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Figure 1: 3D object instance re-localization benchmark: we want to robustly estimate the 6DoF pose (T1,T2, ...Tn) of changed rigid
object instances from a segmented source to a target scan taken at a later point in time.

Abstract

In this work, we introduce the task of 3D object instance
re-localization (RIO): given one or multiple objects in an
RGB-D scan, we want to estimate their corresponding 6DoF
poses in another 3D scan of the same environment taken
at a later point in time. We consider RIO a particularly
important task in 3D vision since it enables a wide range
of practical applications, including AI-assistants or robots
that are asked to find a specific object in a 3D scene. To
address this problem, we first introduce 3RScan, a novel
dataset and benchmark, which features 1482 RGB-D scans
of 478 environments across multiple time steps. Each scene
includes several objects whose positions change over time,
together with ground truth annotations of object instances
and their respective 6DoF mappings among re-scans. Au-
tomatically finding 6DoF object poses leads to a particular
challenging feature matching task due to varying partial
observations and changes in the surrounding context. To this
end, we introduce a new data-driven approach that efficiently
finds matching features using a fully-convolutional 3D cor-
respondence network operating on multiple spatial scales.
Combined with a 6DoF pose optimization, our method out-
performs state-of-the-art baselines on our newly-established
benchmark, achieving an accuracy of 30.58%.

* Authors share senior authorship.

1. Introduction
3D scanning and understanding of indoor environments is

a fundamental research direction in computer vision laying
the foundation for a large variety of applications ranging
from indoor robotics to augmented and virtual reality. In
particular, the rapid progress in RGB-D scanning systems
[17, 18, 31, 6] allows to obtain 3D reconstructions of in-
door scenes using only low-cost scanning devices such as
the Microsoft Kinect, Intel Real Sense, or Google Tango.
Along with the ability to capture 3D maps, researchers have
shown significant interest in using these representations to
perform 3D scene understanding and developed a rapidly-
emerging line of research focusing on tasks such as 3D
semantic segmentation [4, 19, 26] or 3D instance segmenta-
tion [10]. However, the shared commonality between these
works is that they only consider static scene environments.
In this work, we focus on environments that change over
time. Specifically, we introduce the task of object instance
re-localization (RIO): given one or multiple objects in an
RGB-D scan, we want to estimate their corresponding 6DoF
poses in another 3D scan of the same environment taken
at a different point in time. Therefore, the captured recon-
structions naturally cover a variety of temporal changes; see
Fig. 1. We believe this is a critical task for many indoor
applications, for instance, for a robot or virtual assistant to
find a specific object in its surrounding environment.

The main challenge in RIO – finding the 6DoF of each
object – lies in establishing good correspondences between
re-scans, which is non-trivial due to different scanning pat-
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Figure 2: Example of a 3D scene pair of the 3RScan dataset. It provides: e) calibrated RGB-D sequences, a), b) aligned textured 3D
reconstructions, c) dense instance-level semantic segmentation as well as d) symmetry-aware local alignment of changes.

terns and changing geometric context. These make the use
of hand-crafted geometric descriptors, such as FPFH [22]
or SHOT [27], less effective. Similarly, learned 3D feature
matching approaches, such as 3DMatch [32, 7], cannot be
easily leveraged since they are trained on self-supervised
correspondences from static 3D scenes, and are hence very
susceptible to geometry changes. One of the major limi-
tations in using data-driven approaches for object instance
localization is the scarce availability of supervised training
data. While existing RGB-D datasets, such as ScanNet [4] or
SUN RGB-D [25], provide semantic segmentations for hun-
dreds of scenes, they lack temporal annotations across scene
changes. In order to address this shortcoming, we introduce
3RScan a new dataset that is composed of 1482 RGB-D
sequences. An essential novelty of the proposed dataset is
that several re-scans are provided for every environment.
The dataset includes not only dense ground truth semantic
instance annotations (for every scan), but also associates
objects that have changed in appearance and/or location be-
tween re-scans. In addition to using 3RScan for training
feature descriptors, we also introduce a new benchmark for
object instance localization.

In order to learn from this data, we propose a fully-
convolutional multi-scale network capable of learning ge-
ometric features in dynamic environments. The network
is trained with corresponding TSDF (truncated signed dis-
tance function) patches on moved objects extracted at two
different spatial scales in a self-supervised fashion. As a
result, we obtain change-invariant local features that outper-
form state-of-the-art baselines in correspondence matching
and on our newly created benchmark for re-localization of
object instances. In summary, we explore the task of 3D
Object Instance Re-Localization in changing environments
and contribute:

• 3RScan, a large indoor RGB-D dataset of changing en-
vironments that are scanned multiple times. We provide

ground truth annotations for dense semantic instance
labels and changed object associations.

• a new data-driven object instance re-localization ap-
proach that learns robust features in changing 3D con-
texts based on a geometric multi-scale neural network.

2. Related Work
3D Object Localization and Keypoint Matching 3D ob-
ject localization and pose estimation via keypoint matching
are long standing areas of interest in computer vision. Until
very recently, 3D hand-crafted descriptors [27, 22] where
prominently used to localize objects under occlusion and
clutter by determining 3D point-to-point correspondences.
However with the success of machine learning, the interest
shifted to deep learned 3D feature descriptors capable of
embedding 3D data, such as meshes or point clouds, in a
discriminative latent space [32, 19, 7]. Even though these
approaches show impressive results on tasks such as corre-
spondences matching and registration, they are restricted to
static environments. In this work, we go one step further by
focusing on dynamic tasks; specifically, we aim to localize
given 3D objects from a source scan in a cluttered target scan
which contains common geometric and appearance changes.

RGB-D Scene Understanding Scene understanding
methods based on RGB-D data generally rely on volumetric
or surfel-based SLAM to reconstruct the 3D geometry of the
scene while fusing semantic segments extracted via Random
Forests [29, 30] or CNNs [13, 15]. Other works such as
SLAM++ [24] or Fusion++ [12] operate on an object level
and create semantic scene graphs for SLAM and loop closure.
Non-incremental scene understanding methods, in contrast,
process a 3D scan directly to obtain semantic, instance or
part segmentation [19, 20, 21, 5, 10]. Independently from
the approach, all these methods rely on the assumption that



Table 1: RGB-D indoor datasets for 3D scene understanding: We list synthetic as well as real dataset and compare their size together with
other properties such as the availability of scene changes.

Dataset Size Real Data Acquisition / Generation Benchmarks Changes
NYUv2 [16] 464 scenes 3 recordings with Kinect Depth and Semantics 7

SUN RGB-D [25] 10k frames 3 recordings with 4 different sensors 3D Object Detection 7

SUN-CG [26] 45K rooms, 500K images 7 rendered, layout hand-designed Scene-Completion 7

ScanNet [4] 1513 scans, 2.5M images 3 recordings with Structure Sensor Semantic Voxel Labeling 7

Fehr et al. [8] 23 scans of 3 scenes 3 recordings with Tango Change Detection 3

Matterport3D [3] 90 buildings, ∼ 200k images 3 recordings with Matterport several 7

SceneNet RGB-D [14] 15K trajectories, 5M images 7 photo-realistic, random scenes SLAM 7

InteriorNet [11] millions / unknown 7 photo-realistic, layout hand-designed SLAM 3

RGB Reloc [28] 4 scenes, 12 rooms 3 recording with Kinect Camera Re-Localization 7

3RScan (Ours) 1482 scans of 478 scenes 3 recordings with Tango Object Instance Re-Localization 3

objects are static and the scene structure does not change
over time.

RGB-D Datasets Driven by the great interest in the devel-
opment of scene understanding applications, several large-
scale datasets based on RGB-D data have been recently pro-
posed [9]. We have summarized the most prominent efforts
in Table 1, together with their main features (e.g., number
of scenes, mean of acquisition). The majority of datasets do
not include changes in the scene layout and objects therein,
and assume each scene is static over time. This is the case
of ScanNet [4], currently the largest real dataset for indoor
scene understanding consisting of 1500 scans of approx. 750
unique scenes. Notably, only a few recent proposals started
exploring the idea of collecting scene changes to allow long-
term scene understanding. InteriorNet [11] is a large-scale
synthetic dataset, in which random physics-based furniture
shuffles and illumination changes are applied to generate
appearance and geometry variations which indoor scenes
typically undergo. Several state-of-the-art sparse and dense
SLAM approaches are compared on this benchmark. De-
spite the impressive size and indisputable usefulness, we
argue that, due to the domain gap between real and synthetic
imagery, the availability of real sequences remain crucial for
the development of long-term scene understanding. To the
best of our knowledge, the only real dataset encompassing
scene changes is the one released by Fehr et al. [8], which in-
cludes 23 sequences of 3 different rooms used to segment the
scene structure from the movable furniture, though lacking
the annotations and necessary size to train and test current
learned approaches.

3. 3RScan-Dataset
We propose 3RScan, a large scale, Real-world dataset

which contains multiple (2− 12) 3D snapshots (Re-scans)
of naturally changing indoor environments, designed for
benchmarking emerging tasks such as long-term SLAM,

scene change detection [8] and camera or object instance
Re-Localization. In this section, we describe the acquisition
of the scene scans under dynamic layout and moving objects,
as well as that of annotation in terms of object pose and
semantic segmentation.

3.1. Overview

The recorded sequences are either a) controlled, where
pairs are acquired within a time frame of only a few min-
utes under known scene changes or b) uncontrolled, where
unknown changes naturally occurred over time (up to a few
months) via scene-user interaction. All 1482 sequences were
recorded with a Tango mobile application to enable easy
usage for untrained users. Each sequence was processed of-
fline to get bundle-adjusted camera poses with loop-closure
and texture mapped 3D reconstructions. To ensure high vari-
ability, 45+ different people recorded data in more than 13
different countries. Each sequence comes with aligned se-
mantically annotated 3D data and corresponding 2D frames
(approximately 363k in total), containing in detail:

• calibrated RGB-D sequences with variable n RGB
Ri, ...Rn and depth images Di, ...Dn.

• textured 3D meshes

• camera poses Pi, ...Pn and calibration parameters K.

• global alignment among scans from the same scene as
a global transformation T.

• dense instance-level semantic segmentation where each
instance has a fixed ID that is kept consistent across
different sequences of the same environment.

• object alignment, i.e. a ground truth transformation
TGT = RGT + tGT for each changed object together
with its symmetry property.



• intra-class transformations A of ambiguous instances
in the reference to recover all valid object poses in the
re-scans (see Figure 3).

3.2. Scene Changes

Due to the repetitive recording of interactive indoor en-
vironments, our data naturally captures a large variety of
temporal scene changes. Those changes are mostly rigid
and include a) objects being moved (from a few centimeters
up to a few meters) or b) objects being removed or added
to the scene. Additionally, non-rigid objects such as cur-
tains or blankets and the presence of lighting changes create
additional challenging scenarios.

3.3. Annotation

The dataset comes with rich annotations which include
scan-to-scene-mappings and 3D transformations (section
3.3.2) together with dense instance segmentation (section
3.3.1). More details and statistics regarding the annotations
are given in the supplementary material.

3.3.1 Semantic Segmentation

Similarly to ScanNet [4], instance-level semantic annota-
tions are obtained by labeling on a segmented 3D surface
directly. For this, each reference scan was annotated with a
modified version of ScanNet’s publicly available annotation
framework. To reduce annotation time, we propagate the
annotations in a segment-based fashion from the reference
scan to each re-scan using the global alignment T with the
scan-to-scene mappings. This gives us very good annotation
estimates for the re-scans, with the assumption that most
parts of the scene remain static. Figure 4 gives an example
of automatic label propagation from a hand-annotated scene
in the presence of noise and scene changes. Semantic seg-
ments were annotated by human experts using a web-based
crowd-sourcing interface and verified by the authors. The
average annotation coverage of the semantic segmentation
for the entire dataset is 98.5%.

3.3.2 Instance Changes

To obtain instance-level 3D transformations, a keypoint-
based 3D annotation and verification interface was developed
based on the CAD alignment tool used in [2]. A 3D trans-
formation is obtained by applying Procrustes on manually
annotated 3D keypoint correspondences on the object from
the reference and its counterpart in the re-scan (see Figure 5).
Additionally to this 3D transformation, a symmetry property
was assigned to each instance.

3.4. Benchmark

Based on this data, we set up a public benchmark for
3D instance-level object re-localization in changing indoor
environments. Given one or multiple objects in a segmented
source scene, we want to estimate the corresponding 6DoF
poses in a target scan of the same environment taken at a
different point in time. Namely, transformations T1 = R1+
t1, ...,Tm as a translation t1, ..tm and rotation R1, ...,Rm

need to be detected for all givenm instances in A (left Figure
1) to instances in B (right). Predictions are evaluated against
the annotated 3D transformation. A 6DoF pose estimation is
considered successful if the translation and rotation error to
the given ground truth transformation is within a small range.
In our experiments we set these thresholds to t ≤ 10 cm and
r ≤ 10◦ and t ≤ 20 cm and r ≤ 20◦ respectively. To avoid
misalignment of symmetric objects, the respective symmetry
property is considered. We publicly release our dataset with
a standardized test, validation and training set (see Table 2)
and all mentioned annotations. To allow a fair comparison of
different methods, we also release a hidden test set together
with an automatic server-side testing script.

Table 2: Statistics on the test, train and validation set of 3RScan.

test train validation total
#scenes 46 385 47 478
#re-scans 101 793 110 1004
#scans 147 1178 157 1482

4. 3D Object Instance Re-Localization
In order to address the task of RIO, we propose a new data-

driven approach that finds matching features in changing 3D
scans using a 3D correspondence network. Our network op-
erates on multiple spatial scales to encode change-invariant
neighborhood information around the object and the scene.
Object instances are re-localized by combining the learned
correspondences with RANSAC and a 6DoF object pose
optimization.

4.1. Data Representation

The input of our network are TSDF patches. For each
3D keypoint on the source object or the target scene, the
surrounding 3D volume is extracted at two different scales.
They are chosen to be 32 × 32 × 32 voxel grids contain-
ing TSDF values with spatial resolutions of (1.2m)3 and
(0.6m)3. Their corresponding voxel sizes are 1.875 cm and
3.75 cm.

4.2. Network Architecture

The network architecture of RIO is visualized in Figure 6.
Due to non-padded convolutions and two pooling layers the



Figure 3: Instance ambiguities in presence of scene changes: since the instance mapping is unknown, multiple solutions are plausible,
which we provide in our dataset from user annotations indicating all possibilities.

input volumes are reduced to a 512-dimensional feature
vector. It consists of two separate single scale encoders
(SSE) and a subsequent multi-scale encoder (MSE). The two
different input resolutions capture different neighborhoods
with a different level of detail. Since both single scale en-
coder branches are identical, their network responses are
concatenated before being fed into the MSE, as visualized
in Figure 6. This multi-scale architecture helps to simultane-
ously capture fine geometric details as well as higher-level
semantics of the surroundings. We show that our multi-
resolution network produces richer features and therefore
outperforms single scale architectures that process each scale
independently by a large margin. Please also note that the
two network branches do not share weights since they pro-

Figure 4: Propagation result from a reference (left) to a re-scan
(center) and the manual cleanup (right). Please note the false propa-
gations in the presence of scenes changes: here the orange armchair
was moved and its label was therefore incorrectly propagated.

Figure 5: Example of the correspondences-based 3D instance
alignment (right). 3D transformations are computed by manual
annotation of corresponding keypoints on the objects (left, green)
and the scene (center, red) respectively.

cess the geometry of different context. To achieve a strong
gradient near the object surface the raw TSDF is inverted in
the first layer of the network such that

ˆTSDF = 1− |TSDF | . (1)

4.3. Training

During training, a triplet network architecture together
with a triplet loss (equation 2) is used. It maximizes the L2

distance of negative patches and minimizes the L2 distance
of positive patches. We choose the margin α to be 1. For
optimization, Adam optimizer with an initial learning rate
of 0.001 is used.

N∑
i=1

N
[
||fai − f

p
i ||

2
2 − ||fai − fni ||22 + α

]
(2)

4.4. Training Data: From Static to Dynamic

We initially train our network fully self-supervised with
static TSDF patches extracted from RGB-D sequences of
our dataset. To be able to deal with partial reconstructions
induced by different scanning patterns, two small sets of
non-overlapping frames are processed to produce two dif-
ferent TSDF volumes of the same scene. Then, first Harris
3D keypoints are extracted on one volume, then these same
locations are refined on the other volume via non-maxima
suppression of the Harris responses within a small radius
around each extracted keypoint. If corresponding keypoints
on the two volumes are above a certain threshold, we con-
sider them a suitable patch pair and use it for pre-training of
our network.

The goal of our method is to produce a local feature en-
coding that maps the local neighborhood of an object around
a 3D keypoint on a 3D surface to a vector while being in-
variant to local changes around the object of interest. We
learn this change-invariant descriptor by using the object
alignments and sampling dynamic patches from our pro-
posed 3RScan-dataset. So, once converged we fine-tune the
static network with dynamic 3D patches specifically gener-
ated around points of interest on moving objects. To learn
only higher level features, during fine-tuning, we freeze the
first layers and only train the multi-scale encoder branch



Figure 6: Our multi-scale triplet network architecture: during training, each anchor (blue) is paired with a positive (green) and a negative
sample (red). The network minimizes the distance between the positive samples and maximizes negative sample distances by processing two
scales in a separate branch each. Weights are shared in each SSE block of the same size and the MSE.

of our network. Correspondence pairs are generated in a
self-supervised fashion while using the ground truth pose an-
notations of our training set to find high keypoint responses
in the same small radius around each source 3D keypoint.
The negative counterpart of each triplet is randomly selected
from another training scene but also includes TSDF patches
on removed objects. Random rotation augmentation is ap-
plied to enlarge our training data.

4.5. 6DoF Pose Alignment

To re-localize object instances, we first compute features
for keypoints on the source objects and the whole target
scene. Correspondences for the model keypoints are then
found via k-nearest neighbour search in the latent space of
the feature encoding of the points in the scene. After out-
liers are filtered with RANSAC, remaining correspondences
serve as an input of a 6DoF pose optimization. Given the
remaining two sets of correspondences on the source object
O = p1, p2, ...pn ∈ R3 and the target scene S = q1, q2, ...qn
∈ R3 we then want to find a optimal rigid transformation that
aligns the two sets. Specifically, we want to find a rotation
R and a translation t such that

(R, t) = argmin
R∈SO(d),t∈R3

n∑
i=1

||(Rpi + t)− qi||2 . (3)

We solve this optimization using Singular Value Decom-
position (SVD). The resulting 6DoF transformation gives us
a pose that aligns the model to the scene. Qualitative results
of our alignment method with corresponding ground truth
alignments on some scans of our 3RScan-dataset are shown
in Figure 7.

5. Evaluation

In the following, we show quantitative experimental re-
sults of our method by evaluating it on our newly created
3RScan-dataset. In the first section, we compare the abil-
ity of different methods to match dynamic patches around
keypoints on annotated changed objects. Our proposed multi-
scale network is then evaluated on the newly-created bench-
mark for re-localization of object instances.

5.1. Correspondence Matching

For accurate 6D pose estimation in changing environ-
ments, robust correspondence matching is crucial. The fea-
ture matching accuracy of different network architectures
is reported in Table 3. Each network is pre-trained with
static samples (marked as static) and then fine-tuned on dy-
namic patches from the training (marked as dynamic). The
F1 score, accuracy, precision, false positive rate (FPR) and
error rate (ER) at 95% recall are listed and visualized with



Figure 7: Qualitative results of 3D rigid object instance re-localization (RIO) of our learned multi-scale method in different changing
environments. Different instances, taken from the reference scan, are visualized with different colors on top of the re-scan.

Table 3: Evaluation: keypoint matching of dynamic 3D TSDF patches in 3RScanat 95% recall.

Method (train) F1 Accuracy Precision FPR ER Top-1 Top-3 Top-5 Top-10

RIO-singlescale 60cm (static) 71.54 62.21 57.37 70.60 75.59 2.17 4.12 5.96 17.56

RIO-singlescale 120cm (static) 74.17 66.92 60.83 61.18 66.16 3.94 4.58 8.21 20.38

RIO-singlescale 120cm (dynamic) 78.71 74.29 67.17 46.43 51.41 6.26 7.26 9.58 27.82

RIO-multiscale (static) 85.58 83.98 77.82 27.09 32.04 30.73 53.48 69.61 89.03

RIO-multiscale (dynamic) 94.37 94.33 93.61 6.50 11.35 64.10 86.20 93.40 98.30

their respective PRC graphs in Figure 8. Additionally to
the 1:1 matching accuracy, we also use a top-1 metric: the
percentage of top-1 placements of a positive patch given
50 randomly chosen negative patches. Such a metric better
represents the real test case of object instance re-localization
where several negative samples are compared against a pos-
itive keypoint. In can be seen that our multiscale network
architecture – even if only trained with static data – outper-
forms all single scale architectures by a large margin and
improves further to an F1 score of 94.37 if additionally
trained with dynamic data.

5.2. Object Instance Re-localization

In the following we discuss results on our newly created
benchmark that has been carried out on the test set of 3RScan
which is provided with the data. We evaluate our method
against hand-crafted features from PCL [23] such as SHOT
[27] and FPFH [22, 1]. A transformation of each object
instance is computed separately by (1) sampling keypoints,
(2) extracting descriptors at each keypoint followed by a (3)
correspondence matching and (4) RANSAC-based filtering.
A learned baseline we evaluate against is 3DMatch [32].



Table 4: Performance of object instance re-localization. Numbers are reported in terms of average % correct rotation and translation
predictions. MTE (Median Translation Error) is measured in meters while the MRE (Median Rotation Error) is in degrees

Method (train) Recall <0.1m, 10◦ MRE [deg] MTE [m] Recall <0.2m, 20◦ MRE [deg] MTE [m]

FPFH [22] 2.61 7.25 0.0645 8.36 10.57 0.0776

SHOT [27] 6.79 5.35 0.0268 12.27 8.18 0.0393

3DMatch (dynamic) 5.48 5.81 0.0542 13.05 7.30 0.0708

RIO-multiscale (static) 9.92 4.33 0.0425 17.75 6.39 0.0545

RIO-multiscale (dynamic) 15.14 4.75 0.0437 23.76 6.08 0.0547

Figure 8: Precision-Recall Curves (PRC) of the dynamic keypoint
matching task, corresponding to the different methods evaluated
and listed in Table 3.

Table 5: Matching accuracy of the different methods for different
instance categories at <0.2m, 20◦ and our method trained on static
(RIO-S) and dynamic data (RIO-D). See supplementary for detailed
class description.

class FPFH SHOT 3DMatch RIO-S RIO-D

seating 5.08 12.71 6.78 14.41 21.19

table 9.33 5.33 21.33 25.33 29.33

items 5.06 13.92 7.59 11.39 16.46

bed / sofa 56.52 21.74 34.78 34.78 47.83

cushion 0.00 15.52 8.62 8.62 10.34

appliances 11.11 16.67 33.33 44.44 55.56

structure 0.00 0.00 8.33 16.67 33.33

avg. 12.44 12.27 17.25 22.23 30.58

It computes a feature given a patch around a keypoint. We
trained 3DMatch on 30×30×30 static positive and negative
patches of 30 cm size generated with our dataset as described
in the original paper. We evaluate the predicted rotation
Rp and translation tp against the ground truth annotation
RGT and tGT according to equation 5 and 4. An instance
has successfully been aligned if the alignment error for the
translation t∆ and rotation R∆ are lower than t ≤ 10 cm,
r ≤ 10◦ or t ≤ 20 cm, r ≤ 20◦. Please note that respective
symmetry are considered in the error computation:

t∆ = tp − tGT (4)

R∆ = R−1
p RGT → axis angle (5)

Evaluation results for all object instances are listed in Ta-
ble 4 and Table 5. While classical hand-crafted methods still
perform reasonable well – especially for more descriptive
objects such as sofas and beds – our method outperforms
them with a large margin. Qualitative results are shown in
Figure 7.

6. Conclusion

In this work, we release the first large-scale dataset of real-
world sequences with temporal discontinuity that consists of
multiple scans of the same environment. We believe that the
new task of object instance re-localization (RIO) in changing
indoor environments is a very challenging and particularly
important task, yet to be further explored. Besides 6D ob-
ject instance alignments in those changing environments,
3RScan comes with a large variety of annotations designed
for multiple benchmark tasks including – but not limited
to – persistent dense and sparse SLAM, change detection or
camera re-localization. We believe that 3RScan helps the
development and evaluation of these new algorithms and we
are excited to see more work in this domain to, in the end,
accomplish persistent, long-term understanding of indoor
environments.
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7. Supplemental Material
In this supplemental document, we provide additional

information about the proposed dataset such as statistics,
scene examples and a detailed description about the annota-
tion process.

Dataset
Scanning Interface We tailored a mobile app running on
Google Tango with pre-annotation functionality as a scan-
ning interface (see Figure 9). Some users gave lightweight
instructions on the scene changes; these instructions served
as guidelines later in the annotation process.

Figure 9: Annotation Interface used for data acquisition.

Scene Matching and Alignment For each uploaded scan,
scene candidates are computed. Since a 3D scene matching
is expensive scan pairs are found in 2D instead by conducing
a similarity search in the texture uv-map of the mesh. These
matches are then to be manually adjusted. Once the reference
for each scene is assigned, the IMU normalized scans are
globally registered via a coarse to fine correspondence-based
2D ICP together with RANSAC and refined with a global
3D ICP. An additional verification as well as an optional
manual, keypoint based alignment ensures high quality.

Preprocessing Additionally to a server-side offline pro-
cessing of the RGB-D sequences that results in texture
mapped 3D reconstructions, an offline 3D segmentation is
triggered. This 3D segmentation is utilized by the semantic
segmentation interface proposed by Dai et al. [4]. Further,
this 3D segmentation – together with the aforementioned
3D alignment – serves as the basis for the propagation of
semantic labels from the references to the re-scans and after
a manual clean-up procedure results in the final instance
segmentation shown in Figure 17. In the current snapshot
of the dataset almost all of our scans have an instance seg-
mentation coverage of above 90% (see Figure 10) with an

average scene coverage > 98%. In total, 48k instances are
annotated with 534 unique labels.

Figure 10: Number of scans with corresponding instance annota-
tion coverage.

RGB-D sequences Our dataset consists of around 363k
calibrated RGB-D and depth images. Since raw RGB and
depth sequences from Tango are of varying frame rates and
spatial resolution, a spatial and temporal calibration pro-
cedure of the raw images is applied. Further, to remove
rectification lines present in Google Tango depth images,
a median filter is used before the spatial calibration of the
images. Camera trajectories for SLAM are visualized in
Figure 18 and since global scene-to-scene mappings are pro-
vided these can easily be transferred into the same coordinate
systems (see last two rows of Figure 18). Further, we also
show 2D projections of our textured 3D models with aligned
camera poses in Figure 14.

Scene Type Further, instead of assigning a 1 −
n−relationship of different room types per scene, our 3D
reconstructions are annotated with m corresponding scene
functionalities (sleeping, eating, working, etc.) in an n−m
fashion. This shows the high variety of scenes in 3RScan.

Instance Change Annotation The annotation interface
for annotating instance changes is a web-based tool (Figure
16) where each scene is rendered next to its corresponding
reference. When an object is selected in the re-scan (see
green dot) its instance segmentation from the reference scan
is automatically segmented. Please note, that this requires
the instance IDs to be consistent across scans of the same
environments. Hovering over the objects gives shows the
label and the ID of the instance and allows to potentially
fix the underlying semantic segmentation. In the alignment
view this instance is then shown next to the re-scan such
that corresponding keypoints can easily be selected. Once



enough keypoints are set, a Procrustes based alignment (Kab-
sch algorithm) is triggered that computes a transformation
that aligns the object to the scene. For non-rigid changes
and removed as well as added objects the instances IDs are
tracked.

Symmetry A subset of the changed objects in the dataset
are symmetric. We follow the symmetry annotation de-
scribed in Avetisyan et al. [2] and categorize each object’s
rotational symmetry around the canonical axis to the classes
C2, C4 and C∞. 22% of the objects have a symmetry as
listed in Table 6. We take this into account when evaluating
the predictions against ground truth poses.

Table 6: Symmetry properties of the instances in 3RScan

symmetry none C2 C4 C∞

# scans 1513 220 82 132

Statistics A focus during data acquisition was the captur-
ing of a variety of realistic scene changes in controlled and
uncontrolled environments over a time span of more than 12
months. The number of references scenes with re-scanning
frequencies are plotted in Figure 11. Further, 3289 instance
transformations – of 1947 different objects – are provided
with the data. But since the transformations give the object
pose from the reference to one re-scan the alignment for
another re-scan can easily be computed. For evaluation these
changed object categories are mapped to 9 different classes
as listed in 7.

Table 7: Description of instance mapping used in the evaluation

class description

seating different chairs, stools, benches

table / cabinet different tables, commode, shelves

bed / sofa upholstery, sofas, beds

appliances appliances, sanitary equipment

cushions pillows, bean bags, ottoman

items small and portable items, boxes

structure windows, doors

These changed object instances are labelled with 187
different categories. The majority of instances include move-
ments of objects and more portable furniture items such as
chairs, pillows, boxes or smaller tables. Naturally, these
objects involve most human interaction. Figure 13 gives an
overview of the motion of these annotated objects. However,
we also annotated objects that slightly change their appear-

Figure 11: Number of scenes vs. number of re-scans.

ance over time such as toilets. Detailed statistics are given
in Figure 12.

Figure 12: Object statistics.

Figure 13: Histogram of object instance alignment binned using
respective transformation or rotation change.



Figure 14: Example 2D projections of the color and depth of two corresponding reconstructions with natural scene changes.

Figure 15: List of mutually inclusive scene functionalities with corresponding visual examples, from top left to bottom right: (a) working,
(b) sleeping, (c) eating, (d) entertainment, (e) seating, (f) storage, (g) reading, (h) food preparation, (i) cleaning and (j) personal hygiene.

Figure 16: Instance Change Annotation Tool: Overview and selection view of the instance alignment annotation.



Figure 17: Visualization of different annotated instances in scans of 3RScan.



Figure 18: SLAM: Different 3D Scenes with Camera Trajectories in green used for training and generation of the static TSDF samples.


