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Variational Object-aware 3D Hand Pose
from a Single RGB Image

Yafei Gao1,∗, Yida Wang1,∗, Pietro Falco2, Nassir Navab1 and Federico Tombari1,3

Abstract—We propose an approach to estimate the 3D pose of
a human hand while grasping objects from a single RGB image.
Our approach is based on a probabilistic model implemented with
deep architectures, which is used for regressing, respectively, the
2D hand joints heat maps and the 3D hand joints coordinates.
We train our networks so to make our approach robust to
large object- and self-occlusions, as commonly occurring with
the task at hand. Using specialized latent variables, the deep
architecture internally infers the category of the grasped object
so to enhance the 3D reconstruction, based on the underlying
assumption that objects of a similar category, i.e. with similar
shape and size, are grasped in a similar way. Moreover, given
the scarcity of 3D hand-object manipulation benchmarks with
joint annotations, we propose a new annotated synthetic dataset
with realistic images, hand masks, joint masks and 3D joints
coordinates. Our approach is flexible as it does not require depth
information, sensor calibration, data gloves, or finger markers.
We quantitatively evaluate it on synthetic datasets achieving state-
of-the-art accuracy, as well as qualitatively on real sequences.

Index Terms—variational inference, triplet

I. INTRODUCTION

HAND pose estimation is now a required technology
for many emerging consumer applications such as vir-

tual and augmented reality (VR, AR), robotics, gaming, and
human-machine interface. Concerning robotics, a key problem
in the scientific community is to program both stationary
robots and modern mobile manipulators without strong techni-
cal background. The classical programming techniques can be
optimal in industrial production lines where the environment
is completely structured. However, in applications that require
human-robot collaboration and in new areas of service robotics
such as logistics, healthcare, and house automation, robotic
systems have to be reprogrammed in an intuitive and easy
way by nonexpert users. An effective way to instruct robots in
an intuitive fashion is programming by demonstration, where
the robot observes humans performing a task and learns to
reproduce it. A key bottleneck, especially for manipulation
tasks, is the observation of human hands while grasping
and manipulating objects, as this presents the challenge of
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Fig. 1: 3D hand pose estimation from monocular under heavy
occlusion. The canonical hand joint configurations for objects
of the same category are similar. Hence, we leverage special-
ized latent features to regress accurate hand pose based on the
detected object’s information.

occlusion, since parts of the hand are dynamically occluded
by the grasped object. Notably, also the other aforementioned
applications such as AR, VR and gaming need to deal with
hand-object interaction and occlusion.

In this paper, we address the problem of estimating the hand
pose in 3D space while grasping objects using a single RGB
camera. 3D hand pose means the 3D positions of the hand
joints with respect to a frame fixed to the wrist. As it consumes
data only from a monocular camera, our system does not
require any depth sensor, sensor calibration, data gloves as
in [1], or finger markers [2]. To the best of our knowledge,
this is the first work that addresses discriminative hand pose
estimation using monocular image as input while the hand
interacts with an object. We propose a method based on two
stages, each carried out via a deep architecture which are
released here 1. Given an RGB image, the first step is to filter
the hand out of the environment and to generate a heat map
that highlights the joints’ location. To deal with the frequent
occlusions of the hand caused by the grasped objects, a deep

1https://github.com/wangyida/VO-handpose
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architecture with variational latent feature is purposely trained
to reconstruct the occluded parts. Then, the 3D coordinates
of the joints are estimated based on the generated heat map.
In order to enhance the 3D pose estimation procedure, we
introduce additional features in the latent space that specialize
to the shape and size of the grasped object to influence the
final hand pose regression. The underlying assumption for
this is that, for grasping similar objects in terms of shape
and size (e.g., from the same category), the joint (knuckle)
configurations of the two grasping poses are similar to each
other (see Fig. 1). In addition, given the current lack in
literature of 3D hand-object manipulation benchmarks with
joint annotations, we have generated a new annotated synthetic
dataset that includes realistic images, hand masks, joint masks
and 3D joints coordinates.

To summarize, the main contributions of this work are: i)
a novel variational deep architecture to reconstruct a 2D hand
mask in presence of large occlusions and to identify a heat-
map of hand joints’ locations using a monocular image; ii) a
deep network that estimates 3D hand pose from the 2D heat
map, leveraging latent features that identify the object category
to accurately estimate the hand pose; iii) a novel synthetic
dataset of hands grasping objects with rich annotations.

II. RELATED WORKS

A. 3D Bare-Hand Pose Estimation

Approaches for 3D bare hand pose estimation can be
sorted into two categories: discriminative (appearance-based)
and generative (model-based). While generative approaches
classify input X with expected output Y by learning a model
of joint probability P (X,Y ) and using Bayes rule to compute
P (Y |X), discriminative methods classify X by learning a
direct map between X and Y or directly estimating the
posterior probability.

Most generative approaches for hand pose try to fit a
parametric model to the data by generating model hypothe-
ses and evaluating them on the observed data [3], [4], [5].
Instead, discriminative approaches directly learn a forward-
pass function from training data and establish a mapping
from image to hand pose [6], [7]. In this case, a critical
factor is represented by finding a suitable learning model
which has the ability to handle a large amount of features
and possible hand poses [8], [9]. As deep architectures handle
more complex tasks, convolutional neural networks (CNNs)
fully utilise stacked convolutional operations to predict 2D
joint locations for real-time continuous pose recovery from a
single depth image [10]. Depth images alse help estimate 3D
poses [11], [12], [13]. With input of RGB images, 3D models
are also used to produce 2D samples to learn 3D Orientation
of objects [14]. Recently, Zimmermann et al. [15] propose a
concatenated architecture to estimate hand segmentation, joints
position and 3D poses sequentially.

B. Hand Pose Estimation with Object Interaction

Due to substantially increased occlusion caused by the
objects, related work in this field primarily falls within the
generative category and either assumes simplified working

conditions (e.g., empty background) or employs additional
input modalities (e.g., multi-view or depth data). A differen-
tiable objective function for pose estimation is proposed in [16]
where edges, optical flow, salient points and collisions are used
to capture the motion of two hands interacting with an object
on an empty background. Kyriazis [17] suggests an ensemble
of collaborative trackers to handle multi-object scenarios based
on RGB-D data as input. As for discriminative approaches,
Romero proposes a hand pose retrieval approach for RGB
images, where nearest neighbors from a large hand pose
database are retrieved based on object shape information [18].
A discriminative top-down approach is proposed in [19] using
CNNs, able to estimate the hand joints and object locations
from a depth camera. First object pixels are segmented out,
then a two-channel image containing both the input depth
map and the masked depth map are used to regress the 3D
joint position. However, experiments are proposed where only
a tennis ball is used as interacting object, which exhibits
a similar silhouette from diverse observation perspectives,
consequently only simplified occlusion cases are taken into
consideration. Another discriminative approach based on depth
data is proposed by Choi [20], which uses parallel deep
architectures and embeds object shape information into latent
features. Two networks share intermediate observations pro-
duced from different perspectives to create a more informed
representation. Instead of processing low-level data to detect or
remove occluded regions, it exploits a CNN-based framework
to extract grasp estimates from those regions. Interestingly,
Choi’s approach and our work share the assumption that there
is a strong correlation between the object category and the
grasping pose. Differently from Choi, we aim to solve the
task using only monocular data.

C. Hand-Object Datasets

To the best of our knowledge, there exist the following fully-
annotated hand-object datasets: Hand-Sphere Dataset [19],
SynthHands Dataset [21], GANerated Hands Dataset [22],
First-Person Hand Action [23], and Stereo Dataset [24]. Hand-
Sphere [19] captures hands grasping spherical objects using
a Kinect sensor and providing both hand segmentation and
pose estimation. For segmentation task, paired depth maps and
RGB images are provided with 5635 samples for training and
1042 for testing, while the pose estimation dataset consists
of 3986 samples for training and 745 for testing. Hand-
Sphere [19] lacks diversity of manipulated objects since the
object has a similar silhouette from different viewpoints, hence
provides limited types of occlusion. Also, this characteristic
does not allow to evaluate the assumption that hand poses are
correlated to the shape and category of the grasped object. Syn-
thHands [21] is a synthetic dataset for hand pose estimation
from depth and color data, with and without object interaction.
It uses a merged reality approach to capture and synthesize
large amounts of annotated data of natural hand interaction
in cluttered scenes. Occluded hand and interacting objects are
directly observed. However, to implement grasping hand pose
estimation task, many interactions within this dataset are phys-
ically invalid. Recently, GANerated Hands Dataset [22] was
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proposed, containing more than 330,000 color images of hands
with 2D and 3D annotations of 21 keypoints on a synthetic
hand model. The use of GANs help increase the realism of the
dataset, nevertheless physically invalid joint configurations still
exist. In this dataset, the hand pixels are already segmented and
extracted. Stereo Dataset [24] is composed by 18000 stereo
image pairs and 18000 depth images captured from different
scenarios and the ground-truth 3D positions of palm and finger
joints obtained from the manual label.

Our dataset differs in two main aspects. First, it includes
a variety of objects with labels. Second, it is designed to
realistically simulate hand-object interaction, hence facilitating
the use of parametric models trained on our dataset on real
data. A dataset with object labels is important as it allows us
to test approaches based on object category information.

III. METHODOLOGY

This section describes the proposed approach for 3D hand
pose estimation from a single image, devised to deal with large
hand occlusion. Inspired by [15], we first segment the com-
plete hand and regress joint locations as heatmaps, then use
such joint locations to guide 3D pose estimation by regressing
the 3D canonical and relative hand poses. As a reminder,
3D canonical poses are a set of absolute joint coordinates,
while 3D relative poses depend from a specific viewpoint.
In [15], three sub-architectures are used sequentially, namely
HandSegNet, PoseNet and PosePrior. Since this approach
estimates the pose of bare hands, it is not designed to deal
with occlusions that occurr during hand-object interaction. To
overcome this limitation, as depicted in Fig. 2, we propose to
replace the discriminative model in [15] with a generative one
based on two encoding-decoding networks and two learned
latent spaces (zh and zj in Fig. 2), so to regress more robustly
joint configurations and hand poses. Since the latent space
is a compact representation of the input domain, we believe
this approach enforces a large number of unrealistic poses to
be dropped during inference, increasing the accuracy of the
outcome.

In particular, first we replace HandSegNet (i.e., the network
in [15] for hand segmentation) with a variational convolutional
architecture based on an encoder-decoder pair and trained
to regress hand masks and joint location heatmaps. This
network is concatenated with another decoder, i.e. PoseNet in
[15]. Then, we replace PosePrior, which estimates in parallel
the canonical pose and the rotation matrix and obtains the
relative pose by multiplying the canonical coordinate by the
rotation matrix, with another variational auto-encoder, which
is trained via triplet learning to regress 3D canonical and
relative joint coordinates from the inferred joint heatmaps.
Note that, similarly to [15], hand side is also necessary for
pose inference. To describe more formally our pipeline in the
following, let X be the input RGB image, while the outputs
are a hand segmentation mask (Yh), a multi-channel joint
heatmap Yj and a set of estimated 3D joint coordinates Yp.
Two latent features zh and zj , which are extracted from X
and Yj , are used to regress 2D maps Yh, Yj and 3D poses Yp.
We apply, on both sub-architectures, variational inference and
triplet training.
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Fig. 2: Proposed architecture for 3D hand pose estimation.

A. 2D Hand Mask and Joint Heatmap

Supervised CNNs for segmentation such as DCN [25] and
stacked CNN [26] can effectively perform hand segmentation
only on those parts of the hand that are visible, so Hand-
SegNet [15] can not segment well the hand in presence of
occlusion even if trained with complete hand masks, this
leading to errors nearby hand joints. As shown in Fig. 5,
the segmented hand region generated by [15] mostly contains
visible hand parts, resulting in disconnected components in
presence of occluding objects. To solve this problem, we apply
variational inference on a latent feature zh of input X and split
the 2D estimator into an encoder-decoder pair. Instead of using
loss functions targeting hand segmentation directly, we set two
constraints to enhance the ability to obtain the 2D hand mask
in presence of occlusion:

• the decoder ph(zh) always generates a complete hand
from latent feature zh;

• the encoder qh(X) generates a latent feature z
′

h which is
likely to produce a complete hand.

First, the input image X is encoded into the latent features
zh by encoder qh, then used to generate a hand mask Yh at
256× 256 resolution via decoder ph. Here the grasped object
is removed once the hand mask is generated. Then, for the aim
of extracting hand joint information in form of pixel-wise heat
maps, Yj are generated from a decoder pj() with a masked
hand Xh as input. This means that pj is concatenated after ph,
so we can also generate pj directly from the latent features zh
via a combined decoder pj(ph).
pj is an extended convolutional architecture with 24 layers,

that outputs a 21-channel heatmap of size 32× 32× 21, each
channel associated to one of the 21 joints. Hence, we combine
the encoder and the 2 decoders together as pj(ph(qh)), gener-
ating the 2D pose as the heat map Yj from the image X . Both
the encoder qh(X) and the decoder ph(zh) are simultaneously
optimised with a variational constraint [27] for latent variables.
The Kullback-Leibler (KL) divergence D[Qh(z|X)||Ph(z|Y )]
between the posterior Ph(z|Y ) and a likelihood Qh(z|X) is
used to evaluate the capability of the encoder to generate latent
features which are likely to produce the expected target Y :

Ez∼Q[logQh(z|X)− logPh(Y |z)− logP (z)] + logP (Y ) .
(1)

Since the likelihood term Qh(z|X) is hardly tractable,
variational inference [27] solves this problem by redefining
a specific encoding function qh(·) with latent features z =
qh(X) following a Gaussian distribution N(0, I), such that the
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associated probability density function Qh(z|X) is expected to
fit the posterior Ph(z|Y ). We modify equation (1) as follows
to obtain the cost function for our encoder and decoder:

Lenc−hand =D[Qh(z|X)||P (z)]

Lgen−hand =− Ez∼Q[logPh(Yh|z)] . (2)

The loss function in (2) can be interpreted as: the condi-
tional log likelihood logPh(X|z) used in variational auto-
encoder [28] is replaced with logPh(Y |z) where the expected
network output is different from the input, so that the decoding
process can be carried out for different targets Y .

Once the completed hand segmentation network is trained
with equation (2), we use the generated hand mask to crop
the original image X . In this case, the hand is centered in the
image while all fingers are included for further processing. We
can define a loss function for the decoder simply by replacing
ph(zh) with pj(ph(zh), X), i.e. the likelihood Ph(Yh|z)
to generate hand masks is changed to generate joints maps
Pj(Yj |z,X); thus the final loss function used to regress the
2D joint heatmap is

Lgen−joint =− Ez∼Q[logPj(Yj |z,X)] . (3)

Finally, we train hand segmentation and joint estimation
together with the following loss:

L2d = Lenc−hand + Lgen−hand + Lenc−joint + Lgen−joint .
(4)

According to the architectural design, to get those latent
features we apply 3 fully-connected layers with dimensions
[256, 128, 128] respectively, followed by ReLU [29] to pro-
cess the output of the 18th convolutional layer in HandSeg-
Net [15] and the output of the first fully-connected layer in
PosePrior [15]. The decoder of our 2D hand joint estimator
relies on the convolutional architecture used for people detec-
tion in [30], with which is concatenated with the decoder for
hand segmentation.

B. Object-aware 3D Hand Pose Estimation

As the last step of our model, we estimate the canonical
and real 3D hand poses based on the images cropped by
the generated 2D joint heatmaps Yj . The canonical 3D hand
pose [31] defines a 3D pose which is rotation invariant and
independent of the camera view, so that a set of 2D hand
joints can be projected into the same 3D canonical pose even

if their real poses are different. Here we also apply variational
inference on the latent features to make the predicted 3D
pose more stable. Since humans grasp objects with a strategy
that depends on the size and shape of the object, the 3D
canonical hand poses should be similar to each other when
grasping similar objects. Fig. 3 shows that the distribution of
3D hand poses (trained without using any explicit object label)
becomes correlated to object categories. We then conclude that
3D hand pose estimation in presence of objects can benefit
from knowing the object category, should such information be
available in advance. However, at test time we want to predict
the hand pose just from an RGB image, without any additional
information. Therefore, instead of using object labels as an
additional input, we implicitly add category information to
the learned latent feature.

When estimating the 3D hand pose from the heatmap Yj

using the combined encoder-decoder architecture qj , pp, we
propose to use triplet training to optimize the latent features
zpose produced by qj , so that they form clusters driven by
object categories. Since most datasets do not provide object
labels for training, we introduce an approach to learn object-
related latent clusters, by introducing additional latent vari-
ables which are used as cluster centers. Our unsupervised
clustering could be used within stochastic gradient descent
(SGD) [32] to train a deep network, which would not be
possible for other clustering methods such as K-means [33].

Object-driven Latent Features via Triplet Training In
case the training dataset contains annotations regarding the
category of the manipulated object (such as for the proposed
HOP dataset described in Sec. IV), we want to learn latent
features that are similar when the category of the grasped
object is the same. To push latent features to cluster together
driven by object categories, we use metric learning. Metric
learning optimises feature distributions with relative infor-
mation between training samples: the distribution of latent
features changes so that the features which are expected to
produce similar outputs are also close to each other. Triplet
training [34] was initially applied to face recognition [35].
We apply a triplet cost function inspired from [36] together
with a pairwise term. The triplet loss function is computed
from triplets, i.e. three instances of the same feed-forward
network with shared weights [34]. Each triplet is composed of
a reference sample, a positive sample and a negative sample.
We use zref to denote the feature of reference input Xref

which is processed by function f .
In our case, f is the concatenated architecture of joint

estimator pj(ph(qh)) and encoder qp. f(Xpos) and f(Xneg)
denote, respectively, the positive (same label as Xref ) and
negative (different label as Xref ) anchors of the triplet. As
metric for training we use the Euclidean distance. As an
example, imagine a triplet with 3 hands holding, respectively,
a bottle, a mug and a tomato. The reference sample is grasping
a bottle. As hands have a similar configuration when grasping
a bottle and a mug, and a significantly different one when
holding a tomato, the hand with mug is labeled as positive
sample while the hand holding the tomato is regarded as a
negative sample.

During training, positive features zpos are those belonging to
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the same category as the reference feature zref , while negative
features zneg are those belonging to different ones. We set a
loss function to make squared Euclidean metric ||zref−zneg||22
larger than ||zref − zpos||22:

Ltriplet =
∑

ln(max(1, 2− ||zref − zneg||22
||zref − zpos||22 +m

))

+
∑
||zref − zpos||22 , (5)

where m is the margin for triplet. A pair-wise term |zref −
zpos|2 is used for moving latent features on the boundaries
of two categories, since the triplet term does not influence a
lot for those samples. The dimensionality of both of the latent
features zh and zp is 256. We choose it empirically through
a grid search approach from 24 to 210 to balance the fitting
capacity for data and time efficiency.

Unsupervised Latent Feature Optimisation In case the
training data does not provide object category labels, we adopt
an unsupervised clustering approach which could be used
with SGD [32] aiming at forming clusters similar to those
obtained via triplet training. Although K-means [33] clustering
is simple enough to form clusters without using additional
information, it can only be applied on a set of features without
changing values. Since latent features are continuously up-
dated during training, K-means would not converge easily. To
solve this problem, we introduce N additional latent variables
{c1, c2, . . . , cN} acting as cluster centers, having the same
dimension as the latent features. Suppose that batch size is M ,
latent variables {z1, z2, . . . , zM} are labeled with the index
of its nearest center cm ∈ {c1, c2, . . . , cN} during training.
The loss function Lcluster enforces those variables holding the
same label to stay close to their cluster center. At the same
time, the center itself moves towards the region of space where
variables with the same label are present. The clustering loss
function Lcluster is determined as below:

Lcluster =

M∑
m=1

||zm − cn||22 . (6)

The additional variables {c1, c2, . . . , cN} are randomly ini-
tialized from a Gaussian distribution. Once this unsupervised
clustering method is applied, triplet training still works when
the indices of latent variables are almost fixed. Thus, the su-
pervised and unsupervised loss functions can be used together
for metric learning:

Lmetric = Ltriplet + Lcluster (7)

We use the squared Euclidean distance Lpose = ||Yp −
pp(zj)||22 between the expected canonical 3D pose and the
output Yp of decoder pp as regression loss for the pose
estimation. The overall loss function hence becomes:

L3d = Ltriplet + Lcluster + Lpose (8)

Another advantage of enforcing such cluster centers is that the
network can be trained with categorical supervision as cluster
center of every category. It is then possible to exploit these
centers at test time to infer the category of the grasped object,
e.g. by comparing the distances between the latent feature

Object 
categories

cubicalcylindrical

sphericalslender

(a) Scenes (b) 21 joint (c) Objects (4 categories)

Fig. 4: Characteristics of the proposed HOP dataset

and each cluster center. Since the predicted canonical poses
are camera-view independent, we apply a rotation matrix R
to change Yp into a camera related pose, and we apply fully-
connected layers with linear activation based on input Yj . We
adopt the architecture proposed by [15] by adding loss function
||Rgt − R||22 to L3d. In the end, the relative 3D poses are
optimised with

L3dr
= Lpose + ||Rgt −R||22 + Lcluster + Ltriplet (9)

where the Ltriplet term is optional and used only when object
labels are available.

IV. HAND-OBJECT DATASET FOR 3D POSE ESTIMATION
(HOP)

The datasets described in Sec. II-C are not sufficient for
training an object-oriented hand pose estimation network due
to the lack of the necessary variations of objects and shapes.
We propose a new dataset dubbed Hand-Object Pose (HOP),
which contains 11,820 pairs of RGB images and masks at
320×320 resolution, with 800 samples to be used for testing.
Hand poses include 21 3D joints, which are manually created
according to physical grasping pose and degrees of freedom
(DoF) of each joint. Then they are used to precisely annotating
CAD models. Images encompass 5 female and 5 male subjects
who grasp 30 different objects with 600 randomly rendered
background images. We assign category labels for each image
based on the characteristics of the object present therein. The
dataset includes 4 object categories: i) cylindrical objects (e.g.,
bottle, can, milk carton), ii) bars and sticks (e.g., pencil,
fork, chopsticks), iii) cubical objects (e.g., book, smart phone,
cutting board), iv) spherical objects (e.g., orange, ball, tomato).

Dataset Generation: With the help of MakeHuman 2, an
open source computer graphics software for prototyping of
photo realistic 3D avatars, we obtained 3D models with skele-
ton in different body shapes, skin colors and ages. 3D object
models are obtained from TurboSquid3 and human activities
dataset [37]. We imitate physical human hand movement and
manually create series of interaction animations between a
human and an object using Blender4. Hand animations were
captured from different viewpoints. Two point lamps randomly
placed in each scene ensure the diversity of illumination
conditions. After fixing the location of camera and light
sources, background images, which exclude people or animals

2http://www.makehumancommunity.org
3https://www.turbosquid.com
4https://www.blender.org
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in the scene, are selected from www.pexels.com. Mask images
of both isolated hand and isolated object for each scene are
generated by Blender as well, which may be useful for future
research in object segmentation. We used Cycles Renderer5,
a physical-based unbiased path tracing engine designed for
animations, to produce photo-realistic renders.

Annotations: As we placed a standing human model in
the origin, 3D hand joint coordinates and object locations are
automatically obtained according to the relative position of
the center of the base of support (BoS). Object categories are
manually defined. The dataset also provides intrinsic camera
matrix and 3D keypoint positions in camera coordinate system
as well. The synthetic dataset and the corresponding source
code (python-blender) will be publicly released.

V. EXPERIMENTS

We evaluate our work on both bare hand datasets and our
object manipulation dataset, via quantitative and qualitative
results. For ablation purposes, we first independently test the
2D joint estimation and 3D pose estimation stages. When
testing the 3D pose estimation stage alone, we feed ground-
truth heatmaps as input. In addition, we also test the whole
architecture composed of all proposed stages.

A. 2D Hand Segmentation

As we are analysing our 2D processing architectures, only
{qh, ph, pj} are optimised and tested. We compare perfor-
mance in terms of completed hand segmentation on synthetic
data using HandSegNet in [15] and our variational 2D hand
estimator. We use 30000 samples from the rendered hand
dataset (RHD) [15] and 10220 samples from the proposed
HOP dataset together to train the 2D hand segmentation
network. The network is randomly initialized and trained using
ADAM [38] optimiser for 120,000 iterations. The learning
rate is 1 × 10−5 for the first 60,000 iterations, 1 × 10−6 for
the following 30,000 iterations and 1 × 10−7 until the end.
We quantitatively evaluate the performance of our methods on
completed hand segmentation and joint estimation compared
to HandSegNet and PoseNet in [15]. We show results in Fig. 5
under different challenging factors: (1) huge occlusion, (2)
small occlusion, (3) complex background, (4) skin interference
and (5) data migration from synthetic to real scenes.

The estimated 2D joints, hand masks, and estimated 3D
joints (zoomed in) are shown in Fig. 5. Our approach over-
comes occlusions from grasped objects better than [15]. One
common problem of completed hand segmentation networks
is skin interference, which means that such networks tends
to segment other body parts out of the background instead
of the hand. Fig. 5 also shows that our method performs
much better even when face and hand overlaps. Fig. 5,
bottom shows that our method works for real scenarios even
when the parametric model is trained on synthetic data only,
thanks to the realism of the proposed dataset (Sec. IV), as
well as the capability of our inference model to handle the
domain shift from synthetic to real data. The accuracy of the

5https://www.cycles-renderer.org/
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Fig. 5: Qualitative results of hand segmentation masks and
poses of cropped hands using masks on HOP dataset.

estimated hand masks proves that our variational training for
the encoder-decoder architecture is effective, also avoiding to
split the hand into several components around the object. One
limitation highlighted by these results are the recurring blurred
boundaries of the hand mask, which sometimes affects the
segmentation of fingers.

TABLE I shows quantitative results for 2D joint estimation
on the RHD [15] and the HOP datasets. We report the
area under the curve (AUC) on the percentage of correct
keypoints (PCK) with 20 pixels as threshold, the median value
of endpoint error (EPE median) in pixels and the average
endpoint error (EPE mean) in pixels. The Table shows how
Our-PoseNet is effective on both HOP and RHD [15] datasets,
achieving the best results with an AUC of, respectively, 0.775
and 0.704. The purpose of testing on RHD is to show that we
also have good performance on bare hand pose estimation. In
this case, triplet training is not adopted as there are no object
labels, though we can still use the proposed variational 2D
joint estimation architecture and the 3D pose estimator with
the cluster loss function.

Compared to HS-PoseNet [15], our variational embedding
yields a 0.032 improvement on AUC. If we use Hourglass [39],
i.e. a deep architecture initially applied for human joint
estimation, as a replacement for PoseNet in [15], the AUC
increases to 0.741. Accordingly, we replaced PoseNet with
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data method AUC EPE median EPE mean

HOP (ours) HS-PoseNet [15] 0.722 4.285 13.392
HS-Hourglass [39] 0.741 5.159 10.709
Our-PoseNet 0.754 4.024 10.707
Our-Hourglass 0.775 3.791 8.496

RHD [15] HS-PoseNet [15] 0.635 6.745 18.741
Our-PoseNet 0.704 4.215 17.520

TABLE I: 2D joint estimation by HS-PoseNet (i.e., HandSeg-
Net + PoseNet as proposed in [15]) and by our approach (i.e.,
the proposed architecture qh − ph.) EPE are in pixels.

method cylinder slender cubical sphere Avg.

HS-PoseNet [15] 0.694 0.773 0.767 0.701 0.734
Ours-PoseNet 0.743 0.812 0.828 0.721 0.776

TABLE II: Categorical joint estimation results on HOP dataset.
HS-PoseNet is the joint HandSegNet + PoseNet architecture
in [15]. Ours-PoseNet is the combination of qh, ph architecture
and PoseNet (pj). The AUC is calculated over the error range
in 0 to 20mm.

Hourglass in our architecture as well (i.e., Our-Hourglass),
obtaining an increased accuracy of 0.775, hence proving once
again the effectiveness of our variational approach. Although
RHD does not include object occlusion, our method still
performs better than HandSegNet [15], since there are still
self-occlusions in the free hand case. Fig. 6(a) illustrates the
AUC on PCK for which the error thresholds range from 20
pixels to 50 pixels. For the evaluation on the HOP dataset, we
tested the performance on each of the 4 categories separately.
Both HandSegNet [15] and our work are trained under the
same conditions from scratch. Our approach performs better
than HandSegNet [15] in each category, with a category-
wise average of AUC 0.776, which is 0.032 higher than
HandSegNet.

B. 3D Pose Estimation

To compare the performance with a focus on 3D pose
estimation only, we optimise only {qj , pp} and feed ground-
truth heatmaps as input, in order to unbias the comparison
from the other stages of the pipeline. Given the correlation
between the grasping pose and the object shape, first we
train the proposed architecture qj and pp based on our HOP
dataset with object labels. TABLE III shows AUC, median,
and mean EPE for the RHD [15], GANeratedHands [22],
Stereo [24] and our HOP datasets. For completeness, we
tested both triplet training and unsupervised clustering. Since
most available datasets lack object labels, we trained this
variational model on HOP without labels. By learning the
latent variables in an unsupervised way, we force the network
to create hyper-clusters in the latent space. The number of
clusters is not constant and is adjusted for each dataset.
Specifically, we choose a number of clusters in the range of
4 - 10, eventually picking 5 for HOP, 7 for RHD [15], 10 for
GANeratedHands [22] and Stereo [24]. Generally speaking,
a high number of clusters tends to reduce the advantages
brought in by clustering and metric learning, while quite small
number of clusters tend to make the network a variational
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Fig. 6: Accuracy for 2D and 3D joint estimation as PCK
over a threshold (pixels for 2D and mm for 3D) on the joint
(RHD+HOP) dataset.

data method AUC EPE median EPE mean

RHD [15] PosePrior [15] 0.555 18.932 28.804
Ours (cluster) 0.587 16.301 27.569

GANeratedHands [22] PosePrior [15] 0.977 7.665 8.790
Ours (cluster) 0.981 7.197 8.243

Stereo [24] CHPR [9] 0.839 - -
PosePrior [15] 0.948 9.543 11.064
GANeratedHands [22] 0.965 - -
Ours (cluster) 0.984 7.606 8.943

HOP (ours) PosePrior [15] 0.534 19.728 30.860
Ours (triplet) 0.597 15.901 27.326
Ours (cluster) 0.583 16.741 28.018

TABLE III: Results on RHD [15], GANeratedHands [22],
Stereo [24] and our HOP with triplet training (triplet) and
unsupervised clustering (cluster). EPE are in millimeters.

inference model. TABLE III shows the result of unsupervised
training latent variables on those datasets respectively. The
AUC ranges from 0.981 to 0.984 when we choose clusters
between 4 and 10 in Stereo [24] dataset. Fig. 6(b) compares
the PCK curve among PosePrior, our approach with clustering
loss, and our approach with Triplet training, all trained on the
HOP dataset. Combining the results shown in these tables, we
can observe that (1) the proposed network efficiently improves
the performance with respect to the original one, and (2) triplet
training on latent variables using label information leads to
better results than hyper clustering on latent space when labels
are not available.

C. Comparison on the entire pipeline

Finally, we compare the performance of the whole pipeline
based on all parametric models {qh, ph, pj , qj , pp}. We evalu-
ate the results by training on HOP. We report the AUC on
the PCK for 20 millimeters threshold, the EPE median in
millimeters, and the EPE mean in millimeters. TABLE IV
shows that the proposed approach with variational inference
and metric learning has a good AUC of 0.580 which is 0.016
higher than previous work [15]. When we are training the
whole architecture and only apply unsupervised clustering
on the latent features from qj , the AUC improves to 0.669,
which is more than 0.100 higher than [15]. Note that both
supervised and unsupervised learning exploit object categories.
In supervised learning categories are given by the user as
labels, while in the unsupervised approach, they are clustered
automatically. If we have labels and the generated hand mask
is accurate enough, supervised learning performs better. If
the generated hand mask has low quality, it is better to use
clustering to automatically infer object categories.
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method AUC EPE median EPE mean

Zimmermann et al. [15] 0.543 32.003 45.581
Ours w/o variational 0.564 30.193 44.466
Ours (cluster) 0.669 23.280 36.052
Ours (triplet) 0.580 29.485 41.012

TABLE IV: Evaluation on joint training with 2D (qh,ph,pj)
and 3D (qj ,pp) processing with triplet training (triplet) and
unsupervised clustering (cluster). AUC is calculated over error
range from 0mm to 50mm.

VI. CONCLUSION AND FUTURE WORK

Our proposed variational network with metric learning es-
timates the 3D hand pose while grasping an object from a
single RGB image. We leverage the correlation between the
hand pose and the category of the grasped object to design
an effective architecture that does not require input 3D data.
Since available datasets often do not include object category
labels, a clustering method is introduced to group objects in
an unsupervised fashion. Notably, in our approach the object
category is the only information used for the objects. Both
for supervised and unsupervised training, its validity is based
on the assumption that hand poses for objects of the same
category are similar. If a user grasps the same object in differ-
ent and less natural ways, the performance of our architecture
would decrease as this would invalidate such assumption.
However, we believe that in many robotic applications (i.e.,
programming by demonstration) this assumption holds, since
users typically train robots by grasping similar objects with
similar hand configurations. An interesting future direction
regards the use of contact information to correct the estimated
3D hand pose, guaranteeing consistency between pose and
contact [40].
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