, 10, 11, 12

[56] P. Y. Simard, D. Steinkraus, J. C. Platt, et al. Best prac-
tices for convolutional neural networks applied to visual doc-
ument analysis. In ICDAR, volume 3, pages 958–962, 2003.
5, 6

[57] A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel.
Bigbird: A large-scale 3d database of object instances. In
IEEE ICRA, pages 509–516. IEEE, 2014. 2

[58] A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel.
Bigbird: A large-scale 3d database of object instances. In
2014 IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE, 2014. 12, 13, 15, 17, 18

[59] R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng.
Convolutional-recursive deep learning for 3d object classifi-
cation. In NIPS, pages 665–673, 2012. 2

[60] S. Song, S. P. Lichtenberg, and J. Xiao. Sun rgb-d: A rgb-d
scene understanding benchmark suite. In IEEE CVPR, pages
567–576, 2015. 2

[61] H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller.
Multi-view convolutional neural networks for 3d shape
recognition. In IEEE ICCV, 2015. 2, 3

[62] H. Su, C. R. Qi, Y. Li, and L. J. Guibas. Render for CNN:
viewpoint estimation in images using cnns trained with ren-
dered 3d model views. CoRR, abs/1505.05641, 2015. 3

[63] Y. Taigman, A. Polyak, and L. Wolf. Unsupervised cross-
domain image generation. arXiv preprint arXiv:1611.02200,
2016. 2, 3, 4

[64] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and
P. Abbeel. Domain randomization for transferring deep
neural networks from simulation to the real world. arXiv
preprint arXiv:1703.06907, 2017. 3, 11

[65] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Ad-
versarial discriminative domain adaptation. arXiv preprint
arXiv:1702.05464, 2017. 3

[66] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell.
Deep domain confusion: Maximizing for domain invariance.
arXiv preprint arXiv:1412.3474, 2014. 3

https://github.com/Auburns/FastNoise
https://github.com/Auburns/FastNoise

[67] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance normal-
ization: The missing ingredient for fast stylization. arXiv
preprint arXiv:1607.08022, 2016. 13

[68] Y. Wang, J. Feng, Z. Wu, J. Wang, and S.-F. Chang. From
low-cost depth sensors to cad: Cross-domain 3d shape re-
trieval via regression tree fields. In ECCV, September 2014.
2

[69] P. Wohlhart and V. Lepetit. Learning descriptors for object
recognition and 3d pose estimation. In IEEE CVPR, pages
3109–3118, 2015. 3, 5

[70] S. Worley. A cellular texture basis function. In Proceedings
of the 23rd annual conference on Computer graphics and
interactive techniques, pages 291–294. ACM, 1996. 6, 13

[71] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3d shapenets: A deep representation for volumetric
shapes. In IEEE CVPR, pages 1912–1920, 2015. 2, 3

[72] J. Xie, R. S. Feris, and M.-T. Sun. Edge-guided single depth
image super resolution. IEEE Transactions on Image Pro-
cessing, 25(1):428–438, 2016. 3

[73] Y. Xue, T. Xu, H. Zhang, R. Long, and X. Huang. Segan: Ad-
versarial network with multi-scale l 1 loss for medical image
segmentation. arXiv preprint arXiv:1706.01805, 2017. 4

[74] L. Yu, W. Zhang, J. Wang, and Y. Yu. Seqgan: Sequence
generative adversarial nets with policy gradient. In AAAI,
pages 2852–2858, 2017. 4

[75] S. Zakharov, W. Kehl, B. Planche, A. Hutter, and S. Ilic. 3d
object instance recognition and pose estimation using triplet
loss with dynamic margin. In Proceedings of the Interna-
tional Conference on Intelligent Robots and Systems, 2017.
3, 5, 7

[76] X. Zhang and R. Wu. Fast depth image denoising and en-
hancement using a deep convolutional network. In Acoustics,
Speech and Signal Processing (ICASSP), 2016 IEEE Inter-
national Conference on, pages 2499–2503. IEEE, 2016. 3

[77] J. Zhu, J. Zhang, Y. Cao, and Z. Wang. Image guided depth
enhancement via deep fusion and local linear regularization.
2017. 3

[78] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-
to-image translation using cycle-consistent adversarial net-
works. arXiv preprint arXiv:1703.10593, 2017. 4, 9, 10, 11,
12

