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Abstract—Irreproducible motion of either the patient or the
device during a cone-beam X-Ray scan remains a major issue
limiting reconstruction quality in many practical applications.
Computational approaches are starting to emerge, which allow
to model general motion parameters during the reconstruction
itself. Besides, intelligent image processing on the projection data
may reveal clues about “what went wrong” during a scan. We
present a novel algorithm which uses a combined analysis in
projection and reconstruction space, to both detect and account
for unknown motion. This allows not only for the detection of
large-scale, non-periodic bulk motion, but also an automatic
recovery of it, required for a reconstruction void of artifacts.
Using the proposed method, we can restore the reconstruction
of clinical head scans with severe unknown motion. Moreover,
we evaluate our method on synthetic data with known motion
trajectories in a radiotherapy scenario.

Index Terms—cone-beam, computed tomography, motion.

I. INTRODUCTION

The cone-beam reconstruction algorithms used for most
X-Ray Computed Tomography (CT) imaging devices today,
strongly rely on the assumption that the geometry of the
X-Ray source-detector arrangement relative to the imaged
subject is correctly known and modeled at all times. However
this assumption is often violated in light of non-reproducible
device inaccuracies (which cannot be modeled during offline
geometric calibration), as well as patient motion. The latter is
more often an issue in slowly rotating C-arm systems as op-
posed to gantry-based CT scanners. Loss of resolution, severe
artifacts, and completely wrong structures in the reconstruction
appear, when the individual rays are considered with the wrong
geometry. Ultimately it does not even matter if the excess
motion stems from the device or the patient.
Prior work dealing with patient motion has generally focused
on particular clinical applications or anatomic regions. This
allows to constrain the problem in terms of motion charac-
teristics, such as periodicity and typical trajectories occurring
with cardiac or respiratory motion. If a surrogate signal for the
motion phase is available, a binned 4D-reconstruction (with
corresponding loss of signal to noise ratio proportional to the
number of volumes), followed by further refinement [1] is
possible. Other practical solutions require a reference scan not
affected by motion, e.g. using a breath-hold acquisition proto-
col [2]. A more holistic approach is to jointly reconstruct the
target volume and a motion model [3]. This however requires a
reasonably close initialization of the motion parameters, hence
unknown large-scale motion cannot be addressed. General
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mathematical formulations of such a joint reconstruction have
been described e.g. in [4] and [5], with only early results on
abstract geometric data though.
We had previously proposed a practical self-calibration ap-
proach for refining uncertain geometric and radiometric pa-
rameters within an algebraic reconstruction framework [6].
Other related methods also repeatedly reconstruct with altered
parameters, using a quality criterion such as the sharpness
of the reconstruction volume or a single slice thereof [7], in
analogy to a camera’s auto-focus. Such methods are able to
tune parameters, however again require close initialization (if
the initial reconstruction is deteriorated, a local optimization
would not converge).
To address unknown large-scale motion during a scan, we
have recently developed a method to analyze successive X-
Ray images in projection space using the epipolar geometry
[8]. It is able to detect and approximately recover the three-
dimensional motion between X-Ray images with a small
baseline (such as successive projections from a cone-beam
scan). However simply concatenating those incremental mo-
tion estimates would yield drift of the entire sequence.

In this work, we extend the motion detection method [8]
by appropriate normalization of the transformation estimates,
such that they actually can be used to improve the recon-
struction. We then combine the results with the self-calibration
approach [6], in order to fine-tune the motion estimates. This
yields a powerful hybrid technique which can fully recover
even large-scale bulk motion. The remainder of this manuscript
is organized as follows. First, we review the basics of self-
calibration and motion detection in projection space. Then
the new transformation normalization scheme allowing to
incorporate the results into the reconstruction is presented. The
combined method which yields the final refinement is then
explained. Results on both real clinical and synthetic data sets
are shown, followed by a brief discussion.

II. METHODS

A. Self-Calibration

Algebraic reconstruction techniques generally minimize the
re-projection error between a volume estimate and the mea-
sured X-Ray projection data:

E = argmin
x

‖Ax− p‖ (1)

where A is the system matrix, x the vector with all entries
of the volume estimate, and p the X-Ray attenuation data.
In a perfect scenario void of geometric errors, measurement
noise, and with all details of the X-Ray physics modeled



in the forward- and back-projection steps, the residual re-
projection error E would converge towards zero after suffi-
cient iterations. It is therefore appropriate to minimize the
same error E with respect to further unknown parameters
(in addition to the individual attenuation values of the re-
construction volume). “Global” parameters which directly
affect the entire reconstruction result, are optimized by re-
computing a reconstruction, using equation 1 as cost function
value to minimize. “Local” parameters such as additional drift
or rotation of individual X-Ray projections, are sequentially
optimized, after which the reconstruction is re-computed. The
latter essentially comprises a 2D-3D registration algorithm of
X-Ray projections to the reconstruction volume. A state of
the art GPU implementation of an ordered subset simultaneous
iterative reconstruction technique (OS-SIRT) is used, such that
executing a non-linear optimization over the reconstruction as
cost function is not computationally prohibitive [6].
For the “global” self-calibration, the number of parameters
one can use is limited, both for increase in computation time
and numerical stability (in terms of ambiguities and local
optima). For the local sequential optimization of individual
projection parameters, a close starting estimate is required,
since otherwise the initial reconstruction would be deteriorated
to start with. Therefore, these computational tools are in
the current form rather suited for self-calibration of device
parameters than for recovering large-scale patient motion.

B. Motion Detection

Using geometric calculations from stereo computer vision,
it is possible to express the attenuation value I(x) of an X-
Ray image I at pixel location x as a linear combination of
pixels along the epipolar line in the next X-Ray image J for
a supposed geometric relationship between the images:

I(x) =

n∑
k=1

wkJ(xk) +wn+1 (2)

Here, xk are a number of discrete sample locations along
the epipolar line in image J , defined from preferred depth
locations where the image structures are most prevalent. The
unknown weights wk are estimated locally within each pixel’s
neighborhood in a least-squares fashion. It is then possible to
derive an image similarity measure for every image location
from that:

Sx(I, J) = 1− |ix − Jxwx|2

V ar(ix)
(3)

where ix is now a vector of pixel values within a neighborhood
of I , Jx is a matrix with the number of pixels considered
times the number of samples along the epipolar line, and wx

is the vector of weights computed around image location x.
Computed over entire pairs of successive X-Ray images, S
constitutes a similarity measure which is sensitive to the sup-
posed 3D-geometric relationship between the images. Varying
the transformation between the images and hence modifying
the epipolar line segments along which the image relationship
is assessed, allows to detect if additional motion is present.
In addition to the binary decision whether motion is present
for every pair of X-Ray images, the relative motion between

them can be approximately recovered by optimizing over the
motion similarity [8].

C. Transformation Normalization

We describe the projection matrix of a cone-beam X-Ray
frame i as

Pi =
[
K 0>

]
M′iRiMi (4)

where the 4 × 4 matrix Ri describes the transformation
from iso-center into detector coordinates (i.e. containing the
rotation parameters of the cone-beam setup), and the 3 × 3
matrix K contains the intrinsic projection parameters. M′i
and Mi contain additional motion in detector and iso-center
coordinates, respectively. Either of the latter ones can be
optimized. For modeling patient motion, one would work in
iso-center coordinates and describe the overall motion during
a frame i as concatenation of incremental contributions from
all previous frames:

Mi =
i∏

k=1

Ti−k+1 (5)

The relative transformations Ti computed by the motion
detection algorithm for each single frame should add up to
the identity matrix when closing the loop to the first frame
(for a full 360◦ scan). In practice this is not the case due to
drift and noise in the motion estimation. We therefore need
a method for loop closing which takes the structure of the
relative transformations into account but modifies them in such
a way that they result in the identity transformation when
concatenated.

More formally let us assume that we have n relative
transformation matrices T1,T2, . . . ,Tn and a final relative
transformation C. We then want to find Ĉi so that

T = C

n∏
i=1

Tn−i+1 =

(
n∏

i=1

Ĉ

)(
n∏

i=1

Tn−i+1

)

=

n∏
i=1

Ĉn−i+1Tn−i+1

(6)

Ĉ is the n-th matrix root of C. Assuming C is of the form

C =

[
A t
0 1

]
; Ĉ =

[
Â t̂
0 1

]
(7)

and A is diagonalizable, we can compute the eigenvalue
decomposition of A = VDV−1 and write Ĉ as above with

Â = VD
1
nV> (8)

t̂ =

n−1∑
i=1

 i∏
j=1

Â

+ I

−1 t (9)

Since D is a diagonal matrix D
1
n is obtained by simply taking

the n-th root of each entry on the diagonal.
Finally, we need to move the Ĉ matrices into the coordinate

frame of each transformation Ti. The Ĉi in T =
∏n

i=1 ĈiTi

resulting from this coordinate system change are given by

Ĉi = TiG
−1ĈG; G =

∏n−i+1
j=1 Tn−j+1 (10)



For the transformation chain given in equation 5 the incre-
mental transform C we correct is C = M−1i .

D. Hybrid Refinement

Our new overall algorithm operates as follows.
1) All projection images containing motion wrt. the previous
frame are detected (including motion from the first frame
to the last). This relative motion is successively found by
optimizing over rigid transformation parameters for the
detected frames. In the case of a full scan, the scheme
described in section II-C is used to normalize the optimized
transformations in order to avoid drift. A reconstruction
after this step generally exhibits significantly reduced motion
artifacts.
2) The main blocks of connected frames without motion
are selected. Rigid parameters for the transformation of all
blocks but the largest (which remains fixed) are fed into the
global self-calibration algorithm. Before every evaluation
of parameters, the transformations of all frames outside of
blocks are normalized according to the interpolation scheme
described in section II-C, in order to maintain the initial
estimate from the motion compensation. This step usually
yields the largest overall improvement, since the rough
motion estimation on projection images is optimized using
the residual error of the reconstruction, eliminating drift but
keeping the overall structure of inter-frame motion.
3) A local self-calibration step (i.e. 2D-3D registration) is
executed for all frames outside of blocks, hence refining
transformation parameters in M′i wrt. detector coordinates. An
improved reconstruction is computed after the optimization of
all frames. This step may be repeated once or twice, until the
residual error does not improve over a selected ε threshold.
4) Optionally, a local self-calibration step on all frames is
conducted. This would also ensure a final compensation of
slight device inaccuracies.

Since both the motion similarity measure S and the self-
calibration residual error E yield smooth cost function val-
ues, an optimization algorithm which internally approximates
derivatives results in a significantly lower number of evalua-
tions than other direct search methods. We therefore use the
Bound Optimization by Quadratic Approximation (BOBYQA)
method [9].

III. RESULTS

A. Clinical Data

We have applied our algorithm on several orthodontic head
scans with strong patient motion, however without ground
truth information available. Figure 1 depicts axial and sagittal
cross-sections of a reconstruction before and after our motion
recovery method. In this example, the patient has moved his
head several times during the sequence, with steady phases
in between (which is addressed by the block optimization in
step 2 of our method). The reduction of artifacts is clearly
visible, in particular in the wrong “shadow” of the front teeth
in the original reconstruction. This data set is a full scan with
450 frames and excentric detector motion for enlarged field of

(a) original reconstruction

(b) after motion recovery

Fig. 1. Reconstruction result on a real patient before and after motion recovery

view. Five blocks of consistent successive frames have been
found in this sequence, hence the block-based self-calibration
in step 2 takes (5 − 1) ∗ 6 = 24 parameters. The non-
linear optimization terminates after about 250 cost function
evaluations, a single evaluation takes about 0.5 seconds with
reconstruction volume dimension 256, on a NVIDIA GeForce
GTX 670 GPU. All steps combined, therefore including the
local self-calibration of all frames, yield a computation time
in the order of five minutes. The following table shows the
residual errors averaged over all frames after each step.

step error step error
original 0.00983316 step 3 0.00900554

step 1 0.00926058 step 3 repeated 0.00899732
step 2 0.00903790 step 4 0.00888388

Those values are expressed in average absolute differences
per pixel, with intensities normalized to [0 . . . 1].

B. Synthetic Data

We also evaluated our method on a thorax CT scan with
simulated patient motion, by generating 180 DRRs on a
360 degree trajectory around the patient. The artifical motion
included rigid bulk motion as well as affine non-uniform
scaling to resemble respiratory motion, with the resting states
after motion being different than before (see dotted lines in
figure 2). Running the projection-based motion optimization
we were able to approximately recover the motion parameters
(see figure 2a). Running the self-calibration step on these
parameters further reduced the error particularly in frames
between motion, as seen in figure 2b. Figure 3 shows an axial
and a sagittal slice through the reconstructed patient volume
(resolution 5123) at different stages of the motion optimization
together with the residual error of the reconstruction. The final
reconstruction quality is close to the ground truth, both in
terms of visual appearance and residual error. The average per-
frame spatial error for the center point of the reconstruction
volume and its direction were reduced from 6.53 ± 9.40mm
to 0.66 ± 0.59mm in translation, and from 1.29 ± 0.90◦ to
0.55± 0.34◦ in rotation.
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(a) after motion detection (step 1)

0 20 40 60 80 100 120 140 160 180
−40

−30

−20

−10

0

10

20

Frame

M
ot

io
n

 

 

α
z
 truth

t
z
 truth

scale
z
 truth

α
z
 selfcal

t
z
 selfcal

scale
z
 selfcal

(b) after-self calibration (step 4)

Fig. 2. Comparison of ground-truth and recovered patient motion

IV. DISCUSSION

We have developed a new hybrid approach operating in
both projection and reconstruction space to detect and recover
patient or device motion in cone-beam CT. Detection of large
motion is achieved using the projection based motion analysis,
and approximately estimated with it. Only in combination
with a self-calibration approach can the motion be precisely
recovered however. The link between the intermediate results
of relative motion between frames, and absolute motion pa-
rameters that are optimized using global block based self-
calibration, is achieved by a normalization of the chain of
transformation matrices.
We have shown that this method can restore severely com-
promised head scans, bootstrapping the motion information
without any prior assumptions. To the best of our knowledge,
this has not been achieved before. While these qualitative
clinical results were obtained using a rigid parametrization,
linear affine transformation matrices are supported as well (as
demonstrated in section III-B), and should allow to deal with
a majority of clinical scenarios involving respiratory motion.
In order to tackle complex motion with significant local
deformations (i.e. cardiac motion), adapted parametric motion
models can be integrated with our method. For a given pa-
rameter configuration, it can then be evaluated simultaneously
in projection and reconstruction space, how well it describes
the actual motion. While this first approach suggested here is
rather straightforward, we believe that such a joint analysis is a
powerful foundation for dealing with motion in general. More
complex motion models are the subject of future work, as well
as thorough experiments on clinical data with ground truth
(e.g. by tracking actual patient motion with auxiliary sensors).
Further work is also required for a more theoretical under-
standing of the connection between the epipolar geometry
in successive X-Ray images with intermediate results during
reconstruction.
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