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Abstract. We present a framework for rigid registration of a set of
B-mode ultrasound images to a CT scan in the context of Radiother-
apy planning. Our main focus is on deriving an appropriate similarity
measure based on the physical properties and artifacts of ultrasound. A
combination of a weighted Mutual Information term, edge correlation,
clamping to the skin surface and occlusion detection is able to assess
the alignment of structures in ultrasound images and simulated slices
generated from the CT data. Hence a set of ultrasound images, whose
relative transformations are given by a magnetic tracking device, can be
registered automatically to the CT scan. We validated our methods on
neck data of patients with head and neck tumors and cervical lymph
node metastases.

1 Introduction

Overview. Registration of ultrasound images to three-dimensional tomographic
modalities such as CT and MRI is receiving a lot of attention in the past few
years. On one hand, many intra-operative procedures, especially in neurology
and orthopedics, can be guided with ultrasound while integrating pre-operative
information from CT/MRI. On the other hand, data fusion for diagnosis and
treatment planning can improve the outcome as well.
In the particular application of radiation treatment planning for inoperable head
and neck cancer the identification of metastatic neck lymph nodes is mandatory
for the correct target volume delineation. This can be achieved with a reported
accuracy of 80-95% using high-frequency ultrasound [1]. However, the target
volume definition is done on individual slices of a planning CT scan. In di-
rect comparison with ultrasonography, diagnostic CT was equally predictive in
revealing lymph node size, but performed worse in depicting internal nodal ar-
chitecture, leading to a lower sensitivity and specificity than ultrasonography [2].
As in planning CTs for radiotherapy contrast medium is usually omitted, their
diagnostic properties are particularly poor. Therefore, transferring the diagnos-
tic information from ultrasound onto the CT data could yield a more precise



treatment.
In general, registration of multimodal data is especially desirable if they provide
complementary information. At the same time, this complementary nature ham-
pers image-based registration algorithms, which try to align structures present
in both modalities. In our work, we will try to overcome some of these problems
for ultrasound-CT registration.

Related Work. Due to the very different characteristics of ultrasound imag-
ing with respect to CT / MRT, a lot of research has been carried out on using
features extracted from the ultrasound images, in order to align them with cor-
responding structures in other modalities. Possible anatomical features comprise
vessels [3, 4], bone surfaces [5], organ surfaces [6]. Pure intensity-based registra-
tion has been performed mainly for 3D ultrasonic data. Roche et al. [7] use an
adapted correlation ratio similarity measure in order to register the ultrasonic
data simultaneously to both the intensity and the gradient information of a MRI
scan. A registration involving an automatic mapping of MR and Ultrasound data
to Vessel probability values and successive registration of this information is pro-
posed in [8]. Using a CT data of a kidney, where the intensity values are enhanced
with strong edges from the gradient, a registration with freehand 3D ultrasound
is performed in [9]. Voxel-based registration of MRA scans with Power Doppler
ultrasound has been evaluated in [10].

2 Methods

2.1 Simulation from CT

Instead of a realistic simulation of ultrasound, we need an intelligent and efficient
intermediate representation of the CT data at arbitrary cut-planes, such that an
iterative registration can be performed in an acceptable time.

These slices have multiple components containing intensity, gradient and edge
information, which are used to derive various parts of a similarity metric, so that
the correspondence of anatomy contained therein with structures in 2D B-mode
ultrasound images can be determined.
In our approach, first the three-dimensional gradient vector values are computed
from the CT data set by convolution with a sobel filter cube. They are stored in
a 4-channel volume together with the original voxel intensity. The interpolated
slices contain four channels as well. For each pixel, the 4-vector is computed
from the volume using trilinear interpolation. In the first channel of the slice,
the original CT intensity is stored. The 3D gradient vector is scalar multiplied
with each of the vectors indicating the horizontal and vertical slice plane direc-
tions, respectively. The resulting values, corresponding to the 2D gradient of the
CT intensity within the slice, are stored in the second and third channel.
The 2D slice gradient values are then used to perform Canny edge-detection on
the slice data, storing the result in the fourth channel. The most time-consuming
steps within the Canny algorithm for 2D images are the computation of the 2D
gradients, as well as filtering them with a sufficiently large Gaussian kernel for



smoothing. As we compute the 2D gradients directly from the precomputed 3D
gradient values, we do not need to run a 2D filtering for gradient computation.
In addition, those gradients are very smooth, as they originate from a three-
dimensional Sobel filter using a 27-neighborhood. This makes further Gaussian
filtering unnecessary. The two remaining steps for the Canny algorithm, non-
maxima suppression and hysteresis thresholding, can be performed each in one
traversal of the 2D slice. The horizontal gradient is weighted with a user-defined
factor between 0 and 1, as the ultrasound data tends to show mainly vertical
edges.
Thus we are able to construct intermediate slices from the CT data at estimated
transformations of the US scan plane in very little time3. The individual com-
ponents of the slice pixels are then used to compute a similarity metric with the
ultrasound data.

2.2 Occlusion Handling

If an ultrasonic pulse hits bony structures, all image intensities in the ultrasound
image further along the specific ray are occluded, and mainly determined by
noise. Therefore, all ultrasound intensity values on a ray below such an occlusion
should be disregarded in the registration method. In our implementation, we
scan the US image from bottom to top, updating the variances for all ultrasonic
pulse rays. Where they exceed a threshold (which is easily determined in the
user interface), the first pixel to be considered is defined. Thus, our Region of
interest Ω is expressed by the following equations:

Ω = {(x, y) | (y < ytop) ∧ (y ≥ b(x))} (1)

b(x) = min y
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By applying a median filter on the bottom function b(x), discontinuities are
removed before defining the ROI. In addition, we discard all pixels which are
located above ytop = 9

10sizey, as we observed that the anatomy is highly com-
pressed there due to the probe pressure on the patients skin. This compressed
region is very distinct from the remaining anatomical structures, its size (3.6mm)
being consistent on all data we obtained from patients (figure 1). This ROI def-
inition is similar to the ones used in [8] and [9].

2.3 Similarity Measure

Based on both the physical properties of the imaging modalities, as well as
the visible appearance of their images, we developed several components for a
similarity measure, which can in turn be weighted to form a cost function value
with respect to the transformation parameters.
3 1.1ms for a 1282 pixel slice, interpolated from a 5122 · 100 CT/gradient volume, on

an AMD Opteron 2.4 Ghz machine



Fig. 1. Two ultrasound images with ROI (red lines) and target, corresponding CT
slices, edges from CT, and overlay in 3D. The physical image size is 4 × 4cm.

Skin Surface Clamping. In the compressed fraction of the ultrasound image,
the interpolation from CT is done with 6 times the vertical scaling (figure 1 on
top). As result, the interface between skin and air always has to be within that
region, producing a large vertical gradient in the interpolated slice. When all
vertical gradient pixels are summed to t, high and low thresholds th, tl can be
defined in order to decide if the skin surface lies inside, outside or close to the
compressed region:

f(t) =

 1 if t > th
0 if t < tl

(t− tl)/(th − tl) otherwise

 ; S0 = 3f(t)2 − 2f(t)3 (3)

A cubic polynomial is used instead of the linear rise in order to avoid disconti-
nuities. Used as a cost function component, S0 penalizes transformations which
are physically impossible, as the patients skin is always on top of the ultrasound
images.

Edge Alignment. As we have detected the edges in the simulated images, we
would like to derive a similarity estimate based on the distance to edge struc-
tures in the ultrasound images. The straight-forward approach would be to 1)
compute an edge-detection for the ultrasound images, 2) compute a 2D distance
map for those edges and 3) sum over the distance map values at the locations
indicated by the edges of the simulated data. Steps 1) and 2) need to be per-
formed once for each ultrasound slice, while 3) establishes a similarity metric
and thus has to be computed for each simulated slice during pose estimation.
However, due to the very different nature of CT and ultrasound data, detected
edges do not correspond in general. We therefore propose to skip the edge detec-
tion from ultrasound data, instead using the original ultrasound intensity just
as indicator for edges.
Given a binary edge image, the distance of an image point x to the edge struc-
tures Y = {yi} is d(x) = mini |x − yi|. Instead of the euclidian distance, we



can also express the proximity to edges by using a Gaussian expression, which
allows us to adjust the sensitivity of the cost function value with respect to the
distances, using σ2:

d(x) = max
i

exp− (x− yi)2

σ2
(4)

Taking into account that we do not have precise edge information, a proximity
value can be defined as

d(x) =
∑

i

pi exp− (x− yi)2

σ2
(5)

where pi ∈ [0 . . . 1] is the probability for the image pixel yi being an edge. Assum-
ing that the ultrasound image intensity directly scales with the edge probability,
a two-dimensional proximity function p(x) can be computed by just convoluting
the ultrasound image with a large gaussian kernel. The similarity measure com-
ponent arises from this as S1 = (pe − p)/σp, where p is the mean of all values in
the proximity image, pe the mean of just the pixels at locations where an edge is
present in the simulated image, and σp the standard deviation of the proximity
image values.

Statistical Correspondence. Different tissues in the anatomy cause different
scattering characteristics for ultrasonic waves. Higher scattering in turn causes
a larger portion of the ultrasound pulse to be reflected back to the transducer,
resulting in higher intensities in the ultrasound image. It is therefore applica-
ble to assess the statistical dependance of the CT intensities, which classify the
tissue according to the X-Ray attenuation property, with the intensity in the
ultrasound image. We therefore use Mutual Information on the CT and ultra-
sound intensities. The Normalized Mutual Information term uses the entropies
of the combined and individual images, which are computed with the Shannon
entropy from probability distributions of the image intensities:

NMI(U, S) = 2− 2H(U, S)/(H(U) + H(S))

H(U) = −
∑

j

pu(j) log pu(j); H(S) = −
∑

i

ps(i) log ps(i)

H(U, S) = −
∑

i

∑
j

p(i, j) log p(i, j)

Here U denotes an ultrasound image, and S the corresponding simulated image,
i.e. the slice interpolation of CT attenuation values. The probability distributions
can be estimated using histogram information from the images:

pu(i) =
1

nΩ
|{(x, y) ∈ Ω|U(x, y) = i}| (6)

ps(j) =
1

nΩ
|{(x, y) ∈ Ω|S(x, y) = j}| (7)

p(i, j) =
1

nΩ
|{(x, y) ∈ Ω|U(x, y) = i ∧ S(x, y) = j}| (8)



Here we assume that each intensity value is mapped into one histogram bin,
and nΩ = |Ω| is the number of pixels in the region of interest. An equivalent
formulation for constructing the probability distribution from a histogram can
be written using a binary count function cu

pu(i) =
1

nΩ

∑
(x,y)∈Ω

cu(x, y, i); cu(x, y, i) =
{

1 if U(x, y) = i
0 otherwise

}
(9)

Due to the various physical effects in ultrasound imaging, both the chance that
an image intensity reflects the anatomy, as well as the Signal to Noise Ratio
(SNR), decrease with the distance from the ultrasound transducer. Thus we
would like to give more emphasis on image pixels which are closer to the probe,
i.e. with higher y values. In our approach, we introduce an integer weighting for
assembling the distribution:

p′u(i) =
1

n′Ω

∑
(x,y)∈Ω

(y + c0)cu(x, y, i) (10)

n′Ω =
nx−1∑
x=0

ytop−1∑
y=b(x)

(y + c0) (11)

Every intensity value is inserted y + c0 times into the histograms and the joint
histogram. For c0 → ∞ the original Mutual Information notation is obtained.
Our weighted Mutual Information component NMI ′ of the similarity measure
is assembled by inserting all used ultrasound slice images and the corresponding
simulations into one histogram, as it increases the statistical significance of the
derived entropy terms.

Cost Function. The final similarity measure from a set of n ultrasound slices
{Ui} and their CT simulations {Si} is

cf = w0
1
n

n∑
i=1

S0(Ui, Si) + w1
1
n

n∑
i=1

S1(Ui, Si) + w2NMI ′({Ui}, {Si}) (12)

2.4 Registration

In order to manually navigate the stack of ultrasound images to the desired po-
sition within the CT data, the user picks a reference slice k, whose position and
orientation is changed by left-multiplication with a rigid transformation matrix.
At the same time, all other transformations are updated in order for the relative
locations to stay fixed, as they originate from the tracker.
For automatic registration, a non-linear optimization method maximizes the cost
function cf iteratively with respect to the parameters of a rigid transformation
(6 DOF, translation and Euler angles), which is initialized with zero and af-
fects the location of all slices. We used three optimization schemes: simple hill
climbing, Powell-Brent and an exhaustive hill climbing. The latter one evaluates
all combinations of [forward, keep, backward] for all parameters, using the best
result of all 36 = 729 evaluations as estimate for the next iteration.



3 Results

Three head and neck cancer patients with metastatic lymph node involvement
were thoroughly examined with a 11 MHz linear array ultrasound probe. The im-
ages were recorded using a frame grabber card, while an Ascension microBIRDTM

magnetic tracking sensor provided the spatial encoding. A set of 3-10 slices from
the right carotid artery of each patient was picked for registration. Figure 1 de-
picts two slices from the first patient alongside the registered CT data.
A ground truth registration pose was established with manual registration by
the physician. This could be done with an estimated precision of 1mm in the
first data set, as the calcifications in the carotid artery (figure 1) represented
good anatomical landmarks.
In order to evaluate the robustness and accuracy of the automatic registration,
200 registrations were launched from initial transformations randomly displaced
up to 5mm/5◦ in each parameter around the ground truth pose. The following
table denotes both the root mean squared (RMS) error in the translational and
rotational components, as well as the target registration error (TRE) for the
lymph node (figure 1) picked as target. This evaluation was done for all three
used optimization schemes on the data of patient 1.

trans. rot. TRE iterations time
Hill Climbing 1.2mm 3.7◦ 2.0mm 242 3s
Powell-Brent 1.0mm 2.8◦ 1.8mm 4 8s

Exhaustive H.C. 0.8mm 2.5◦ 1.2mm 189 144s

All optimization methods are able to converge precisely to the ground truth
registration, so that the registered data can be used reliably for therapy planning.
To do so, the slices from the original CT data set, which are used to outline
the target volume, are visualized together with the registered ultrasound slices
and optionally volume rendering of both the CT and a 3D ultrasound volume
spatially compounded from the tracking data (figure 2).

4 Conclusion

We developed methods which allow automatic registration of a set of ultrasound
slices to a CT scan, despite the very difficult characteristics for registration of
both modalities. The similarity metric is derived from the physical properties
of ultrasound imaging, rather than from the particular anatomy used in our
experiments. Therefore the algorithms are also applicable on any other part of
the human body scanned with an external ultrasound probe. The registration
is performed within a few seconds, and is therefore capable of supporting real-
time applications, such as intra-operative navigation, as well. We evaluated our
methods in the context of radiotherapy for head and neck cancer, where the use
of registered data is beneficial for the treatment planning.
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Fig. 2. Left: Overlay of registered ultrasound images, a slice from the CT data set, and
CT volume rendering. Right: Volume rendering of compounded 3D ultrasound.
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