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ABSTRACT

Multi-modality alignment of CT and ultrasound adds value

to diagnostic examinations, as well as treatment planning

and execution of various clinical procedures. Particularly

automatic image-based alignment of such data is challenging,

mostly because both modalities have very different imag-

ing physics and characteristics. We present a method for

dense-field deformable registration of CT and 3D ultrasound.

Compared to global (rigid) alignment, this is more difficult to

solve, because modality-specific difference in local anatomic

appearance can result in incorrect displacements. We use a

simulation of ultrasonic effects based on CT information, tak-

ing the current estimate of the deformation field into account

to properly address orientation-dependent imaging artifacts.

This is combined with a robust multi-channel local similarity

metric, driving a variational registration framework. Because

of the high computational demand, an efficient GPU-based

implementation is used. Preliminary results are shown on

data from a number of hepatic cancer patients. To our knowl-

edge, this is the first time that a non-linear mapping of CT

and 3D B-mode ultrasound is established in a computation-

ally practical and fully automatic manner.

Index Terms— Deformable Registration, CT, Ultrasound

1. INTRODUCTION

Image registration seeks to spatially align different images

to increase the information content, or expand the field of

view. In the medical domain, multi-modality registration can

provide important clues, as different exams on the same pa-

tient often provide complementary information. Furthermore,

aligning a pre-operative data set with intra-operative imaging

of another modality enables advanced image-based guidance

and navigation systems.

In this work, we address the problem of automatically com-

puting a deformable mapping of a CT scan to 3D ultrasound

of the same patient, where the focus is on liver anatomy.

To our knowledge, there is no prior art which addresses

direct image-based registration of CT and B-mode ultrasound

with a non-linear deformation model. Somewhat related, in

[1], sparse Doppler ultrasound data for liver surgery is reg-

istered to CT, using a combination of point correspondences

and an image-based term based on normalized gradient fields.

In [2], MRI is registered to 3D freehand ultrasound, without

reconstructing the latter into a Cartesian volume, using a B-

spline based approach.

2. METHOD

We seek to find a displacement function u : R
3 → R

3, which

defines a deformation ϕ = Id + u which warps the template

CT image T , such that it is aligned to the 3D ultrasound ref-

erence image R. Thus, the problem becomes a minimization

of the following energy

û = arg min
u

D(R, T ◦ (Id + u)) (1)

in which D is an appropriate difference measure. One im-

portant property of the displacement u is its regularity, which

can be achieved in different ways. One possibility is to in-

clude a regularization term directly into the energy formu-

lation, where a wide range of different terms and optimiza-

tion approaches is possible, compare for example [3]. Further

regularization can be achieved by parameterizing the defor-

mation, e.g. by B-Splines, compare [4]. In this work, we

take a different approach which does not require an explicit

regularization term in the energy formulation, compare [5].

The deformation is constrained approximately to the mani-

fold of diffeomorphisms by computing the result as a con-

secutive composition of small update fields. The updates are

computed by calculating the gradient of the energy function

and smoothing it by applying a low-pass filter. This approach

has the advantage that the optimization can be implemented

very efficiently if fast filtering methods are available.

For the difficult case of CT-Ultrasound registration, we

will now incorporate a number of additions that are not part

of the standard formulation.
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2.1. Ultrasound Simulation from CT

To enable a better assessment of structural alignment in CT

and ultrasound, we simulate ultrasonic imaging effects from

CT, as previously described in [6]. Let μ : ΩT �→ R be the

volume of original CT intensity values (i.e. Hounsfield units).

Under the assumption that the acoustic impedance of human

tissue is proportional to its density, which in turn relates to the

CT Hounsfield measurements, ultrasonic reflections at tissue

interfaces can be estimated:

T1(x) = log
[
aI0 exp

(
− ∫ λx

0

(
|∇μ(x0+λd)|
2μ(x0+λd)

)2

dλ

)
(
dT∇μ(x)

) |∇μ(x)|
(2μ(x))2 + 1

]
1

log(a+1) (2)

In words, for a voxel location x, the reflection T1 can be com-

puted by integrating over reflection and transmission along

an ultrasonic scanline originating at x0 with direction d. It

is embedded in a log-compression with parameter a. This

creates a reasonable simulation of ultrasound reflections, in-

cluding shadowing effects (i.e. after a strong reflection the re-

mainder of that scanline will have no reflection). The second

imaging effect is tissue echogeneity, which results from the

scattering behavior of tissue inhomogeneities, that are smaller

than the ultrasound pulse wavelength. It is approximated by

a heuristic mapping of the CT soft tissue intensity range, and

modulated with the ultrasonic transmission from the integral

in equation 2, in order to clear its value if shadowing has oc-

cured. We define this second term as T2(x).
Because those simulated values T1 and T2 are derived from

line integrals through the CT volume, they implicitly depend

on the entire deformation field ϕ. For T1, this results to

T1(ϕ,x) = log
[
aI0 exp

(
− ∫ λx

0

(
|∇μ(ϕ(x0+λd))|
2μ(ϕ(x0+λd))

)2

dλ

)
(
dT∇μ(ϕ(x))

) |∇μ(ϕ(x))|
(2μ(ϕ(x)))2 + 1

]
1

log(a+1)

Back to the notation introduced before, our template image

becomes a two-channel representation T : ΩT �→ R
2, whose

voxel values are implicitly dependent on the whole deforma-

tion field, i.e.

T (μ, ϕ,x) .= Θμ,ϕ(x) (3)

Θ is therefore our ”ultrasound simulation operator” which

computes T1 and T2 given a CT volume μ and deformation

field ϕ.

2.2. Similarity Metric

We use a local dissimilarity metric that is evaluated in the

neighborhood of every grid location x. Typical examples of

such measures are local normalized cross-correlation (LNCC)

or local Mutual Information. See [7] for the mathematical

foundation in the context of variational registration. One

common aspect of those (dis-)similarity measures is that they

assume a certain relationship between the image intensities,

which can often be modeled as a functional dependency. In

the case of cross-correlation it is a linear mapping between

the image intensities, in the case of generalized correlation

ratio it might e.g. be a polynomial mapping [8]. This inten-

sity mapping is usually expressed with respect to a number

of unknown parameters, which can be intrinsically solved for

during computation of the similarity (as in cross-correlation),

or during a separate optimization. In Computer Vision, this

mapping is usually denoted as photometric transformation.

In [6], the LC2 similarity metric is proposed, which is

independent of how much the simulated channels T1 and T2

locally contribute to the actual ultrasound intensity R. How-

ever, the parameters describing this intensity contribution are

solved in a least-squares sense for every local evaluation of

the metric. This makes it difficult to analytically derive its

gradient; thus we use the following approximation for D,

which proves to carry the sufficient information to success-

fully drive the registration process:

D(R, T, ϕ) = −DLCC(R, T1 ◦ ϕ) −DLCC(R, T2 ◦ ϕ) (4)

where DLCC is the local cross-correlation (LCC) measure, de-

fined in [7] for images I1 and I2 as

DLCC(I1, I2, ϕ,x) =
v1,2(ϕ,x)2

v1(x)v2(ϕ,x)
(5)

where v1(x) is the variance of I1, v2(ϕ,x) is the variance of

I2 ◦ ϕ, and v1,2(ϕ,x) is the covariance of I1 and I2 ◦ ϕ. The

major idea of the LCC measure is that the joint probability

of the two images I1 and I2, from which the means and vari-

ances are computed, is weighted locally by a Gaussian kernel

Gγ with standard deviation γ. Therefore the variances and

the covariance are dependent on the location in space x.

The rationale behind replacing the linear combination

from [6] with equation 4, is that the change of the individual

LCC metrics depends on how much content each simulated

channel T1, T2 provides. For example, if in a particular voxel

neighborhood, no reflection term T1 contributes to the simi-

larity, it’s influence on the displacement update will be minor.

Therefore, the sum of two individual LCC measurements can

account for the unknown sum of ultrasound reflection and

echogeneity. From Eq. (4), the gradient of D is

∇D(R, T, ϕ) = −∇DLCC(R, T1 ◦ ϕ) −∇DLCC(R, T2 ◦ ϕ)

The gradient of the local cross-correlation with respect to

ϕ, at position in space x, is given in the following form:

∇DLCC(ϕ)(x) = L(I1, I2, ϕ,x)∇I2(ϕ(x)) (6)

For the case of LCC, the term L is defined as

L(I1, I2, ϕ,x) = Gγ �
−2
Gγ

[
v1,2(ϕ,x)
v2(ϕ,x)

(
I1(x) − I1(x)

v1(x)

)

−DLCC(I1, I2, ϕ,x)

(
I2(ϕ(x)) − I2(ϕ,x)

v2(ϕ,x)

)]
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where � is the convolution operator, Gγ is the integral of the

local Gaussian kernel inside the image domain, I1(x) is the

local mean intensity of I1 at x, and I2(ϕ,x) is the local mean

intensity of I2 ◦ ϕ at x.

By substituting I1 with the reference R and I2 with T1

and T2, respectively, the gradient of D can be computed.

2.3. Optimization

The solution to the optimization problem is found by itera-

tively computing an update du to the initial displacement es-

timate u(i+1) over iterations i in the following form

du ← Gσ(∇D(R, T ◦ (Id + u(i)))) (7)

u(i+1) ← u(i) ◦ (Id + τdu) (8)

Here, G is a Gaussian filtering operation with standard

deviation σ, ∇D(R, T ◦ (Id + u(i))) is the derivative of the

similarity measure, id is the identity transformation, and the

positive scalar τ is the update magnitude control parameter.

2.4. Implementation

The approach described above is computationally expensive,

because it requires a complete simulation of 3D ultrasound

from CT in every iteration. In order to exploit the potential

for concurrent programming, as well as hardware support

for all volume resampling operations, we implemented this

method on graphics hardware. The OpenGL graphics library

and shading language (GLSL) are used [9]. In every major

iteration of the algorithm, a 3D freehand ultrasound sweep is

simulated, followed by a reconstruction into a Cartesian vol-

ume [10]. Then, the displacement field update is computed

per voxel, smoothed by a low-pass filter, and the deform

image is recomputed by warping the source image. Simu-

lation, reconstruction and registration are computed on the

GPU, which completely avoids costly transfers in order to

communicate results between the algorithms. Convolution

performance of current graphics hardware is texture-read

bound and can be even worse then recursive convolution on

multi-core CPUs for larger kernels. Therefore, the LCC com-

putation utilizes a semi-recursive convolution along the 3D

texture slice stack to optimize performance.

3. RESULTS

We evaluated the registration on data from 12 different pa-

tients with liver lesions (with different fidelity and patient

setup). Each patient data comprised a portal-venous phase

contrasted CT scan and a 3D ultrasound volume of the

liver. The ultrasound has been recorded using a magneti-

cally tracked 2D probe, swept in a transversal orientation

over the patient’s liver during breath-hold.

Our registration converges in 10−30 iterations, depending

on the complexity of the recovered displacement. A typical

(a) axial (b) sagittal (c) coronal

Fig. 1. Color overlay of registration result (US simulated

from CT T1 + T2 in brown, reference US blue) and resulting

deformation grid. The patient was in supine position during

the ultrasound exam.

computation time per iteration is ≈ 240ms, which consists to

roughly 18% of the ultrasound simulation operator Θ, 49%
compounding into a Cartesian grid, and 33% computing D
and the displacement update, the overall 3D voxel size of the

system is 1̃283. The entire execution time is 2− 10s, depend-

ing on the actual abortion criteria, and the voxel size / slice

count of the data sets. After the first few iterations, the size

of the displacement updates becomes small enough that a re-

simulation of ultrasound from CT is not necessary, as it does

not significantly influence the orientation-dependant artifacts.

Each iteration then encounters a 3-fold speedup, resulting in a

possible overall computation time of less than one second. In

order to validate registration accuracy, a physician manually

identified anatomical landmarks and clinical targets in both

modalities, resulting in 5−16 point correspondences for each

patient. A rigid motion computed from those points com-

prises the ”Ground Truth”. Initialized with this, a rigid image-

based registration [6] was launched, increasing the RMS er-

ror, but better aligning large-scale peripheral structures. Our

deformable algorithm was executed from this configuration,

always with the same parameters (σ, convergence criteria,

simulation parameters etc.) to demonstrate possible automa-

tion. The average RMS error at the Ground Truth is 5.5mm,

after rigid registration 8.8mm, after deformable registration

8.2mm (see table 1). Our algorithm improved the error from

rigid registration in 9/12 cases, on average 60% of the point

correspondences were improved. Visual alignment improved

in all but one case (LPO setup with strongly misaligned hep-

atic vasculature after rigid registration).

4. DISCUSSION

We have presented an approach that solves the problem of au-

tomatically computing a dense-field deformable mapping of

CT and 3D ultrasound of the same patient. This becomes pos-

sible by using a carefully chosen combination of algorithms

and components. It includes a modality mapping operator Θ,

simulating ultrasound from CT - which goes beyond typical

photometric transformation approaches that are common in
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GT Rigid Def. Points Setup

3.51 10.3 9.6 12 LPO

4.29 10.9 11.2 6 LPO

8.02 10.3 8.3 9 decubitus

9.25 11.1 11.2 11 supine

4.03 5.43 5.39 11 supine

3.31 4.32 3.78 11 supine

3.68 5.10 5.51 7 supine

3.23 8.97 7.99 7 supine

8.34 12.3 11.2 16 LPO

5.25 6.26 5.54 8 supine

6.15 9.89 9.15 8 supine

6.42 10.3 9.2 6 LPO

Table 1. Root-Mean-Square (RMS) errors of point corre-

spondences at the Ground Truth (GT) alignment, as well as

after rigid and deformable registration, for 12 patients. Also

listed are the number of points, and the patient setup during

the ultrasound exam (LPO = left portal oblique).

the field. A two-component similarity measure based on local

cross-correlation is used in a variational formulation. Power-

ful concurrent GPU-based programming techniques are used

to make the approach feasible in terms of computation time.

We showed results on 12 data sets. Our algorithm of-

fers both visually and quantitatively convincing deformable

mapping, effectively compensating for differences in patient

setup, respiration and other sources of organ motion. Given

that applying a full deformation on a pre-operative data set

might be undesirable in clinical practice, the presented algo-

rithm can also be used to derive an improved rigid or global-

affine registration around the target anatomy (avoiding the

problem of multiple local optima, caused by the fact that those

transformation models can never truly match the data).

Our method still sometimes produces locally inaccurate

deformations, in areas where the simulation does not resem-

ble the real ultrasound images. Future work therefore includes

refining the simulation model, as well as automatically detect-

ing areas lacking anatomical information in one of the modal-

ities.
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