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Boltzmannstraße 3, 85748 Garching bei München, Germany
(martin.wagner, hennauer, klinker)@in.tum.de

Abstract

Augmented Reality research currently aims at extending the
working range of applications by combining multiple track-
ers in adjacent areas. The transition between two such de-
vices leads to discontinuities in the trajectory of a tracked
object. The result are “jumps” in visual augmentations
shown to the user.

We present a three step unsupervised learning algorithm
that determines the working areas of involved trackers and
the area they overlap, and permanently observes the tracked
object’s position with regard to these areas in order to en-
able a smooth interpolation within the overlapping area
from one tracker’s readings to another’s. We have tested
the algorithm’s performance in an experimental setup. The
results show that the method is feasible and only adds a
negligible overhead to AR systems.

1. Introduction

A major trend in current Augmented Reality (AR) research
is to extend the working area of setups that traditionally
have been restricted to the volume covered by a single
tracker (e.g. [4]). To accomplish this goal, multiple track-
ers have to be combined. In this paper, we treat the ne-
glected problem of providing a smooth transition between
two tracking devices with partially overlapping working
volume.

2. Problem Statement and Approach

As depicted in figure 1, a tracked object is moving from left
to right, thus starting in the area of Tracker 1, going through
the overlapping area and finally being tracked solely by
Tracker 2. As long as the object is in the area observed ex-
clusively by Tracker 1, we just use its measurements. Once
the object reaches the overlapping area, we start to combine
both sensors’ readings by means of a weighted interpola-
tion that culminates in solely using the measurements of

Tracker 2 once the object leaves the overlapping area (see
figure 1(c)). In consequence, we have flattened out the dis-
continuity and minimized the visual distraction of the user.

To make this idea work, we propose the following algo-
rithm.

Determine Working Volumes.We use fully unsupervised
machine learning techniques to determine the tracker’s
working volumes automatically without any user or devel-
oper intervention.

Determine “Distance” to Tracker Boundary.Depending
on the parameterization of the working volume description,
we have to choose a suitable method to compute the dis-
tance to the tracker whose area we are about to leave.

Interpolate Tracker Measurements.We use the cho-
sen metric to adjust the interpolation scheme between both
trackers.

3. Estimating Working Volumes

We implemented the first step of our algorithm in two
fully unsupervised ways, i.e. there was no need to perform
specific calibration steps, just using the system for a certain
time (usually less than 5 minutes) sufficed to initialize the
system.

Convex Hull Approach Based on the assumption that the
working volume of a tracker is convex, we represent the
working volume as the convex hull of all points which the
tracker can retrieve. This information can be collected con-
tinuously while moving around a tracked object. During
this learning phase, the convex hull of the tracker is updated
incrementally, which means that each position data received
is immediately inserted into the convex hull. To be able to
perform this computation efficiently, we use an incremental
algorithm [1].

Neural Network-Based Classifier This approach sepa-
rates the sets of points of both trackers by means of a de-
cision boundary. The location of it indicates the center of
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(a) State of tracked object. (b) Conventional approach. (c) Our approach

Figure 1. Tracker Setup: Two trackers measure the position and orientation of the same object
simultaneously, both yielding values that differ from the object’s real pose.

the overlapping area and therefore allows us to draw con-
clusions concerning the placement of the working volumes.

Since we do not have any information about the shape of
this boundary, we use a a multi-layer feed forward neural
network with three inputs, a layer with three hidden neu-
rons and one output as a universal classifier. This network
is trained using the standard backpropagation algorithm [3]
with position data of both trackers. After training, the net-
work will produce positive or negative outputs depending
on which side of the boundary the input-coordinates are lo-
cated.

4. Results and Future Work

Our evaluation setup consists of an opticalARTtrack1 /
DTrack system from A.R.T. GmbH and anIS-600system
from Intersense Inc. Each system roughly observes half of
our lab, and their working volumes overlap in an area of
about two meters. We use a camera tracked by both systems
to produce video see-through AR on either a head mounted
display or a standard laptop computer for debugging pur-
poses.

The system has been implemented using the DWARF AR
framework [2]. We implemented aMultiTracker ser-
vice that takes pose data from two services abstracting our
two trackers and yields the pose data combined according
to the working volume algorithms shown above and a sim-
ple linear interpolation scheme for position and the SLERP
algorithm [5] for orientation. The DWARF tracker abstrac-
tion allows to use the functionality of theMultiTracker
service without changing any other components involved.

Runtime measurements on a Athlon-XP 2500 standard
PC showed that the convex hull algorithm could be trained
on-line with only a marginal overhead (approx.70µs),

while the neural net took considerable more time to train
(max. 10s). After the training phase, both algorithms were
sufficiently fast, including our simple linear interpolation of
position and rotation it usually took less than0.1ms for all
three steps to complete.

Next steps will be a more thorough interpolation scheme
and user studies to get solid results on how the visual dis-
traction can be minimized with our approach.
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