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Abstract. For image-guided interventions, the patient respiratory mo-
tion has to be considered when integrating pre-operative plans and imag-
ing into the interventional suite. Ultrasound is particularly attractive for
obtaining live information about anatomical changes, without adding
further radiation dose to patient and physician such as fluoroscopy. We
propose a strategy to both detect and compensate for respiratory move-
ments in the liver, relying solely on real-time information from a tracked
2D ultrasound transducer, as well as one position sensor attached to the
patient’s skin. Our method does not require a patient-specific 4D model
of the respiration, which would be costly to establish and might not
recover entire breathing variabilities and irregularities during the pro-
cedure. Appropriate transformation models, interpolation schemes and
implementation details are discussed. By means of evaluation on liver
data of four volunteers, we demonstrate the usefulness of our approach
for ultrasound-based guidance of abdominal biopsies and ablations.

1 Introduction

1.1 Clinical Context

Treating cancer by destroying malignant tumor tissue deep inside the human
body requires image-based localization and guidance. This can be achieved with
maximum accuracy for static targets, e.g. in the case of stereotactic radiosurgery.
If respiration and cardiac motion influence the tumor location dynamically,
higher treatment margins have to be defined, possibly increasing trauma and
compromising the effectiveness of the treatment. For radiotherapeutic treatment
of lung cancer, gating approaches have started to be used clinically, where the
treatment beam is only activated during a defined phase in the breathing cycle,
as measured by a respiration sensor. Adjusting the treatment live to continuously
update the tumor location, usually requires a patient-specific motion model de-
rived from 4D pre-operative imaging, in combination with intra-operative imag-
ing or measurement of surrogate signals. First clinical solutions are for adaptive
radiotherapy are available that track tumor motion in X-Ray images, adjusting
the treatment beam by means of a robot-mounted linear accelerator (Accuray
Cyberknife).



In interventional oncology, ultrasound is the preferred intra-operative imaging
modality for a large number of procedures, such as biopsies and thermal ablation
in liver & kidney, laparoscopic liver surgery, or prostate biopsy. Navigation solu-
tions are now available that utilize a tracked ultrasound transducer [1], and/or
magnetically tracked needle tips (Traxtal Inc., CAS Innovations AG, etc.). Those
systems share the ability to integrate pre-operative CT or MRI imaging into the
live tracking workspace. Currently, the interventionalist has to use them in a
stop-and-go manner, where he can only rely on correct alignment during the
breathing phase in which the pre-op image was acquired. This is a rather similar
approach as respiratory gating for radiotherapy.

1.2 Related Work

A number of research groups have proposed to pre-operatively create patient-
specific models of the liver motion from 4D MRI acquisitions, e.g. [2]. Such a 4D
motion model is registered in [3] to tracked 2D ultrasound images by optimiz-
ing over the single temporal parameter describing the deformation, in order to
compensate the respiratory motion. A 2D+t MRI cine acquisition in a coronal
plane is correlated with surrogate skin markers [4], using PCA based methods,
to henceforth yield prediction of the internal motion from the surrogate signals
alone. In [5] a 3D freehand laparoscopic ultrasound probe is used to establish a
4D motion model of a pig liver during the intervention, by acquiring a number
of sagittal planes throughout the breathing cycle. Successively, the 2D deforma-
tions in those planes are estimated, and composed into a 4D motion model. A
cross-correlation image similarity of successive frames serves as the signal indi-
cating the respiratory phase.
All aforementioned techniques share the problem that establishing a 4D motion
model (pre- or intra-operatively) is too time-consuming and costly to gain ac-
ceptance in the clinical practice, particularly for ‘lightweight’ procedures such as
biopsies. Besides, they cannot reproduce breathing irregularities, which are very
likely to occur on patients not fully sedated.
In our work, we seek to both detect and compensate the breathing-induced
motion of a target within the liver, utilizing solely a tracked 2D ultrasound
transducer and one position sensor attached to the patient’s skin.

2 Methods

2.1 General Approach

Before starting the procedure, the interventional radiologist acquires an ultra-
sound sweep over the whole liver during a breath-hold. This data henceforth
serves as reference 3D information (denoted IR), and can be registered with a
pre-operative CT or MRI scan, using e.g. methods described in [6]. During the
procedure, the physician freely places the ultrasound transducer to guide needle
insertion, and visualize & monitor the lesion.



Since the real-time ultrasound image IUk
(at discrete time k) is tracked, we can

compensate for respiratory motion using a slice-to-volume registration approach:

ãk = arg max
ak

M{(IR(Mak
(p)), IUk

(p)) ,p ∈ ΩIU
} (1)

For every time k, an image similarity metric M is maximized with respect to
motion parameters ak of the mapping Mak

, which maps the points p from the 2D
ultrasound image domain ΩIU

into the reference volume IR. While abdominal
motion is generally of deformable nature, a 2D ultrasound slice IUk

does not
contain sufficient information to recover a dense 3D deformation field. Since we
are ultimately interested in tracking the displacement of a single clinical target
within IR, we model the motion as a global affine transformation. In terms of
homogenous linear transformations, the mapping Mak

is then composed as

Mak
(p) = A−1

k TRTkTCp; p = (x, y, 0, 1)T (2)

where TC is the constant ultrasound to tracking sensor calibration, Tk the
tracking transformation at time k, and TR a constant registration transformation
introduced for generality (for now assumed as identity transformation). Those
are rigid transformation matrices, i.e. TR,Tk,TC ∈ SE(3). We are now seeking
the parameters of Ak, the 3D affine transformation expressing the deformation
of the reference volume IR onto the current ultrasound frame IUk

.

2.2 Incorporating Surrogate Information

Optimizing the parameters of Ak independently for every k results in a rather
bumpy and unstable motion of the compensated volume IR, since it solely de-
pends on the current 2D US image, and the anatomical structures depicted
therein. We therefore would like to constrain how Ak can change over time,
however without the strong assumption of a periodic motion, because we would
like to be able to successfully recover breathing irregularities as well. From a
position sensor attached to the patient’s skin (close to the umbilicus), we ex-
tract a scalar surrogate measurement s(k), representing the anterior-posterior
translation. Instead of only using the current frame, we are registering the last n
frames wrt. one set of affine parameters. We use the assumption that the n last
affine transformations lie on a straight path, their actual location on it being
derived from the surrogate signal (figure 1):

ak−n+i = ak−n +
s(k − n+ i)− s(k − n)

s(m)− s(k − n)
(ak − ak−n) ; i ∈ [1 . . . n] (3)

where
m = arg max

i
|s(i)− s(k − n)| (4)

The transformation of frame m, whose surrogate signal is most distant from the
oldest frame k−n, is optimized. The transformation of frame k−n, i.e. the n−1st
frame in the past, is assumed constant, its image is not included in the similarity
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Fig. 1. The surrogate signal is used for weighting along the transformation path.

measure computation. All transformations ak−n+i in between are interpolated -
for now with a parameterization a that supports addition (eq. 6 below). During
inhaling and exhaling, m is the most current frame (m = k). Around full in- and
exhale, m is the frame closest to the extremum of the surrogate (see figure 1).

2.3 Representation of Ak

We describe the sought affine transformation as

Ak =
(

HSR t
0 1

)
; with H =

1 hxy hxz

0 1 hyz

0 0 1

 ; S =

sx 0 0
0 sy 0
0 0 sz

 (5)

and R = Rz(θz)Ry(θy)Rx(θx) an Euler angles rotation. The resulting parame-
terization is

ak = (txtytzθxθyθzsxsyszhxyhxzhyz)T (6)

Locally optimizing all 12 parameters for every frame is costly and potentially
unstable (the scaling and shearing parameters easily bail out, depending on
the amount of structures in the 2D ultrasound frame). We have used Principal
Components Analysis (PCA) of the vector ak, created on ideal imaging data, in
order to derive a better parameterization, as well as reduction of the degrees of
freedom (DOF). Hence the first parameters of a vector a′k are optimized, such
that ak = Pa′k, where P is the 12× 12 matrix of PCA basis vectors. We obtain
best results using only 3 DOF, representing the 3 most significant PCA modes
and comprising 83% of the variance in the vector space of ak.
Another problem to be addressed is the interpolation of transformation matrices.
Linearly weighting the actual parameters ak as in equation 3 is not accurate
except for translation (e.g., an incremental motion applied twice would not yield
twice the motion). Hence we use a Lie group based method for interpolation of
Ak [7]. It requires mapping A in and out of the Lie group manifold’s tangent
space at Ak, by means of matrix logarithm and exponential, respectively:

Ak−n+i = Ak−n exp
(
s(k − n+ i)− s(k − n)

s(m)− s(k − n)
log(A−1

k−nAk)
)

(7)
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Fig. 2. Similarity measure plot for a free breathing sequence.

2.4 Slice-to-Volume Registration

As the similarity measure (M in eq. 1), Local Normalized Cross Correlation
(LNCC) is used, implemented as recursive filter. While its computational effort is
significantly higher than global metrics like Sum of Squared Differences (SSD) or
Normalized Cross Correlation (NCC), we found it to be much more robust. This
is due to its invariance to local brightness and contrast changes, induced by the
orientation-dependency of ultrasound imaging. We did not consider ultrasound-
specific similarity measures as in [8], because the involved resampling steps from
1) compounding of the inhale sweep into IR, 2) slice extraction, and 3) down-
sampling the 2D frame for registration, discard fine ultrasonic speckle noise
features that are assumed by those measures.
The similarity measure is optimized wrt. the 3 transformation parameters a′k,
using the Powell-Brent direction search technique [9]. Its specific advantage here
is that the first Brent line optimization is executed on the most significant PCA
mode, which recovers most of the mismatch and hence assures good performance
and robustness. We restrict the optimization to a maximum of three iterations
(each of them performing 3 line optimizations).

3 Results

The proposed technique was evaluated on four volunteers. Our tracked ultra-
sound setup comprised a Siemens Sequoia ultrasound machine (Siemens Ultra-
sound, Mountain View, CA) with abdominal curved-array probe, and a Micro-
Bird magnetic tracking system (Ascencion Technology Corp., Burlington VT).
After acquiring an inhale liver sweep, recordings were made in free breathing,
with the transducer moved arbitrarily to image any longitudinal and transversal
planes of the liver. At the end of the recording, the volunteer would purposedly
breathe in an irregular manner.
We use n = 6 frames for our algorithm, the acquisition rate is 10 Hz. Figure 2
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Fig. 3. First PCA mode compared to surrogate signal (the latter is scaled and shifted
to fit on the same plot).

CPU LNCC CPU SAD GPU SAD

time / evaluation 4.8 ms 1.9 ms 1.2 ms
evaluations / frame 43 38 41

time / frame 210ms 65ms 49ms

Table 1. Computation times. The CPU versions were executed on a Core 2 Duo
2.2GHz notebook, the GPU version on a NVidia Quadro FX 5500 graphics card.

shows the similarity measure for an exemplary sequence. Our compensation has
consistently higher similarity than the uncompensated version. Using the Lie
group interpolation (eq. 7) yields better results compared to linear interpolation
of the affine transformation parameters (eq. 3). The fact that the uncompensated
signal sometimes has multiple peaks in inhale, can be explained by the patient’s
inhaling exceeding the state where the reference sweep IR was acquired.
Figure 3 depicts the first PCA motion parameter compared to the surrogate sig-
nal. One can see that the compensation smoothly correlates with the skin sensor
signal. From visual assessment of the compensated sequences we concluded that
the recovered motion accurately matched the live ultrasound feed. Besides, the
student’s t-test was applied for the null hypothesis that the first PCA mode cor-
relates with the surrogate signal. The resulting p-values on all four volunteers
were larger than 0.50. This means there is no significant mis-match between
those two signals (while the actual shape of the signals may well be different,
since they represent internal vs. external motion). Figure 4 shows images for a
number of breathing phases.
Our C++ implementation utilizes SSE2-accelerated slice extraction and OpenMP
multi-threading (parallel extraction & comparison of slices). Computation times
are shown in table 1. The local cross-correlation approach takes significantly
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Fig. 4. Motion-compensated image pairs. Left is the live ultrasound frame, middle and
right show color overlays of un-compensated and compensated ultrasound images. The
hysteresis effect can be seen (different motion path during in- and exhaling).

more time than Sum of Absolute Differences (SAD). However, the numbers show
that the motion compensation algorithm would run in real-time on a high-end
quad-core workstation. We also compared the performance to a graphics pro-
cessing unit (GPU) based version. Here, slice extraction was implemented as
OpenGL 3D texturing, and SAD similarity measure computation in the frag-
ment shader. For this particular algorithm, the GPU version did not boost the
computation time much, because down-scaled ultrasound images with ≈ 12000
pixels were used to increase similarity measure smoothness. While the individual
steps of slice extraction and fragment shader passes are extremely fast, a number
of expensive render target switches (here with Frame Buffer Objects, FBOs) are
required per slice (this holds also for recursive filtering to compute LNCC on the
GPU, which we did not develop to date). For high resolution images, the GPU
version would be an order of magnitude faster than the software implementation.

4 Conclusion

We have presented a novel technique for image-based compensation of internal
liver motion, based solely on real-time tracked 2D ultrasound (also often denoted
‘3D freehand ultrasound’) imaging and a surrogate tracking sensor. It combines
methods of 1) slice-to-volume registration with a local cross-correlation measure,
2) PCA-based reduction of the affine parameter space, 3) direction set optimiza-



tion, and 4) incorporation of a surrogate signal via Lie group interpolation of the
n most recent motion updates. Real-time implementations of the algorithm were
developed for CPU and GPU. Qualitative evaluation was done on four volun-
teers, resulting in visually convincing motion tracking even for highly irregular
breathing.
We are currently acquiring data in a clinical setting on liver tumor patients.
We will investigate the possibility to set up the 2D ultrasound imaging plane
to monitor the lesion while at the same time providing enough anatomical clues
(diaphragm, vasculature etc.) to allow our algorithm to precisely track tumor
motion. Furthermore it is planned to evaluate the usefulness of the presented mo-
tion compensation for visualizing registered pre-operative data for interventional
ablation guidance, comparing it to static registration (i.e. accurate alignment at
only one time during the respiratory cycle, optional stop-and-go visualization).
We believe that our approach will be useful for other clincal scenarios as well,
particularly due to its main advantage over existing techniques, namely no need
for 4D imaging and patient-specific motion modeling.
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