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Abstract

The aim of this study was to introduce and evaluate a contour segmentation method
to extract the interfaces of the intima-media complex in carotid B-mode ultrasound

∗Corresponding author
E-mail: g.zahnd@erasmusmc.nl
Address: Biomedical Imaging Group Rotterdam, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam,
the Netherlands
Telephone: +31-10-7043050

Preprint submitted to Ultrasound in Medicine and Biology December 5, 2016



images. The method was applied to assess the temporal variation of the intima-media
thickness during the cardiac cycle.

The main methodological contribution of the proposed approach is the intro-
duction of an augmented dimension to process two-dimensional images in a three-
dimensional space. The third dimension, which is added to the two spatial dimen-
sions of the image, corresponds to the tentative local thickness of the intima-media
complex. The method is based on a dynamic programming scheme that runs in a
three-dimensional space generated with a shape-adapted filter bank. The optimal
solution corresponds to a single medial axis representation that fully describes the
two anatomical interfaces of the arterial wall. The method is fully-automatic and
does not require any input from the user.

The method was trained on 60 subjects and validated on 184 other subjects
from six different cohorts and four different medical centers. The arterial wall was
successfully segmented in all analyzed images (average pixel size of 57 ± 20 µm),
with average segmentation errors of 47± 70 µm for the lumen-intima interface, 55±
68 µm for the media-adventitia interface, and 66 ± 90 µm for the intima-media
thickness. The amplitude of the temporal variations in IMT during the cardiac cycle
was significantly higher in the diseased population compared to healthy volunteers
(106± 48 vs. 86± 34 µm, p = 0.001).

The introduced framework is a promising approach to investigate an emerg-
ing functional parameter of the arterial wall, by assessing the cyclic compression-
decompression pattern of the tissues.

Keywords: Contour segmentation, Carotid artery, Ultrasound, Dynamic
programming, Front propagation, Intima-media thickness

Introduction1

Cardiovascular diseases are the leading cause of mortality and morbidity world-2

wide (WHO, 2015). An early sign of the atherosclerotic process is arterial wall3

thickening. Carotid intima-media thickness (IMT, Fig. 1) has been demonstrated4

to be strongly correlated with cardiovascular diseases (O’Leary et al., 1999; Baldas-5

sarre et al., 2000; Polak et al., 2011), and is considered an established biomarker6

of atherosclerosis (Lorenz et al., 2007): IMT values < 1.1 mm indicate a healthy7

artery (Jarauta et al., 2010), values> 1.5 mm are a surrogate marker for an atheroscle-8

rosis plaque (Touboul et al., 2012), and transitional values define an intermediate9

risk. Therefore, assessing IMT is crucial to evaluate the cardiovascular risk. The fo-10

cus of the present study is the assessment of IMT at an early stage of atherosclerosis,11

in images without atheromatous plaque.12
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Figure 1: (a) Longitudinal view of the common carotid artery in B-mode ultrasound
imaging. (b) Enlarged region detailing the intima-media complex. The lumen-intima
and media-adventitia interfaces are represented by the contour lines, and the intima-
media thickness is indicated by the arrow.

B-mode ultrasound (US) imaging has been extensively used to assess carotid IMT13

in vivo. The problem of quantifying the IMT is generally addressed by extracting the14

two contours of the intima-media complex – i.e., the lumen-intima (LI) and media-15

adventitia (MA) interfaces, Figure 1 –, and calculating the distance between these16

two contours. According to the Mannheim consensus (Touboul et al., 2012), the far17

wall of the artery is generally analyzed, mainly due to better depiction of the intima-18

media double-line pattern, and to possible overestimation of the IMT in the near19

wall (Skilton et al., 2011). A large number of computerized segmentation methods20

have been proposed to (semi-) automatically extract the LI and MA interfaces in two-21

dimensional (2D) US images. Recent comprehensive review articles (Molinari et al.,22

2010; Ilea et al., 2013; Loizou, 2014) propose categorizations of these methods ac-23

cording to image-processing techniques used, and provide their synthetic description24

together with main results, etc. Hereafter, we cite only examples of major studies.25

Let us note that the interfaces of interest may be extracted either sequentially or26

simultaneously. Most of the existing methods fall in the broad category of sequential27

contour extraction, i.e., the two contours are extracted more or less independently28

(sometimes one extracted contour being used as initialization to extract the second29

one), and then possibly refined to improve their spatial consistency. Among these30

approaches, methods based on feature extraction and region classification have been31

recommended to extract the pixels that belong to the intima-media complex (Moli-32

nari et al., 2011; Menchón-Lara et al., 2014). An edge operator based on statistical33
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filtering has been introduced to extract the anatomical boundaries by analyzing the34

local statistics of the image (Faita et al., 2008). A method based on adaptative35

thresholding followed by a morphological operation was proposed to detect the con-36

tours of the layers (Ilea et al., 2013). Various implementations of the active-contour37

framework have been put forward by different teams (Mao et al., 2000; Cheng et al.,38

2002; Loizou et al., 2007; Xu et al., 2012; Bastida-Jumilla et al., 2015). Dynamic39

programming methodology has also been adopted in combination with various tech-40

niques, such as fuzzy expression forms representing image features and geometrical41

characteristics of vessel-wall interfaces (Liang et al., 2000), smooth intensity thresh-42

olding surfaces and geometric snakes (Rocha et al., 2010), and directional Haar-like43

filter (Lee et al., 2010).44

Cheng and Jiang (2008) proposed a dual-dynamic-programming method control-45

ling the simultaneous evolution of two curves and devised to jointly extract both46

contours of the intima-media complex. They argued that their approach was able to47

robustly cope with noise and irregular contrasts. In particular, the article demon-48

strated that dual dynamic programming was more efficient in handling the spatial49

consistency of the contours than traditional dynamic programming, where the con-50

tours, extracted sequentially, may intersect or collapse onto each other. Following51

a similar strategy, we have developed a method (Zahnd et al., 2012, 2013b) based52

on a representation known as medial axis, i.e., a single object fully describing the53

two contours of the intima-media complex by means of i) the radial position of a54

curve located mid-way between LI and MA interfaces, and ii) the local distance be-55

tween each contour and this curve. That information was separately estimated in56

each column of the image by means of a shape-adapted filter bank. The algorithm57

processed a whole image sequence (hereafter referred to as cine-loop) after an inter-58

active initialization performed in the first frame. The method efficiently controlled59

the location and smooth shape of the central curve, but could not guarantee the60

smoothness of the contours.61

Overall, accuracy of the methods reported by the above-cited studies, in IMT62

quantification, as well as in both LI and MA interfaces extraction, ranged between 1063

and 90 µm. Nevertheless, these results were obtained using different images, distinct64

reference annotations, and possibly not the same evaluation protocols. According to65

recent surveys (Molinari et al., 2010; Ilea et al., 2013; Loizou, 2014), for the majority66

of the studies available in the literature, evaluation was carried out using a relatively67

limited number (typically, below 50) of images that were generally acquired using68

only one scanner. Additionally, in most of these studies, training data were not69

specified; if the same images were used to tune a method and determine its optimal70

parameter settings, and then to evaluate it, the robustness of this methods with71
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respect to new data and scanners may be questionable. Moreover, although some72

approaches are fully automatic (Molinari et al., 2011; Ilea et al., 2013; Menchón-73

Lara et al., 2014; Bastida-Jumilla et al., 2015), the majority of the existing methods74

require manual input from the user. Such user interaction, which can range from75

several mouse-clicks to interactive parameter tuning, may be necessary to overcome76

various difficulties, e.g., related to acquisition-specific variability, but it is known77

to introduce inter- and intra-observer variability, when dealing with the same case,78

while automatic methods are fully reproducible, when applied to the same data.79

Additionally, to limit the user’s workload, methods devised for cine-loops containing80

hundred frames or more must be maximally automated.81

The aim of the present study was to develop a fully automatic method capa-82

ble of simultaneously extracting both contours of the intima-media complex, in US83

cine loops, with sufficient accuracy to quantify minute variations of IMT during the84

cardiac cycle. To this purpose, we introduced a dynamic-programming algorithm85

that conducts a minimum-cost-path search in a three-dimensional (3D) space built86

of the two spatial dimensions (width and height) of the image, and of all potential87

IMT values. The minimum-cost-path defines a smooth 3D medial axis that describes88

the spatial location and shape of the intima-media complex, as well as its thickness89

in each column of the image. A fully-automatic framework is presented to run the90

method without any user interaction. Nevertheless, the user may choose to manually91

perform part or all of the otherwise automatic initialization phase.92

The introduced contour segmentation method was first trained on a subset of93

in vivo data corresponding to 60 subjects from four different cohorts provided by94

three medical centers, then it was validated on a set of in vivo data with variable95

image characteristics and quality, corresponding to 184 subjects from six distinct96

cohorts, imaged with different scanners in four medical centers. Furthermore, as97

the amplitude ∆IMT of the temporal variations in IMT during the cardiac cycle98

has been demonstrated to be associated with cardiovascular risk factors (Boutouyrie99

et al., 2001; Meinders et al., 2003; Polak et al., 2012b,a; Zahnd et al., 2013b), the100

method was finally applied to quantify this emerging and potentially relevant clinical101

parameter.102
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Methods103

Similarly to our previous work (Zahnd et al., 2012, 2013b), the contour-extraction104

method is based on the well-known concept of medial axis. In 2D images, this concept105

corresponds to a representation of (mainly elongated) objects by a line located in106

the object half-way between its contours; each point of the line carries information107

about the distance to the contours. In our implementation, the gap between the108

contours, designated by the variable ∆, is calculated column-wise; in the sequel, this109

gap will be referred to as distance or IMT, although it is not rigorously equal to110

the actual distance calculated in the direction perpendicular to the contour, when111

the wall is curved or tilted in the image. Figure 2 represents the work-flow of the112

method applied within a region of interest (ROI) IW of a single frame, where W113

stands for the width of the ROI. The steps of the work-flow will be detailed in the114

subsequent sections; here we give its outline. The first step (a-b) uses the shape115

and location of the medial axis from the previous frame (or from the initialization,116

if the very first frame of the cine loop is considered), in order to “flatten” the region117

of interest centered on the intima-media complex, so that the contours of the latter118

become nearly horizontal. In the second step (c), a bank of filters sensitive to the119

typical two-line pattern of the intima-media complex is applied in each point of120

the image. The response of a filter is strong if the point, in which it is applied,121

is located half-way between two edges. Since the IMT can vary spatially and/or122

temporally (Selzer et al., 2001) each filter in the bank is tuned to a different spacing123

∆ between edges, and the range of these tentative spacings is set as a function of the124

IMT value estimated in the previous frame (or provided by the initialization). The125

responses of the filters form a 3D map, where the first two dimensions correspond to126

the x and y spatial dimensions in the image, while the third dimension corresponds127

to the spacing ∆. In the third step (d), filter responses are transformed into costs:128

stronger responses give rise to lower costs. In the fourth step (e), front propagation is129

carried out starting from x = 0: the front propagates faster where the cost is lower,130

while its non-horizontal displacements and changes in ∆ are penalized. The result131

of this step is a map of arrival times. In the subsequent step (f), the minimum-cost132

path is found by a gradient descent in this map. After the last step (g), which applies133

the inverse transformation with respect to the “flattening”, this path defines a new134

medial axis, and the next frame can be processed. Let us note that the first step135

(a-b) was identical in our previous method (Zahnd et al., 2012, 2013b), as well as136

the filter bank. These will be summarized in the subsection “Background”, whereas137

the actual contributions of the current work will be described in the subsections138

“Contour extraction” and “Automatic initialization”.139
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Figure 2: Illustration of the main steps of the segmentation method, applied here to
the full width of an image (i.e., IW = I in this example). (a) Initial image I, with the
medial axis from the previous image (solid yellow line). (b) Sub-image IT , resulting
from the T transformation of the region located between the dashed yellow lines in
(a), such that the anatomical interfaces around the previous medial axis (solid yellow
line) are nearly horizontal. (c) 3D volume, corresponding to the set of K velocity
maps F∆k generated with the filter bank H∆. (d) 3D cost function C. (e) 3D
cumulative cost function C corresponding to a left-to-right direction of propagation.
(f) Schematic representation of the optimal path (blue line), extracted by back-
tracking the decreasing values in C, corresponding to the medial axis: for each
column (x), the radial position (y) of the medial axis as well as the local IMT (z) are
fully described by the coordinates of the corresponding node. (g) Resulting contour
extraction (violet lines) after the inverse T−1 transformation.

Background140

Spatial transformation T . The aim of the transformation T is to generate a sub-141

image IT , centered around the far wall, in which the anatomical interfaces of possibly142

tilted or curved wall become nearly horizontal (Fig. 2a,b). Briefly, the transforma-143

tion T consists in mapping the medial axis from the previous frame onto the current144

frame, and then selecting, for each column in IW , a region of height H centered145

around the medial axis, which is assumed to be smooth. This column-by-column146

re-sampling is associated with longitudinal smoothing by a Gaussian filter Gσx of147

standard deviation σx. The values of H, σx, and of all other parameters will be148
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specified in the experimental part.149

Filter bank. The shape-adapted filter H∆ introduced in our previous study (Zahnd150

et al., 2013b) is defined as151

H∆ = ± G′σy ∗M∆, (1)

where (∗) is the convolution operator, G′σy is the first derivative of a Gaussian with152

standard deviation σy, and M∆ is a pair of Diracs separated by a distance ∆. The153

term G′σy alone, convolved with an image, is usually used to calculate the intensity154

gradient, and thus highlight the edges. Combined with the term M∆, it highlights155

the expected position of the medial axis, located mid-way between two edges (in our156

case, LI and MA interfaces) separated by the gap ∆ and having the same sign of the157

gradient. The ± sign corresponds to the expected gradient orientation: it is negative158

for the far wall used in this study, and would be positive if the near wall was assessed.159

Column-wise convolution of the H∆ filter with IT generates a response F∆:160

F∆ = H∆ ∗ IT . (2)

Let us remind that the scope of the present study is early stage atherosclerosis;161

therefore no atheromatous plaques are present in the image, and the IMT is expected162

to be almost constant across the image. Nevertheless, the thickness of the layers163

remains subject to a certain amount of variability that can occur both spatially164

(i.e., within a single frame) and temporally (i.e., between consecutive frames) (Selzer165

et al., 2001). To cope with such minute variation of the IMT, a range of different166

∆ values is assessed. Since the spatial resolution is relatively coarse with respect to167

the expected IMT variation, the image IT is first interpolated by a factor 10 in the168

radial direction to increase the precision. Then, a set of K filters H∆k is successively169

applied to IT to build K functions F∆k . The K tentative values of the local IMT170

are defined as:171

∆k = ∆(n− 1) + kδ, k ∈ K ≡
{
−K − 1

2
, . . . 0, . . .

K − 1

2

}
, (3)

where δ is an increment corresponding to the minimal IMT variation investigated,172

and ∆(n − 1) is the IMT value estimated in the previous image I(n − 1). When173

n = 1, the approximate IMT value found in the initialization step is used. In the174

current implementation, the range of these tentative values is restricted by threshold175

values ∆MIN and ∆MAX to discard non-realistic IMT solutions, and thus increase176

the robustness of the method and avoid a potential divergence during successive177

time-steps.178
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In the context of front propagation, F∆ can be interpreted as a velocity function:179

the front tends to propagate towards the points with larger values of F . Additionally,180

the propagation is constrained to ensure the smoothness of the resulting minimum-181

cost path. Before running the front propagation and the subsequent minimum-cost-182

path search, the velocity function F is transformed into a positive cost function C,183

where small values correspond to strong filter responses:184

C = exp(−F ). (4)

In our previous work, the function F was two-dimensional: it was obtained by se-185

lecting, for each point of spatial coordinates (x, y), the largest response among K186

filters applied in the same point: F (x, y) = max
k∈K

(F∆k(x, y)). This blind selection187

of the maximal output, without fully exploiting the smoothness of the anatomical188

structures of interest, was the limitation of that method. Indeed, artefactual patterns189

similar to the actual intima-media complex may produce the strongest filter response190

for inconsistent spatial locations and ∆ values; whereas constraining the front propa-191

gation by means of a penalty proportional to vertical displacements guaranteed that192

the radial positions of the medial axis were smooth, there was no smoothness con-193

straint on the selected ∆ values. It was therefore possible to assign highly different ∆194

values to adjacent columns in the image, thus generating irregular contours despite195

a smooth medial axis (Fig 3 left).196
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Figure 3: Schematic representation of the previously introduced segmentation method
(left), compared with the approach proposed in the present study (right). The medial
axis is represented by the red dashes, the two lumen-intima (LI) and media-adventitia
(MA) contours are indicated by the red lines, and the ∆ value (IMT) of each column
in the image is displayed with the black arrows. In the previous method, a pair of 2D
maps was used: a minimal path was extracted in a 2D space to describe the optimal
radial position of the medial axis (a), and the ∆ information was simply determined
by selecting the maximum of a filter output (b), which may lead to erroneous results
(c, pink arrow). In the present method, the minimal path is extracted in a 3D space
(d) to describe the optimal medial axis (e). Please note that the spatial dimension
y of the path is not fully represented in (d).
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197

Contour extraction198

In the new proposed method, all the K functions F∆k are concatenated to build a199

single 3D velocity function F (Fig. 2c). More precisely, each map F∆k is first down-200

sampled by a factor 10 in the radial direction, back to the original image resolution,201

in order to reduce the computational time as compared to down-sampling at a later202

stage of the work-flow. Subsequently, a 3D cost function C, where the lowest values203

(blue color in Figure 2d) correspond to the points most likely to belong to the medial204

axis, is generated according to Equation 4.205

Dynamic programming. Using the 3D cost function C, a front propagation scheme206

is run to build a 3D cumulative cost function C (Fig. 2e). Within the 3D space,207

the following x, y, z notation was adopted: x and y correspond to the horizontal and208

vertical coordinates in the 2D US image, respectively, and z represents the additional209

dimension corresponding to ∆, i.e., tentative IMT values.210

The propagation is unidirectional along x (i.e., from the left to the right border of211

the sub-image IT ), and favors the valleys in C while penalizing abrupt changes along y212

and z, corresponding to non-horizontal contours and IMT variations, respectively.213

The values of C where x = 1 (i.e., the leftmost column of the ROI) are initialized214

with the corresponding values of C. Then, the function C is iteratively generated for215

increasing values of x, with x ranging from 2 (i.e., second leftmost column of the216

ROI) to W (i.e., rightmost column of the ROI), according to Equation 5.217

C(x, y, z) = min
dy ,dz

{
C(x− 1, y + dy, z + dz)

+
(
C(x, y, z) + C(x− 1, y + dy, z + dz)

)
·
( (

1 + αy · d2
y

)
+
(
1 + αz · d2

z

) )} (5)

Here, dy ∈ {−Ny, . . . 0, . . . Ny} and dz ∈ {−Nz, . . . 0, . . . Nz} respectively represent218

displacements along the axes y and z, so the respective numbers of reachable neigh-219

bors along these directions are 2Ny + 1 and 2Nz + 1. The parameters αy and αz220

control the smoothness of the medial axis along y and z directions, respectively. Let221

us also note that the propagation function (Eq. 5) is symmetrical along the x di-222

rection, namely it yields identical results for left-to-right or right-to-left propagation223

schemes.224

Finally, the point on the right border of IT with the minimal cumulative cost is225

found, and the minimum-cost path, P , corresponding to the global optimal solution,226

is extracted by back-tracking the decreasing values in C from this identified point to227

the left border (Fig. 2f). By construction, for each value of x, there is a single point228

in P , so it can be written as P ≡ {(x, y, z) : x ∈ [1,W ], y = Py(x), z = Pz(x)}.229
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Inverse transformation T−1. For each column x of the image, y and z coordinates230

of the minimum-cost path respectively indicate the radial position, Py(x), of the231

corresponding medial-axis node in the transformed image IT and the local IMT,232

Pz(x). The final medial axis position is determined by mapping back the positions233

Py(x) onto the original image I by the T−1 operation. Let yp(x) stand for the234

position Py(x) transformed by the T−1 operation. For each column x of the image,235

the coordinates of the two contours y−(x) (LI interface) and y+(x) (MA interface) of236

the intima-media complex are then deduced from the final medial axis (Fig. 2g and237

Fig. 3 right), according to the relation238

y±(x) = yp(x)± 0.5 ∗ Pz(x). (6)

Finally, the global IMT of the image is calculated as the median radial distance239

between the LI and MA interfaces over the width W .240

Automatic initialization241

Prior to processing a given frame I(n), three parameters are required to run the242

method: i) the left and right boundaries of the ROI, IW , to be segmented, ii) the243

approximate location and shape of the far wall, and iii) the approximate IMT. When244

processing the nth frame of a cine-loop, this input is obtained from the segmentation245

results of the previous n− 1st frame. For the first frame of the cine-loop, or a static246

image, these parameters must be provided by the initialization phase. In this work,247

the initialization is fully automatic, i.e., no user interaction is required, whereas it248

was manual in our previous work. This automatic process is composed of three main249

steps described in the following paragraphs.250

Border clipping. First, the outer top, bottom, left and right borders of the image251

that contain various text information such as the date and the scanner settings252

are removed to keep only the central region corresponding to the image of the vessel253

(Fig. 4a). For every pixel of the image, a score is computed by calculating the average254

absolute difference of gray level between every pair of consecutive images in the255

cine-loop. Outer borders correspond to low-score regions since pixels remain quasi-256

identical through the entire cine-loop, whereas the central vessel image corresponds257

to high-score regions since pixels are constantly changing between different frames.258

The image is thus clipped by applying a threshold τ on the horizontal and vertical259

profiles of the calculated scores.260

Localization of the far wall. Second, an approximate location of the far wall is deter-261

mined by finding the regions with the strongest positive vertical gradient. To avoid262

12



(a) (b)

(c)(d)

Figure 4: Illustration of the 4 stages of the fully-automatic process. (a) Border clip-
ping. (b) Localization of the far wall. (c) Determination of the optimal region.
(d) Contour segmentation.

potential errors that could be caused by the presence of the jugular vein, which ex-263

hibits a similar structure and is located (in the image) above the carotid artery, the264

search is only conducted in the bottom of the image, up to h% of the total image265

height. A heavily blurred vertical intensity gradient is calculated by column-wise266

convolution with a filter G′b, defined as the first derivative of a Gaussian with a large267

standard deviation b. It is then used to build a cost function where lower costs268

correspond to larger positive gradients. A single contour is subsequently extracted269

(Fig. 4b) by a classical 2D minimum-cost-path search with this cost function, imple-270
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mented in a dynamic-programming scheme. The resulting rough contour of the far271

wall constrains the search of the initial medial axis in the last step of the initialization.272

Determination of the optimal region and of the initial IMT. Since some regions of273

the far wall are frequently too noisy and not sufficiently contrasted to be segmented274

accurately, a ROI, IW , with the best image quality, is localized. From our experi-275

ence, its width W = 3 mm provides the optimal results to extract a reproducible276

compression-decompression pattern (Zahnd et al., 2013b); a region too narrow of-277

ten yields noisy curves of IMT temporal variation, and a region too broad generally278

yields blurred curves. To find this optimal region, the contour segmentation method279

introduced in this study is tentatively applied to the entire width of the image. Let280

us recall however, that – at this stage – only an approximate location and shape of281

the far wall are available, but IMT is not. Estimating the initial IMT, localizing282

the optimal ROI, as well as refining the initial location of the line supposed to fall283

mid-way between the two contours, are jointly performed in this last step of the284

initialization process. The previously extracted location of the far wall is used to285

apply the “flattening” transformation T . A set of K tentative IMT values, linearly286

distributed in a large range between 0.4 mm and 1.5 mm, are assessed. Then, a score287

is calculated for every column of the image, by extracting the output value of the288

velocity function F∆ (Eq. 2) at the location of the medial axis resulting from the289

segmentation. Here, regions with good image quality are expected to have a high290

score since they present well perceptible lumen-intima and media-adventitia inter-291

faces. The optimal region IW is thus selected by finding the 3 mm segment with292

the highest total score (Fig. 4c). Finally, the initial IMT is selected like in the main293

method, by selecting the median radial distance between the contours resulting from294

this tentative segmentation, within IW . The results of this step, i.e., the borders of295

IW , the approximate IMT, and the spatial location of the medial axis resulting from296

the tentative segmentation, are passed as input parameters to the actual contour297

segmentation applied within IW (Fig. 4d).298
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Experiments299

Study population300

All subjects were retrospectively selected from already acquired data used in301

previous studies. Subjects presenting an atheromatous plaque in the imaged region,302

as visually assessed by a medical doctor, were excluded from our study. A total of 244303

subjects were included in the present study. To assess the accuracy and robustness304

of the proposed method on data with various image characteristics and quality, the305

present study involved a total of six cohorts from four different research centers, as306

presented in Table 1. Representative examples of images from the six different cohorts307

are displayed in Figure 5. The image data collection was conducted in compliance308

with the requirements of the Institutional Review Boards in the different research309

centers. Informed written consent was obtained from all subjects. The characteristics310

of the cohorts involved are described hereafter.311

Erasmus MC, The Netherlands. The first 51 subjects included in the PARISK study312

(Truijman et al., 2014) at the Erasmus Medical Center, the Netherlands, were consid-313

ered. The subjects were individuals with high cardiovascular risk; the main inclusion314

criteria were a transient ischemic attack or a minor stroke in the past six weeks be-315

fore enrollment, and a stenosis < 70% in the carotid bifurcation. Eight subjects were316

rejected from the study, because they had an atherosclerotic plaque in the imaged317

region. The remaining 43 subjects (denoted NLd) were included in the study.318

University of Lyon, France. Fifty-seven healthy controls (FRc) and 25 patients319

(FRd) at high cardiovascular risk were involved. Data acquisition was performed at320

Louis Pradel Hospital (Lyon, France), as previously described (Zahnd et al., 2013a).321

The inclusion criterion for the at-risk patients was the presence of one of the following322

diseases diagnosed at least 1 year before: metabolic syndrome, or type 1 or 2 dia-323

betes. No other criterion, including clinical characteristics, was used to select these324

subjects. Healthy controls were cardiovascular-risk-factor free (tobacco use, hyper-325

cholesterolemia, diabetes, hypertension, or particular family history), as assessed by326

an oral questionnaire.327

Sydney Medical School, Australia. Thirty healthy controls (AUc) and 30 patients328

(AUd) were selected from the database of the PerioCardio study (Kapellas et al.,329

2014). The images were collected at the Menzies School of Health Research in Dar-330

win, Northern Territory, Australia. The at-risk patients were Aboriginal Australian331

with moderate periodontitis, an emerging cardiovascular risk factor (Bouchard et al.,332

2010). The healthy controls were age-matched Caucasian subjects without cardio-333

vascular risk factors.334
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University of Cyprus, Cyprus. Data were gathered by downloading a publicly-available335

dataset containing 100 images recorded at the Cyprus Institute of Neurology and Ge-336

netics (Nicosia, Cyprus) (Loizou et al., 2007). All subjects were at risk of atheroscle-337

rosis and had already developed clinical symptoms, such as stroke or transient is-338

chemic attack. Forty-one patients were imaged twice, and the corresponding 41339

images were rejected to keep a single image per patient. The remaining 59 images340

(CYd) were included in the study.341

Table 1: Characteristics of the six cohorts involved in the present study. (∗ The 100 initial images
of the dataset from the University of Cyprus correspond to 58 males and 42 females with a mean
age of 54 y.o. Nevertheless, 41 of these subjects were imaged twice. Therefore, the actual sex and
age information for the 59 subjects of the CYd cohort is unknown.)

Medical Cohort Diseased/ n Training Testing Gender Mean Age
center name Control set set (males) (years)

Erasmus MC, The Netherlands NLd Diseased 43 13 30 36 69.1± 7.5
University of Lyon, France FRc Control 57 19 38 24 37.9± 14.1
University of Lyon, France FRd Diseased 25 8 17 16 56.2± 10.5

Sydney Medical School, Australia AUc Control 30 0 30 17 41.0± 16.4
Sydney Medical School, Australia AUd Diseased 30 0 30 22 40.3± 8.9

University of Cyprus, Cyprus CYd Diseased 59 20 39 ∗ ∗

Acquisition of carotid artery ultrasound images342

Longitudinal B-mode US images of the CCA were acquired for all subjects. The343

subjects were examined in the supine position. Image acquisition was performed344

with a clinical scanner equipped with a linear array transducer. The characteristics345

of the specific scanner used for each cohort are described in Table 2. For all but one346

(CYd) cohort, images were recorded through at least two consecutive full cardiac347

cycles, whereas for the CYd cohort only a single static image was available for each348

patient. The average (± std) number of frames for each cine loop was 206±145 (range349

[66 − 491]). All image data were digitally stored and transferred to a commercial350

computer for off-line image analysis.351

Generation of training and testing sets352

Each cohort was divided into a training set and a testing set. The training353

datasets were used during the development phase of the method, to empirically de-354

termine the optimal parameter settings. The testing datasets were used only during355

the evaluation phase of the method, to determine the performance of the developed356

framework on independent test data. The distribution of the training and testing357

sets for each cohort is detailed in Table 1.358
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NLd
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FRc FRd

AUd CYd

Figure 5: Representative images from the six different cohorts.

Table 2: Characteristics of the different ultrasound scanners used for the six cohorts.
Cohort name Scanner Transducer (MHz) Pixel size (µm) Frame-rate (fps)

NLd iU22, Philips Medical Systems 5–17 or 5–12 94± 9 40
Bothell, USA

FRc, FRd Antares, Siemens 7.5–10 34± 5 26
Erlangen, Germany

AUc, AUd Sonosite MicroMaxx 5–10 52± 4 24
WA, USA

CYd HDI-3000, Advanced Technology 4–7 67± 0 –
Laboratories, Seattle, USA

For all but two (AUc and AUd) cohorts, the training set was generated by ran-359

domly selecting a sub-sample of subjects (i.e., roughly one third of the total number360

of subjects), and the testing set was generated with all the remaining subjects. For361

both AUc and AUd cohorts, the training datasets are empty. The reason for this362

decision was to evaluate the method on images with new unknown characteristics, by363

directly applying the proposed framework on the full AUc and AUd datasets without364

any prior training on images from these two specific cohorts.365

Independent standard366

To quantify the accuracy of the method, despite the lack of ground truth inherent367

to in vivo imaging, reference contours were traced by an experienced analyst A1, on368
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the entire exploitable width of one image per subject. For the NLd, FRc, FRd,369

AUc and AUd cohorts, the first frame of the cine-loop was selected. First, as the370

left and/or right borders of the image sometimes show blur, low echoes, or high371

noise, the analyst A1 was asked to clip out the poor-quality borders, if necessary,372

thus defining the ROI to be considered. Subsequently, the analyst A1 performed373

the manual segmentation of both LI and MA interfaces, using a graphical interface374

that was developed in house specifically for this purpose. Continuous contours were375

generated by fitting a curve through a collection of carefully placed control points.376

The curve interpolation was done by means of the MATLAB pchip function. Two377

other analysts, A2 andA3, who were blinded to the other results, manually traced the378

anatomical interfaces LI and MA, within the same ROIs of the same set of images.379

These tracings were used to assess inter-operator variability. Similarly, to assess380

intra-operator variability, A1 performed one week later a second manual delineation381

of the contours1.382

Parameter settings and implementation383

The optimal parameter settings were empirically determined using the training384

set (n = 60), then the method was applied once to all the images of the testing set385

(n = 184) using the following configuration: height of the region centered around386

the medial axis used in the transformation T , H = 3 mm; minimal and maximal387

IMT threshold values, ∆MIN = 0.4 mm and ∆MAX = 1.5 mm, respectively; standard388

deviation of the Gaussian functions Gσx and Gσy , σx = 150 µm and σy = 100 µm,389

respectively; smoothness parameters, αy = 2 and αz = 0.1; number of reachable390

neighbors along the y and z dimensions, 2Ny+1 = 5 and 2Nz+1 = 5. The number K391

of possible values ∆k of the IMT depends of the spatial resolution of the image: the392

range between ∆min and ∆max was equal to 1 mm, with an increment δ between393

the K slices equal to 0.1 pixel (for example, K = 200 for an image with a spatial394

resolution of 50 µm). Setting δ in pixels2 was motivated by the consistency between395

the three dimensions of the search space: with a finer image resolution one can expect396

a finer estimate of the IMT. The standard deviation b of the Gaussian function Gb397

was equal to 1 mm. In the automatic initialization process, the parameter τ used398

in border clipping, was equal to 3% of the highest score calculated in the given cine399

1For the CYp cohort, reference tracings were collected together with the images of the publicly-
available dataset (Loizou et al., 2007). For this specific cohort, the reference annotations were
already performed by two different analysts. Tracings from a third analyst and intra-analyst vari-
ability were not available.

2Setting δ in millimeters would yield a constant value of K and a constant “slice thickness” of
the 3rd dimension in the search space.
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loop, whereas the height, h, limiting the search of the far wall in the bottom of the400

image was set to 60% of the clipped-image height.401

The algorithm was implemented in a graphical user interface (GUI), both devel-402

oped in MATLAB (MATLAB 7.14, The MathWorks Inc., Natick, MA, USA, 2011).403

A compiled executable version, along with a user guide, were made publicly avail-404

able: https://www.creatis.insa-lyon.fr/carolab/. The GUI also includes an405

optional interactive initialization enabling the user to manually define the inputs of406

the algorithm, like in our previous work: (i) select a sub-image IW by clipping out,407

if necessary, the left and/or right borders of the image beyond which the wall cannot408

be clearly perceived due to poor image quality, (ii) indicate the approximate location409

and shape of the far wall by positioning three points within the intima-media com-410

plex, and (iii) provide a rough initial estimate of the IMT by positioning two radially411

aligned points on the LI and MA interfaces. Although the focus of this work is the412

fully automatic method, the manual initialization was also used in the evaluation, to413

assess different steps of the whole process, as described in the next subsections.414

Evaluation of the segmentation accuracy415

To assess the accuracy of the proposed method, two distinct experiments were416

carried out: with the fully-automatic procedure, and with the manual initialization417

procedure described in the previous subsection. Both were performed for all images418

annotated by A1, A2, and A3 in the testing set. The resulting contours and IMT419

were compared to those corresponding to the manual annotations by A1. For both LI420

and MA interfaces, the unitary segmentation error ε(x) was defined as the absolute421

distance between the reference contour manually traced by A1 and the estimated422

contour, in the column x of the image. For each image, the IMT estimation error423

was defined as the difference between the IMT estimated by the method and the424

reference IMT value derived from A1’s annotations. The latter was calculated as the425

median column-wise distance between the LI and MA reference contours traced by426

A1, over the width of the ROI used in the given experiment, i.e., W = 3 mm in the427

first experiment, and whole exploitable width defined by A1, in the second one.428

429

Fully automatic process. The aim of the first experiment was to assess the robustness430

of each step in the fully-automatic initialization process (Fig. 4), as well as the accu-431

racy of the segmentation method initialized by this process. The analyst A1 labeled432

the result of each step either as a success or as a failure. During the evaluation,433

failures were reported and corrected in a cascade, i.e., failures at the kth step were434

manually corrected prior to conducting the k + 1st step, as described below.435
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• For the first step, success was defined as clipping out the entire top, bottom, left436

and right borders of the frame, while conserving the full image of the artery437

(Fig. 4a). Failures were corrected by the user manually indicating the real438

borders (1 mouse click per erroneous border).439

• For the second step, success was defined as getting a contour that remained440

close to the far wall over the full width of the image (Fig. 4b). Failures were441

corrected by the user manually tracing the approximate location and curvature442

of the far wall (3 mouse clicks).443

• For the third step, success was defined as a ROI of width W = 3 mm located in444

a region with good image quality, where both LI and MA contours were clearly445

visible (Fig. 4c). Failures were corrected by the user manually indicating the446

center of the new ROI on the region with optimal image quality (1 mouse click).447

• For the fourth step, success was defined as a correct segmentation of both LI448

and MA interfaces (Fig. 4d). Failures were corrected by the user manually in-449

dicating the IMT (2 mouse clicks) before re-running the segmentation method.450

Let us note that the images of the cohort CYp are static frames, therefore the451

first step could not be applied, because a cine-loop is required. Hence, this step was452

not evaluated for that cohort, and the borders were manually indicated by A1.453

Segmentation with interactive initialization. The aim of the second experiment was454

to assess the ability of the method to accurately extract the LI and MA interfaces in455

the whole exploitable width, W , determined by the user, and to compare the results456

with our previous work (Zahnd et al., 2013b). The initialization was performed by457

the analyst A1 who defined the ROI IW , indicated the approximate location and458

shape of the wall, and roughly determined the IMT. The same initialization was459

used to run the proposed segmentation method and the previous one. To investigate460

the impact of the manual initialization phase, the reproducibility of the segmentation461

algorithm was also assessed. The method was thus applied twice on each image, with462

the analyst A1 performing the initialization phase a second time – one week later –463

within the same clipped IW region.464

Evaluation of the temporal variation of the IMT during the cardiac cycle465

The intima-media complex has been demonstrated to undergo a reproducible466

compression-decompression pattern during the cardiac cycle (Selzer et al., 2001),467

namely the IMT is maximal at the end of diastole and minimal during systole. The468

amplitude of the IMT compression, denoted ∆IMT and corresponding to the difference469
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between the diastolic and systolic values of the IMT, has been shown to be positively470

correlated with cardiovascular risk factors (Boutouyrie et al., 2001; Meinders et al.,471

2003; Polak et al., 2012b,a; Zahnd et al., 2013b).472

To investigate this phenomenon, the proposed segmentation method was applied473

to all subjects from both the training and testing datasets, except those from the474

CYp cohort, as only one static image was available instead of a temporal cine-loop.475

The fully-automatic initialization scheme was used to determine a region of width476

W = 3 mm located in the far wall, and the IMT was then assessed in all frames of the477

cine-loop with the contour segmentation method. For all the 185 analyzed subjects,478

the amplitude ∆IMT of the temporal variation of the IMT was finally measured by479

the analyst A1 on the resulting time-series by indicating the maximal (i.e., during480

the diastole) and minimal (i.e., during the systole) IMT values.481

Statistical analysis482

The Mann-Whitney U test was used to compare the values of the end-diastole483

IMT, as well as the total amplitude of the IMT variation ∆IMT during the cardiac484

cycle, between at-risk patients and healthy controls. The paired t-test was used to485

compare the errors between the present method and the one previously developed486

by our team (Zahnd et al., 2013b). The value p < 0.05 was considered to indicate a487

statistically significant difference. The Pearson’s correlation coefficient R was used488

to calculate the correlation between the reference tracings and the results from the489

method, as well as between the end-diastolic IMT and the amplitude ∆IMT. All490

statistical analyzes were performed using MATLAB.491
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Results492

Fully-automatic process493

Segmentation with fully-automatic initialization was evaluated in the 184 images494

of the testing set. Qualitatively, the robustness of each step was assessed as follows: 2495

failures for the first step (border clipping), no failure for the second step (localization496

of the far wall), 7 failures for the third step (determination of the region with the497

best image quality), and 3 failures for the fourth step (contour extraction). Results498

from the quantitative evaluation of the contour accuracy are presented in Table 3.499

Table 3: Segmentation absolute errors (mean ± SD) in µm, between the fully-automatic segmen-
tation method and the manual tracings from A1, in the testing set. Manual correction of the
fully-automatic process was performed for 12 images.

All NLd FRc FRd AUc AUd CYd
(n = 184) (n = 30) (n = 38) (n = 17) (n = 30) (n = 30) (n = 39)

Lumen-Intima 47± 70 49± 37 38± 35 29± 20 34± 30 36± 35 94± 144
Media-Adventitia 55± 68 74± 65 29± 26 34± 29 51± 42 52± 60 110± 116

IMT 66± 90 88± 68 35± 28 19± 14 39± 31 50± 50 130± 156

Segmentation in the full exploitable width, with interactive initialization500

The proposed method was successfully applied to all the images, in both training501

and testing sets. Both LI and MA interfaces of the wall were delineated, and the502

corresponding IMT was extracted. Representative examples of resulting segmented503

contours for subjects from the six cohorts involved are displayed in Figure 6.504

For all the 244 subjects involved, the average width W of the analyzed sub-image505

IW was 20 ± 8 mm (range 3 − 51 mm), which corresponded to an average ratio of506

60± 22 % (range 10− 100 %) of the full image width.507

For both training and testing sets, the mean absolute errors (± standard de-508

viation) of the segmentation process are displayed in Table 4. These results were509

calculated by aggregating all the corresponding unitary segmentation errors in a510

single vector, prior to generating the mean absolute error and standard deviation.511

To further analyze the results, it is insightful to compare the error magnitude512

with the size of the analyzed tissues, namely, the IMT. The mean value (± standard513

deviation) of the reference IMT, in the first frame of all the subjects assessed, was514

688±164 µm. The relative errors were calculated as the ratio between each absolute515

segmentation error |ε(x)| and the corresponding individual reference IMT. The mean516

value (± standard deviation) of the relative error was equal to 7.5±10.3 % for the LI517

interface, 8.9± 9.2 % for the MA interface, and 7.6± 8.2 % for the estimated IMT.518
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NLd
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Figure 6: Results of the segmentation method (violet lines) compared to the reference contours
traced by A1 (green lines), in subjects with varying image quality from the six cohorts involved.
The left and/or right borders presenting poor image quality have been clipped out (vertical dashed
lines) prior to segmenting the contours in the sub-image IW of width W .

The IMT estimated with the proposed method was in good correlation with519

reference tracings performed by A1 (R = 0.87), as depicted in Figure 7. The good520

agreement between the estimated IMT and the reference is also demonstrated in the521

Bland-Altman plot (Fig. 8), with a 95% confidence interval equal to 158 µm and a522

signed bias of −11 µm. The error introduced by the proposed method was very close523

to the inter- and intra-analyst variability, as displayed in Figure 9.524

The computation time is proportional to the width of the investigated ROI and525

inversely proportional to the pixel size. On average, for a pixel size of 57 µm and a526

segment of width W = 20 mm (350 pixels), the processing time was 0.8 s per image.527

The errors obtained with the previous method developed by our team (Zahnd528

et al., 2013b), are reported in Table 5. These results are to be compared with light-529

gray rows in Table 4. Comparing mean errors and standard deviations in the first530

column of these tables, it can be seen that the present method overall more accurately531

extracted LI and MA interfaces. More specifically, the mean absolute error for both532

LI and MA interfaces was smaller, with a near-statistically significant p-value of 0.08533

and 0.07, respectively. Although the mean absolute error resulting from the IMT534

estimation was slightly larger, the difference was not statistically significant (p =535

0.59). Moreover, contours resulting from the previous method had a much rougher536

aspect, since their smoothness was not explicitly controlled, as depicted in Figure 10.537
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Figure 7: Linear regression line between the IMT estimated by the proposed method and the manual
reference performed by A1, for all 184 images of the testing set.
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Figure 8: Bland-Altman plot, comparing the estimates of the IMT between the proposed method
and the manual tracings performed by A1, for all 184 images of the testing set. The solid and
dashed lines represent the bias and the 95% limits of agreement, respectively.
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Figure 9: Box plot representing the dispersion between the IMT estimated with the proposed
method and the manual tracings performed by A1, compared to the inter- and intra-analyst vari-
ability, for all 184 images of the testing set. Percentiles are indicated by boxes (25th and 75th),
inner lines (50th), and error bars (5th and 95th).

NLd FRc FRd

AUc AUd CYp

Figure 10: Example of segmented contours, for each cohort, resulting from the method previously
proposed (Zahnd et al., 2013b) (yellow) and the present approach (green). The results show that
the proposed method controls the smoothness of the contours.
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Table 4: Segmentation absolute errors (mean ± SD) in µm, for the proposed method with manual
initialization and the manual tracings performed by the analysts A1,2,3.

Cohort All NLd FRc FRd AUc AUd CYd
(n = 244) (n = 43) (n = 57) (n = 25) (n = 30) (n = 30) (n = 59)

Training set n = 60 n = 13 n = 19 n = 8 n = 0 n = 0 n = 20
Lumen-Intima
Method vs A1 52± 73 64± 96 33± 27 32± 27 − − 97± 110

Method reproducibility 27± 85 33± 28 11± 10 12± 10 − − 67± 170
Inter-analysts 49± 53 76± 75 44± 42 31± 30 − − 102± 70
Intra-analyst 31± 33 54± 50 28± 26 19± 16 − − −

Media-Adventitia
Method vs A1 57± 61 66± 66 44± 51 37± 33 − − 93± 76

Method reproducibility 30± 125 33± 36 11± 10 13± 11 − − 77± 255
Inter-analysts 54± 60 102± 90 41± 42 43± 42 − − 81± 65
Intra-analyst 35± 43 58± 49 30± 41 28± 33 − − −

IMT
Method vs A1 67± 90 31± 24 28± 20 22± 24 − − 144± 122

Method reproducibility 16± 73 5± 8 2± 3 4± 4 − − 42± 125
Inter-analysts 57± 46 61± 46 51± 40 42± 30 − − 149± 54
Intra-analyst 25± 24 31± 34 25± 18 17± 16 − − −
Testing set n = 184 n = 30 n = 38 n = 17 n = 30 n = 30 n = 39

Lumen-Intima
Method vs A1 49± 62 52± 59 39± 33 35± 38 36± 30 42± 41 92± 113

Method reproducibility 18± 28 28± 24 11± 15 11± 10 17± 15 17± 16 30± 55
Inter-analysts 56± 51 68± 60 47± 40 31± 29 70± 57 80± 52 85± 68
Intra-analyst 36± 36 50± 43 34± 36 26± 34 34± 28 37± 35 −

Media-Adventitia
Method vs A1 59± 67 72± 60 43± 42 40± 42 52± 49 54± 61 104± 109

Method reproducibility 17± 26 31± 31 11± 10 12± 10 17± 18 14± 13 23± 49
Inter-analysts 69± 72 113± 95 40± 38 39± 40 100± 78 89± 79 92± 72
Intra-analyst 45± 50 65± 55 33± 40 34± 46 53± 48 59± 63 −

IMT
Method vs A1 67± 67 52± 44 29± 21 36± 21 53± 31 62± 58 145± 87

Method reproducibility 5± 8 6± 10 2± 3 3± 5 6± 6 7± 10 7± 10
Inter-analysts 59± 52 87± 67 48± 36 35± 27 52± 51 58± 53 106± 28
Intra-analyst 34± 37 36± 26 31± 29 27± 28 31± 23 44± 64 −
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Table 5: Segmentation absolute errors (mean ± SD) in µm, between the previous method that
was developed by our team (Zahnd et al., 2013b) and the manual tracings from A1, in the full
exploitable width of each image of the testing set.

All NLd FRc FRd AUc AUd CYd
(n = 184) (n = 30) (n = 38) (n = 17) (n = 30) (n = 30) (n = 39)

Lumen-Intima 55± 81 46± 53 37± 35 33± 34 56± 92 45± 51 119± 138
Media-Adventitia 68± 81 67± 69 42± 44 42± 37 71± 61 65± 73 138± 130

IMT 64± 75 45± 37 34± 30 28± 22 54± 47 59± 63 131± 109

Temporal variation of the IMT during the cardiac cycle538

The temporal variation of the IMT was assessed in all available cine-loops, and539

a cyclic compression-decompression pattern could be observed during consecutive540

cardiac cycles, as displayed in Figure 11. For all subjects, the diastolic IMT was541

systematically greater than the systolic IMT, namely 766±174 µm vs. 670±163 µm,542

respectively. The average amplitude ∆IMT of the temporal variation of the IMT543

during the cardiac cycle was 97 ± 43 µm, and corresponded to 13 ± 5% of the end-544

diastole IMT.545

Measurements from the diseased subjects (i.e., NLd, FRd and AUd, n=98) were546

then compared to the healthy controls (i.e., FRc and AUc, n=87), from both training547

and testing sets. The end-diastole IMT value, estimated with the fully-automatic548

segmentation method, was significantly higher in at-risk patients compared to healthy549

controls (855 ± 161 vs. 666 ± 129 µm, p < 0.0001). Furthermore, the amplitude550

∆IMT was also significantly higher in the diseased population compared to healthy551

volunteers (106 ± 48 vs. 86 ± 34 µm, p = 0.001), as shown in Figure 12. The552

end-diastole IMT value was not correlated with the amplitude ∆IMT of the temporal553

variation of the IMT during the cariac cycle (R = 0.3837).554
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Figure 11: Temporal variations in IMT during several consecutive cardiac cycles. The IMT was
quantified on a local region of reduced width (W = 3 mm) for all frames of the cine-loop (top
left panel). Examples of the cyclic compression-decompression pattern of the IMT, resulting from
the proposed fully-automatic method, are provided for subjects from different cohorts. The ∆IMT

parameter corresponds to the total amplitude of the IMT variations (dashed lines). The end of the
diastole is indicated by the triangle markers.
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Figure 12: Box plot representing the amplitude ∆IMT of the temporal variations in IMT during
the cardiac cycle, for healthy controls and at-risk patients. Percentiles are indicated by boxes (25th
and 75th), inner lines (50th) and error bars (5th and 95th). The result of the Mann-Whitney U
test is indicated by the p value.
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Discussion555

The main contribution of this study is an original segmentation method devised556

to simultaneously extract, from noisy images, both interfaces of thin structures with557

nearly parallel contours. Although the method is fully-automatic, its implementation558

allows quick interactive corrections, if necessary, at each step of the algorithm. It559

was tuned to segment out the carotid artery intima-media complex in 2D US images.560

These anatomical interfaces were successfully extracted for 244 subjects from six561

different cohorts. The contours obtained and the calculated IMT values were close562

to manual tracings from expert analysts, with spatial errors of the order of the pixel563

size. The temporal variation of the IMT during the cardiac cycle was finally assessed564

with use of the proposed method, and the amplitude of this variation was significantly565

higher in at-risk patients compared to healthy controls, which is in accordance with566

recent findings.567

Contour segmentation framework568

The method extracts a single medial axis, from which the contours of both LI569

and MA interfaces can be fully deduced. Among all possible solutions, the globally570

optimal medial axis is determined by means of a specific dynamic programming571

scheme, in which a 3D cost function represents, for each column x of the image, all572

potential radial positions, y, of the medial axis, as well as all potential IMT values, z.573

Similar approaches have previously been introduced, to extract a globally optimal574

(n+1)-dimensional path that describes the n-dimensional contour of tubular objects,575

with a front propagation technique based on a multi-scale filter (Wink et al., 2004),576

as well as with fast-marching methods exploiting spheres of varying radius (Li and577

Yezzi, 2007; Benmansour and Cohen, 2011).578

The front propagation scheme (Eq. 5) favors solutions that are located mid-way579

between two strong positive gradients (namely, LI and MA interfaces), while penaliz-580

ing contours with irregular shapes. More precisely, the smoothness of the medial axis581

is ruled by two penalty terms: the first one penalizing abrupt variations of the radial582

position of the medial axis between adjacent columns, and the second one penalizing583

sudden IMT variation, which would result in spiky contours even with a perfectly584

smooth medial axis. In the case of a cine-loop, the medial axis from the previous585

image is exploited as a priori information to characterize a spatial transformation T ,586

used to encourage solutions presenting a similar shape and curvature. In the case of587

a single image, a similar process is used by exploiting the information derived from588

the initialization phase. The resulting output corresponds to a pair of continuous589

and smooth contours that still capture the subtle spatial variation of the IMT within590

a given image (Fig. 6).591

30



The process is fully-automatic and does not require any user interaction. Nev-592

ertheless, manual specification of part (or all) of the initialization settings can still593

be performed by the operator in a quick and simple way via a convenient graphical594

interface. Such manual corrections are sometimes necessary to increase the overall ro-595

bustness of the method by avoiding errors that can be caused by the fully-automatic596

process in some challenging cases. Manual initialization also enables the user to per-597

form a case-by-case analysis by specifying the center of the desired ROI as well as598

its width for each subject.599

Method evaluation600

The contour extraction method was applied in a set of 244 in vivo images gath-601

ered from six different cohorts and four different research centers. Quite a large602

discrepancy could be observed between the different cohorts in terms of image char-603

acteristics and quality: FRc and FRd had a high image quality with generally well604

visible anatomical interfaces, AUc and AUd had a medium image quality with more605

blurry interfaces, NLd had an overall high image quality, but the interfaces were606

not clearly detailed as the images were zoomed out, and CYd had a challenging607

image quality with poorly visible interfaces. Image acquisition was performed with608

a different scanner in each of the four medical centers, and a discrepancy was also609

present in the spatial resolution of the images, with a pixel size equal to 94± 9 µm610

for NLd, 34± 5 µm for FRc and FRd, 52± 4 µm for AUc and AUd, 67± 0 µm for611

CYd. Moreover, the discrepancy in image quality among the analyzed data was also612

reflected by significantly varying width of the exploitable region, IW , as assessed by613

observer A1 (range 10− 100 % of the full image width).614

The accuracy of the method, for both the fully-automatic and manual initial-615

ization, was of the same order of magnitude as inter- and intra-analysts variability616

(Tables 3, 4). Overall, the mean absolute error corresponded approximately to one617

pixel. Variability of the method with the manual initialization process was sub-618

stantially smaller than inter- and intra-analysts variability, which reflects a better619

reproducibility. Variability of the method with the fully-automatic initialization620

process was null (i.e. fully reproducible results), except when the automatic process621

failed (i.e. 12 cases out of 184) and had to be manually corrected. Variability due to622

such a manual correction was not assessed, but it is likely to be very close to vari-623

ability of the manual initialization process for these specific cases (5% of the whole624

population), but – averaged over the whole population – it is likely to be negligible.625

The robustness of the method could also be verified, since images were separated626

between a training set, used to determine the optimal parameters settings, and a627

testing set, used to evaluate the method in independent test images. Let us first628
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note that the errors for the testing set were of the same magnitude as the errors629

for the training set, which reflects a certain consistency in the performances of the630

method. Moreover, when applying the method on the AUc and AUd datasets without631

any prior training on these two cohorts, good results were also obtained. In view632

of the above, the robustness of the method was demonstrated, since 244 images633

were successfully segmented using the same parameter settings, despite differences634

in arterial geometry, scanner configuration, and image quality.635

A variety of methods have been introduced to segment the carotid artery in longi-636

tudinal B-mode US images. When comparing the results of the present framework to637

previous work reported in recent review articles (Molinari et al., 2010; Ilea et al., 2013;638

Loizou, 2014), the present method would rank among the most accurate state-of-the-639

art techniques. Nevertheless, such comparisons are to be taken carefully, since the640

design of the evaluation protocol can greatly differ between distinct studies. Among641

the most encountered differences are the nature of the cohorts involved (e.g., number642

of subjects and images, healthy volunteers and/or at-risk patients), the characteris-643

tics of the images (e.g., use of several different scanners, spatiotemporal resolution),644

the distance metric (e.g., mean absolute radial distance, or polyline distance), the645

dimensions of the ROI (e.g., full image width, limited region), the properties of the646

initialization process (e.g., fully-automatic or with manual input from the user), and647

the characteristics of the manual reference annotations (e.g., discrete control points648

or continuous tracings, inter- and intra-analysts variability). To thoroughly estab-649

lish a genuine comparison between multiple state-of-the-arts approaches, a challenge650

would be necessary, where evaluation would be carried out homogeneously and in651

the same datasets for all the methods.652

Temporal variation of the IMT653

The compression-decompression pattern of the arterial layers during the cardiac654

cycle was analyzed by extracting the IMT in every frame of the cine-loop (Fig. 11).655

This operation was performed in a ROI of reduced width W = 3 mm, located in a656

well-contrasted region with clearly visible interfaces. From our experience, such a657

narrow region with good image quality is better suited to extract the minute IMT658

variations compared to the full width of the image (Zahnd et al., 2013b).659

The IMT was significantly higher in at-risk patients compared to healthy controls660

(855±161 vs. 666±129 µm, p < 0.0001), which reflects arterial wall thickening (Bal-661

dassarre et al., 2000). Moreover, the diastolic IMT was systematically greater than662

the systolic IMT for all subjects (766 ± 174 µm vs. 670 ± 163 µm), which is in663

accordance with previous studies (Selzer et al., 2001; Meinders et al., 2003). The664

amplitude ∆IMT of the IMT variation during the cardiac cycle was also quantified,665
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and the average value for all subjects was 97 ± 43 µm. This is higher than the666

results that were reported in previous studies that indicated a ∆IMT value around667

50 µm (Boutouyrie et al., 2001; Meinders et al., 2003; Polak et al., 2012b,a). These668

differences may be explained by the differences in the characteristics of the subjects669

involved, contour segmentation methods, and measurement protocols.670

Interestingly, ∆IMT was significantly increased in at-risk patients compared to671

healthy controls (106 ± 48 vs. 86 ± 34 µm, p = 0.001, Fig. 12); this result is672

in agreement with recent findings showing that the amplitude of the compression-673

decompression pattern of the arterial wall is associated with cardiovascular risk fac-674

tors (Boutouyrie et al., 2001; Meinders et al., 2003; Polak et al., 2012a; Zahnd et al.,675

2013b). More specifically, ∆IMT has been demonstrated to be associated with pulse676

pressure, LDL-cholesterol, and age (Polak et al., 2012b). Although it is beyond the677

scope of the present study, these three factors might contribute to explain the overall678

increase of the parameter ∆IMT in the diseased population.679

Each subject can thus be characterized by two different parameter values, namely680

the diastolic IMT and the parameter ∆IMT, as displayed in Figure 11. Although the681

exact association of ∆IMT with cardiovascular risk is still exploratory, this finding682

can contribute to shed further light on potential early-stage symptoms of atheroscle-683

rosis. IMT is a static parameter that marks the presence of atherosclerotic disease.684

Nevertheless, it has recently been demonstrated to have limited additional predic-685

tive power over conventional risk factors (Kavousi et al., 2012). On the other hand,686

the amplitude ∆IMT is a dynamic parameter that is likely to be directly related to687

the effect of the disease on mechanical properties of the arterial wall, as well as the688

functional role of arterial-wall cells. Furthermore, compression of the arterial wall is689

a crucial physiological mechanism, as it enables fluid exchange between blood and690

surrounding tissues (Chuong and Fung, 1984). Let us also recall that the end-diastole691

IMT value was not correlated with ∆IMT (R = 0.3837). For all these reasons, the692

parameter ∆IMT is likely not to replicate information already provided by static IMT693

measurements, but may instead yield complementary information in cardiovascular694

risk assessment. Such analysis was out of the scope of the present study.695

When attempting to assess the temporal variation of the IMT in US cine-loops,696

several recommendations should be considered. First, the spatial resolution of the697

scanner plays a major role. The total amplitude of the compression phenomenon698

is around 100 µm, therefore a pixel size > 100 µm is likely to yield inaccurate re-699

sults, despite the tenfold interpolation used in the method. The accuracy of the700

method is expected to increase when decreasing the pixel size. Although a finer spa-701

tial resolution might result in an increment of the computational time, this may be702

compensated by as smaller interpolation factor. Second, as the studied phenomenon703
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is dynamical, the temporal resolution (frame-rate) should be sufficient to capture704

several images per cardiac cycle. From our experience, frame-rates > 15 fps are705

generally sufficient to assess the compression amplitude, but higher values may be706

necessary for subjects with particularly fast heartbeat and/or to study the shape of707

the compression curves. It should however be noted that increasing the temporal708

resolution generally results in decreasing the spatial resolution. Third, image acqui-709

sition should be performed during at least one entire cardiac cycle to capture the full710

compression-decompression pattern. Acquiring several cardiac cycles may be useful711

to exploit the reproducibility of this pattern, but all the acquired frames must rep-712

resent the same section of the arterial wall. Therefore, special care shall be taken to713

maintain the transducer steady, while the patient refrains himself/herself from mov-714

ing, swallowing, and – preferably – breathing. In practice, we recommend acquiring715

three cardiac cycles, as a reasonable trade-off between reproducibility, and the risk716

of undesired effects due to patient’s movements or unsteady transducer position.717

Limitations and perspectives718

The method is based on a 3D front propagation approach (namely, along the719

radial, longitudinal, and IMT dimensions) to extract a pair of spatially smooth con-720

tours from a 2D image. However the temporal dimension per se is not implemented721

in the front propagation scheme (Eq. 5). When processing several consecutive images722

in a cine-loop, the output from a given frame is used as a robust a priori information723

to initialize the search in the following frame. Although the contours are accurately724

extracted in each individual frame, the up-and-down motion of these contours be-725

tween successive images is not regularized by a smoothing parameter. Accordingly,726

taking into consideration the spatio-temporal consistency of the contours by extend-727

ing a previously proposed surface-fitting approach (Metz et al., 2011) to a 3D+t728

volume could potentially contribute to the improvement of the method.729

According to the Mannheim expert consensus (Touboul et al., 2012), optimal730

IMT measurements should be performed at least 5 mm from the carotid bifurcation.731

In the proposed fully-automatic scheme, the selection of the assessed region is based732

on image quality, and may therefore, in some cases, be closer than 5 mm from the733

bulb. The expert consensus also recommends to carry out IMT measurements over734

a section of 10 mm. In the present study, the IMT variation was evaluated on a735

narrow region of 3 mm because, from our experience, this width provides the opti-736

mal results to extract a reproducible compression-decompression pattern (Fig. 11).737

Curves obtained from regions � 3 mm are often corrupted by noise because too few738

local measurements are averaged to generate the IMT value and, conversely, curves739

from regions � 3 mm are generally flat smooth lines without much variation due to740
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excessive averaging; in both cases the cycles cannot be clearly perceived, and the am-741

plitude ∆IMT cannot be reliably quantified. It is also noteworthy that the temporal742

variation of the IMT is an emerging dynamical parameter and is not mentioned in743

the consensus. Moreover, the full exploitable width of all the analyzed images ranged744

from 3 to 51 mm, and therefore some cases could not have met the 10 mm required745

by the consensus. Nevertheless, the user can easily and quickly select the center of a746

more suited region (1 mouse click) and/or modify the width of the analyzed section747

(2 mouse clicks), if necessary.748

The purpose of the method is to extract both LI and MA interfaces of the ar-749

terial wall in images of asymptomatic subjects to extract quantitative markers of750

early-stage atherosclerosis, such as arterial wall thickening. The method might be751

sub-optimal when applied to images presenting an atherosclerotic plaque, since the752

rationale is to detect two nearly-parallel contours. A distinct set of parameters (viz.,753

with smaller smoothness penalties and a larger tolerated thickness) could enable754

processing of such images with a plaque – thus yielding a measurement of plaque755

thickness and length, but potentially also (semi-) automatic plaque detection – yet756

it is likely to hinder the performances of the method in asymptomatic regions.757

Conclusion758

A fully-automatic method based on front propagation was introduced to segment759

the the intima-media complex in carotid B-mode ultrasound. A globally optimal 3D760

path was extracted to describe a pair of 2D contours. The method was devised to761

accurately extract the IMT in every column of the image. The performances of the762

framework were validated in 184 independent test images. The proposed approach763

was successfully applied to quantify the amplitude of the compression-decompression764

pattern of the intima-media complex during the cardiac cycle, which may potentially765

be a risk marker of early-stage atherosclerosis. The algorithm was implemented in a766

graphical user interface and is available on-line: https://www.creatis.insa-lyon.767

fr/carolab/.768
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