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Abstract—Differential phase contrast imaging (DPCI) enables
the visualization of soft tissue contrast using X-rays. In this
work we introduce a reconstruction framework based on curvelet
expansion and sparse regularization for DPCI. We will show
that curvelets provide a suitable data representation for DPCI
reconstruction that allows preservation of edges as well as an
exact analytic representation of the system matrix. As a first
evaluation, we show results using simulated phantom data.

I. INTRODUCTION

One of the main shortcomings of conventional x-ray com-
puted tomography (CT) is the low contrast within the soft
tissue regions. Differential phase-contrast imaging (DPCI)
is an emerging imaging modality which was developed to
address this issue. It was shown in [1], that this technique
improves the visualization of soft tissues upon conventional
X-ray computed tomography (CT).

The basic idea of DPCI consists in performing phase-
sensitive x-ray measurements (rather than imaging the ab-
sorption coefficient) and the reconstruction of the refraction
coefficient f : R2 → R. The mathematical model describes
the relationship between the phase change and the refraction
coefficient f in the following way, cf. [1], [2], [3],

Pf(θ, s) =
∂

∂s

∫
L(θ,s)

f(x) dx, (1)

where L(θ, s) = {x ∈ R2 : x1 cos θ + x2 sin θ = s} denotes
a line with the normal direction (cos θ, sin θ)T and the signed
distance from the origin s ∈ R. Given the measurements
y = Pf , the reconstruction problem amounts to finding the
refraction coefficient f from the phase shift data Pf . In this
work, we consider the following noisy reconstruction problem

yδ = Pf + η, (2)

where η is the noise component with a noise level δ > 0, i.e.,
‖η‖2 ≤ δ. To this end, we first note that the DPCI model (1) is
essentially given by the first derivative of the classical Radon
transform

Rf(θ, s) =

∫
L(θ,s)

f(x) dx, (3)

such that Pf(θ, s) = ∂
∂sRf(θ, s). Therefore, techniques

which were originally developed for conventional CT can
be transferred to DPCI. For example, in [4], the well-known
filtered backprojection (FBP) algorithms has been adapted for
reconstruction from DPCI data. However, in order to achieve
an adequate reconstruction quality, FBP needs a large number
of projections. In addition to that, it is well-known that FBP
performs poorly in the presence of noise.

To address these issues, we propose a reconstruction method
that is based on a series expansion framework (often called
algebraic or iterative reconstruction). In this framework, the
unknown function f is expanded with respect to a given
dictionary (ψn)Nn=1 via f =

∑N
n=1 cnψn. Then, the expansion

coefficients (cn)Nn=1 are determined from the measurements

ym = Pf(θm, sm) =

N∑
n=1

cnPψn(θm, sm). (4)

by solving the linear system of equations

y = Pc, (5)

where y = (y1, . . . , yM )ᵀ and P = (Pm,n) is the M × N
system matrix with entries Pm,n = Pψn(θm, sm).

Several choices of dictionaries have been proposed for
reconstruction in DPCI. For example, in [5], Köhler et al. con-
sidered a series expansions based on Kaiser-Bessel functions
(also known as isotropic blob functions). Another example
is the B-Spline series expansion which was investigated by
Nilchian et al. in [6].

In this work, we propose an approach that is based on the
expansion of f with respect to the curvelet frame, [7]. An
advantage of using curvelets over other dictionaries lies in
the fact that curvelet expansions allow for an edge-preserving
reconstruction. In addition to that, curvelets admit an analytic
representation of the system matrix.

The paper is organized as follows: in Section II we recall the
definition of curvelets and recall some of their basic properties.
In Section III we describe our curvelet-based discretization
used for the explicit computation of the system matrix P as
well as the resulting reconstruction method. Finally, in Section



IV, we illustrate our method by reconstructions of simulated
phantom data.

II. CURVELETS

The curvelet dictionary is a family of functions ψj,l,k :
R2 → C which has a multi-scale structure and whose main
advantage is the high directionality of its fine scale atoms [7].
The construction of curvelets is done in the Fourier domain.
We will make use of the following definition of the Fourier
transform

f̂(ξ) =
1

2π

∫
R2

f(x)e−ixξ dx.

We first define the generating curvelets ψj,0,0 at scale 2−j ,
j ∈ N0, by using polar coordinates ξ = reiθ in the Fourier
domain:

ψ̂j,0,0(reiθ) = 2−3j/4 ·W (2−j · r) · V
(

2 dj/2e+1

π
· θ
)
, (6)

where W is a radial window and V is an angular win-
dow, respectively. We require the windows W , V to be real
and smooth (W,V ∈ C∞) such that suppW ⊂ (1/2, 2),
suppV ⊂ (−1, 1). Moreover, V and W have to satisfy
proper admissibility conditions, cf. [7]. The family of curvelets
{ψj,l,k}j,l,k is constructed by translation and rotation of the
generating curvelets ψj,0,0. That is, at scale 2−j , the curvelet
ψj,l,k is defined via

ψj,l,k(x) = ψj,0,0(Rθj,l(x− b
j,l
k )), for x ∈ R2. (7)

Here Rθj,l denotes the rotation matrix

Rθj,l =

(
cos θj,l − sin θj,l
sin θj,l cos θj,l

)
with respect to the scale-dependent rotation angles θj,l and the
scale-dependent locations bj,lk which are defined by

θj,l = l · π · 2−dj/2e−1, −2 dj/2e+1 ≤ l < 2 dj/2e+1, (8)

bj,lk = R−1θj,l

(
k1
2j
,
k2

2j/2

)
, k = (k1, k2) ∈ Z2. (9)

Clearly, each curvelet is supported on a polar wedge in the
Fourier domain which has a positive distance to the origin.
We complete the curvelet system with the generating low-pass
function ψ−1,0,0, defined in the Fourier domain by

ψ̂−1,0,0(reiθ) = W0(r), W 2
0 (r) := 1−

∞∑
j=0

W 2(2−jr),

with all of its translates {ψ−1,0,k}k∈Z2 . The index set of the
completed curvelet dictionary is now given by

I =
{

(−1, 0, k) : k ∈ Z2
}
∪{

(j, l, k) : j ∈ N0, k ∈ Z2, −2 dj/2e+1 ≤ l < 2 dj/2e+1
}

One of the fundamental properties of the curvelet dictionary
is that it constitutes a normalized tight frame for L2(R2), cf.

[7]. In particular, each f ∈ L2(R2) can be expanded in terms
of curvelets via

f =
∑

(j,l,k)∈I

〈ψj,l,k, f〉ψj,l,k. (10)

Note that the representation (10) is directional. Indeed, in
addition to the scale-parameter j and the location parameter
k = (k1, k2), the orientation parameter l corresponds to
directional features of f .

III. CURVELET SERIES EXPANSION FOR DPCI
We now use curvelets in order to discretize the DPCI

operator P which is defined in (1). To this end, we model
f as a finite linear combination of curvelets via

f =

N∑
n=1

cnψn, (11)

where n = n(j, l, k) is an enumeration of the curvelet index set
I and N = |I|. In the following, we also assume that a finite
number of measurements is available, ym = Pf(θm, sm),
1 ≤ m ≤ M ∈ N. Using (11), each measurement ym can
be expressed as

ym = Pf(θm, sm) =

N∑
n=1

cnPψn(θm, sm). (12)

The discrete (noise free) reconstruction problem then reads

y = Pc, (13)

where P is the system matrix which is defined by

Pm,n = Pψn(θm, sm), 1 ≤ m ≤M, n ∈ I. (14)

An advantage of using curvelets for the discretization lies in
the fact that the Radon transform of curvelet elements can be
computed analytically. In analogy to [8], we have the following
result.

Theorem III.1. Let ψj,l,k be a curvelet (cf. (7)) and denote
e(θ) = (cos θ, sin θ)ᵀ. Then,

Pψj,l,k(θ, s) = 25j/4V ∗
(

2 dj/2e+1

π
(θ − θj,l)

)√
2π

îW ∗
(

2j
(〈
bj,lk , e(θ − θj,l)

〉
− s
))

where bj,lk and θj,l are defined in (8) and (9). Further,
W ∗(r) = rW (r) with the radial window function W as given
above and V ∗(α) = V (α)+V (α−sgn(α)π) with V denoting
the angular window function.

We now consider the discrete noisy reconstruction problem

yδ = Pc+ η, (15)

where η ∈ RN denotes the noise component. In order to
minimize the influence of noise to the reconstruction, we use
variational regularization which amounts to the minimization
of an energy functional of the form

‖Pc− y‖22 + αΛ(c), (16)



where the first term controls the data error and the second
term Λ : RN → [0,∞) is a penalty function which encodes
the a-priori information about the unknown object f .

Our goal is to design an edge-preserving reconstruction
method based on curvelet coefficients. For this purpose, we
take advantage of the ability of curvelets to provide optimally
sparse representation of functions with sharp edges, cf. [9].
In order to obtain a sparse vector of curvelet coefficients
through minimization of (16), we use the paradigm of sparse
regularization, cf.[10]. In this context, it is well-known that
the `1-norm favors sparse solutions. Therefore, we solve the
problem (15) by minimizing the `1-penalized functional

ĉ = arg min
c∈CN

{
1

2

∥∥Pc− yδ∥∥2
2

+ ‖c‖1,w

}
, (17)

where ‖c‖1,w =
∑
k wk |ck| denotes the weighted 1-norm

with a weight sequence w satisfying wk ≥ w0 > 0. Having
computed ĉ, a solution for the original problem (2) is then
given by applying the synthesis operator to the regularized
curvelet coefficients ĉ, i.e.,

f∗ =

N∑
n=1

ĉnψn. (18)

The computation of a reconstruction by (17), (18) is stable
and edge-preserving.

IV. RESULTS

A. Implementation

Our implementation of the curvelet transform is written in
C++ and is based on polar coordinates in the Fourier domain.
Note that the CurveLab toolbox [11] uses a slightly differ-
ent approach with coronization based on concentric squares
instead of concentric circles.

For sparse regularization, one of the most effective methods
is the iterative soft-thresholding algorithm (ISTA) as suggested
in [10]. We implemented the fast iterative soft-thresholding
algorithm (FISTA) variant as proposed in [12]. In both algo-
rithms every minimizer c∗ of the `1-penalized reconstruction
problem is a fixed point of the following iteration:

c∗k+1 = Sλw
(
c∗k − λP∗(Pc∗k − yδ)

)
.

Here, Sτ denotes the soft-thresholding operator of x with
threshold τ :

Sτ (x) =

{
x− sgn(x)τ |x| ≥ τ
0 else.

The step-size λ > 0 is chosen according to the Barzilai-
Borwein method (cf. [13]). For our first reconstructions, we
use a constant parameter w = 0.01. We will refer to our `1-
regularized reconstruction as Curvelet Sparse Regularization
(CSR), cf. (17) and (18). Additionally, we implemented the
Conjugate Gradient (CG) method. We have used the CG to
solve the un-regularized tomographic problem (15). In the
following, we will compare the results of reconstructions ob-
tained via FBP to those of the CG based reconstruction as well

as our CSR based reconstructions. In both implementations,
CSR as well as CG, we have used the closed form formula
given in Theorem III.1 in order to compute the elements of
the system matrix.

B. Setup and datasets

To evaluate our method, we applied the forward model to the
Shepp-Logan phantom. We compare FBP (with the adjusted
filter for DPCI [4]) to both of our curvelet based iterative
methods - CG and CSR. Both reconstructions, CG and CSR,
were produced using 200 iterations. We start our evaluation by
taking 360 projections within the angular range of 0◦ -180◦ .
The results are shown in Fig. 1.
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Fig. 1. (a) FBP (SNR: 12.7 dB), (b) CG (SNR: 15.7 dB), (c) CSR (SNR:
15.9 dB), (d) Line profile (y = 100)

The curvelet based methods provide visually promising
results. Additionally, we present a line profile (see. Fig. 1 (d))
which clearly shows our curvelet based methods to be much
closer to the ground truth than the FBP method. The signal to
noise ratio (SNR) shows an increase from 12.7dB for FBP up
to 15.9dB for CSR.

However, having a closer look we observe two additional
phenomena: First, our current implementation of the curvelet
based methods exhibits Gibbs-like effects. Second, we find the
CG results to show high frequent noise in contrast to the FBP
results. Thus, we suppose this noise is linked to the oscillating
behaviour of the curvelet elements. This noise gets clearly
reduced by the CSR method, while sharpness of the edges is
preserved. The given line profile additionally shows, this noise
reduction when using CSR in contrast to the CG method.



We continue our evaluation by reducing the number of
projections taken to 60 by increasing the angular spacing from
0.5◦ to 3◦ . The corresponding results are shown in Fig. 2.
The line profile in Fig. 2 (d) as well as the SNR increase
from 11.1dB (FBP) to 14.3dB (CSR) emphasizes our previous
results. However, in this case, we also observe Gibbs artefacts
and a noise reduction when using the CSR method.
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Fig. 2. (a) FBP (SNR: 11.1 dB), (b) CG (SNR: 13 dB), (c) CSR (SNR: 14.3
dB), (d) Line profile (y = 100)

V. CONCLUSION

In this work we have introduced a curvelet based framework
for differential phase-contrast imaging. In particular, we have
presented an analytically exact discretization of the DPCI oper-
ator. Moreover, we applied the curvelet sparse regularization to
the reconstruction problem of DPCI. Our first reconstruction
results show that the method is promising, but still requires
further work to achieve better results.

We believe that the curvelet representation provides a solid
basis for extending reconstruction methods towards reducing
the radiation exposure by exploiting the sparsity and edge-
preserving properties of curvelets.
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C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a
grating interferometer,” Nature Materials, vol. 7, no. 2, pp. 134–137,
Jan. 2008.

[4] F. Pfeiffer, O. Bunk, C. Kottler, and C. David, “Tomographic re-
construction of three-dimensional objects from hard X-ray differential
phase contrast projection images,” Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, vol. 580, no. 2, pp. 925–928, Oct. 2007.
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