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ABSTRACT
We present a solution to the people tracking problem us-
ing a monocular vision approach from a bird’s eye view and
Sequential Monte-Carlo Filtering. Each tracked human is
represented by an individual Particle Filter using spheroids
as a three-dimensional approximation to the shape of the
upstanding human body. We use the bearings-only model
as the state update function for the particles. Our mea-
surement likelihood function to estimate the probability of
each particle is imitating the image formation process. This
involves also partial occlusion by dynamic movements from
other humans within neighbored areas. Due to algorithmic
optimization the system is real-time capable and therefore
not only limited to surveillance or human motion analysis.
It could rather be used for Human-Computer-Interaction
(HCI) and indoor location. To demonstrate this capabili-
ties we evaluated the accuracy of the system and show the
robustness in different levels of difficulty.

Categories and Subject Descriptors
I.4.8 [Scene Analysis]: Sensor Fusion, Tracking—complex-
ity measures, performance measures; I.5.4 [Pattern Recog-
inition]: Applications, Implementation—Computer Vision,
Interactive Systems

General Terms
Algorithms

Keywords
People Tracking, Realtime, Sensor Fusion, Particle Filter

1. INTRODUCTION
It is still a challenge to track a person in real-time over a

longer period of time in the presence of several other people
– and especially when there are no restrictions on the behav-
ior of humans regarding interaction, entering & leaving the
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scenery or type of movements, etc. Such movements can fre-
quently cause partial or full occlusions of persons. These are
a major problem in people tracking as they result in swap-
ping or loss of identities. In the fields of human-computer
interaction, security, entertainment or motion analysis the
tracking of individual persons is essential for higher level
applications. Therefore objects should be trackable inde-
pendently from each other.

We present an approach to this task using a single over-
head camera that is mounted at the ceiling of the room.
To account for the frequent partial occlusions between per-
sons in this bird’s eye view and to provide continued iden-
tification despite such occlusions, our system uses a three-
dimensional Cartesian space as its underlying model of the
observed scenery and uses individual Sequential Monte Carlo
Filtering to maintain a large number of parallel hypothe-
ses about human positions and to reason about occlusions
within the scenery. The system uses separate particle filters
to track different persons, and it uses the three-dimensional
model and an image formation model to generate synthetic
images according to the hypothesized human positions of in-
dividual particles. The model is the basis for the measure-
ment likelihood function of the particle filter that compares
camera images, processed by simple background subtraction
and ramp-thresholding, with artificial views of the scenery
generated for each hypothesis for each human. In doing so,
it focuses on image subareas according to a hypothesized
human position and takes recent positions of other tracked
persons into account in order to explicitly discard border-
line image regions that bear the potential of belonging to
another person – thereby reducing the risk of unwanted fu-
sion or swapping of identities. The system assumes that the
subjects move on a planar floor. Each subject that enters the
observed area is recognized by the system and represented by
a particle filter. Since prediction of human walking behavior
is unfeasible and can only be given under high uncertainty
we apply a standardized, linear movement model to spread
the hypotheses of the particle filters around the positions of
humans. A rough appearance model is used to approximate
the peoples’ shape and to estimate an individual measure-
ment likelihood of the particle filter. Furthermore, we apply
algorithmic optimizations to lower the overall computational
cost for all particles of each filter.



2. RELATED WORK

2.1 Monocular Solutions
Isard et al [8] showed a single-camera real-time surveillance

system that uses the so called Condensation Algorithm from
Isard and Blake [7] to estimate a global likelihood of the
belief about all available objects. For the tracking of a single
person 500 particles are used and eight parameters, two for
position and six for appearance, are used to describe the
state of each object. In contrast, our approach uses a smaller
state description of four positional and velocity parameters
plus three globally fixed shape parameters. This lowers the
required number of particles to represent the whole scenery.

Smith et al [11] also present a single camera approach to
track multiple persons by using a pixel-wise binary distinc-
tion between fore- and background of the image and a color
model of the foreground objects to assign the extracted infor-
mation to the objects. A single Trans Dimensional Particle
Filter represents the states of all objects and reasons about
them using interaction potentials. These especially are im-
portant to distinguish between people crossing each other.
The approach still shows swapping of identities which should
be avoided. We avoid the problem of swapping the iden-
tity of passing objects by reasoning about object states in a
three-dimensional representation of the scene rather than in
the two-dimensional image space.

Zhao and Nevatia [13] showed a promising monocular ap-
proach toward people tracking in crowded scenes. They use
three-dimensional representations of humans consisting of
three ellipsoids for the head body and the legs, and color his-
tograms in combination with a mean-shift algorithm to esti-
mate correspondences of features to targets. In contrast to
their joint likelihood that uses color information our method
uses separate particle filters for every object and handles oc-
cluding interactions between objects by an image mask that
integrates possible occlusions before estimating the likeli-
hood of an object. This results in a single likelihood of
one objects, reducing computational costs. We also show
our method to differentiate between objects of similar color,
as e.g. common in office environments with many persons
wearing dark suits.

2.2 Stereo Vision / Multi-View Solutions
Many people tracking systems rely on stereo vision or

multi-view camera systems to directly obtain 3D data of
the objects that are being tracked. Most systems rely on
these inter-camera relationships to use epipolar geometry or
triangulation. Thus, the algorithms cannot be transferred
to monocular vision approaches.

The system of Du et al [3] uses individual particle filters to
track subjects that have been chosen manually in advance.
For each attached camera view, a particle filter for each ob-
ject is used to reason about the principal axes of the objects.
The trajectories of the individual objects are tracked on the
ground plane, fusing the principal axes for each object across
all views.

A Bayesian multiple camera tracking approach is given
by Qu et al [10] to avoid computational complexity. Their
collaborative multiple-camera model uses epipolar geometry
without using 3D coordinates of the targets.

Heath and Guibas [6] present an approach to people track-
ing using a particle filter system that represent single ob-
jects. Their approach uses multiple stereo sensors to indi-

vidually estimate the 3D trajectories of salient feature points
on moving objects.

Fleuret et al [4] use a probabilistic occupancy map that
provides robust estimation of the occupancy on the ground
plane. They apply a global optimization to all the trajec-
tories of each detected individuum over a certain number
of time frames. They showed reliable tracking for up to six
people using a four camera setup. Yet, the solution suffers
from a four-second lag that is needed to estimate the data is
robustly. It is thus impossible to use the system for real-time
human-computer interaction.

The method of Osawa et al [9] uses a three-dimensional
representation of humans to track them in a cluttered of-
fice environment. Their concept of using a likelihood func-
tion inspired the approach that we introduce in this paper.
In contrast to the stereo vision approach, our solution is a
monocular camera system, mounted at the ceiling of a room.
It uses intensity values instead of binary images to better in-
tegrate the slight illumination differences of a person from
the background subtraction, making it more robust against
image noise. The bird’s eye view is optimal for a single
camera system, since a complete occlusion of one person by
another is unlikely to happen in normal office environments.
This also enables tracking more than two objects at the same
time with partial occlusion.

3. PARTICLE FILTER FOR MULTI HUMAN
STATE ESTIMATION

We use a Sequential Monte Carlo (SMC) Filter technique
[2] to estimate the state of multiple tracked people. The
technique consists of two procedures to compute the prior
and posterior distribution functions. These two procedures,
which are also often referred to as the motion and observa-
tion model, are used to predict the state of an object and to
validate this prediction. In contrast to other Bayesian filter
mechanisms, (e.g. the Kalman filter) the SMC Filter has
superior ability in maintaining a discrete number of distinct
hypotheses of an object state. It provides the means to rea-
son about the position of an object in complex situations,
e.g., when being partially occluded or when emerging in a
camera’s field of view.

3.1 Human States and Dynamics
The state of an observed 3D scene is represented at each

time step t by a set of I particle filters Mt =
{
P 1
t , . . . , P

I
t

}
,

where I denotes the number of currently tracked persons.
Each particle filter P i

t is a belief about a person’s state and
can be approximated by Xi

t , the weighted average of the m
samples

{
xi,j
t , wi,j

t

}
, with j = 1, . . . ,m. The weight wi,j

t is

the calculated probability of a hypothesis xi,j
t . This design

allows for easy parallelization of the particle filters as they
can be processed mostly independently from each other: par-
ticles from a particle filter i that are evaluated at time step t

only depend on the average states Xi′
t−1 of the other particle

filters i′ 6= i at time step t− 1. Under real-time conditions,
the difference in movement is small enough. Subsequently,
we refer to the particle filters of individual persons i without
explicitly using the index i for each filter.

The description of the humans is kept simple in order to
avoid high dimensionality. For a minimal configuration of
the state we take a hypothetical x- and y-position of the
person and the velocities in x and y-direction. The state



can then be described as the quadruple xj
t = 〈xjt , y

j
t , ẋ

j
t , ẏ

j
t 〉.

The transition of p(xj
t |x

j
t−1) is described by a first order

linear system p(xj
t |x

j
t−1) = Φxj

t−1 + Γwj
t with wj

t as a zero
mean additive Gaussian noise N (0, µ) for the position and
a zero mean additive Gaussian noise N (0, η) for the change
in velocities. Φ is a 4 × 4 transition matrix and Γ a 4 × 2
matrix. Since we use a well-known state description and
dynamics further details are also explained by Chang and
Bar-Shalom’s JPDA approach [1].

3.2 Observation Model
The perceptive model is based on a projective pin-hole

model similar to the process of picture generation within a
normal camera. To evaluate the sample weight we generate
an artificial view of the scenery from the viewpoint of the
camera and compare this to the background-subtracted and
ramp-thresholded image taken at the same time step. The
resulting images zt are used to estimate the likelihood of a
sample as p(zt|xj

t).

3.2.1 Shape Description
We apply a three-dimensional shape model in Cartesian

coordinates to all detected persons in the observed area.
This approach minimizes the computational costs but ap-
plies only to humans of similar shape. As a simple three-
dimensional shape description we use spheroids, prolate el-
lipsoids where the two minor semi-axes are equal. In our
case the major semi-axis a is set to 0.9 meters and the mi-
nor semi-axes b and c are set to 0.25 as we track persons of
an approximate height of 1.8 meters. The height of the cen-
ter is also set to 0.9 such that the south pole of the spheroids
is on the ground level. The three dimensional model can be
described by a quadric Q, modeled as a 4× 4 matrix. This
quadric can be projected onto the image plane by multiply-
ing Q with the camera-specific 3 × 4 projection matrix P .
This process is illustrated in figure 1 and details are given
by Hartley and Zisserman [5]. The resulting 3 × 3 matrix
C∗ describes the spheroid on the image plane as a line-conic,
the dual to the point-conic. We use the inverse of matrix C∗

to calculate the upper and lower bounds of the conic on the
image plane. In between these two borders we determine
for each y value, the corresponding x-values as the left and
right border of the conic at the specific y.

3.2.2 Measurement Likelihood Function
The particle filter described by [9] uses the following mea-

surement function to evaluate the likelihood of a generated
virtual scene :

Cj(Vt,j) =

∑
x,y Bt(x, y) ∩ Vj(x, y)∑
x,y Bt(x, y) ∪ Vj(x, y)

(1)

where Bt is the thresholded background-subtracted image
and Vt,j is a virtual binary image, generated for the particle
filter hypothesis j. Unfortunately, the hard threshold ap-
proach has the drawback of being very sensitive to lighting
and noise. A small illumination change can quickly make a
person undetectable.

To improve the detection quality, we replaced the set oper-
ations on binary images by arithmetic operations on grayscale
images. The intersection of binary regions was replaced by
the product of grayscale intensity values, and the union op-
eration by the maximum of two intensity values. The new

Conic
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Center of Projection

Image Plane
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Figure 1: The projection of the spheroid appears as
a conic on the image plane. The major semi-axis of
the spheroid is marked as a, the minor semi-axes are
equal so only b is shown.

evaluation function is shown in equation 2.

Cj(Vt,j) =

∑
x,y Bt(x, y)Vj(x, y)∑

x,y max(Bt(x, y), Vj(x, y))
(2)

Instead of the hard threshold operation on the background-
subtracted image, a softer ramp-mapping of intensity values
is used.

Region of Evaluation (RoE)
To reduce the influence of image noise and of information
from distant parts of the image, the evaluation of the mea-
surement likelihood function is restricted to a local region
of the background subtracted image (yellow and pale blue
regions in Fig. 2b).

The shape of the RoE is a function of the three-dimensional
shape description in section 3.2.1. The RoE is a conic cor-
responding to the projection of an enlarged version of the
spheroid of the current particle. The semi-axes of the en-
larged spheroid are scaled by a value αe. The height he of
the center is adjusted such that the larger spheroid touches
the ground. The x- and y-positions are unchanged. We es-
timated reasonable values of αe ≈ 2.0 and he = 1

2
· a for

defining the RoE.
For a robust estimation of the particle weight, it is essen-

tial to take the potential presence of other nearby persons
into account. The shape of other persons i′, according to

their last average position xi′
t−1, is masked out in the cur-

rent RoE since this pixel information is ambiguous. This
makes the evaluation more robust and reduces mixups be-
tween persons occluding each other. This RoE also increases
the speed of the algorithm as the computational costs are
lowered extremely in comparison to a complete image anal-
ysis.



Ct,j(Vt,j) =

∑
y(S(er(y), y)− S(el(y), y))∑

y(S(el(y), y)− S(0, y) + er(y)− el(y) + S(xmax, y)− S(er(y), y))
(3)

Performance Optimizations
The computation of equation 2 can be simplified by as-
suming that the virtual image Vt,j is a binary image, i.e.
Vt,j(x, y) ∈ {0, 1}. In this case, the numerator is the sum of
all pixels of Bt(x, y) where Vt,j(x, y) = 1. The denominator
is just the number of pixels where Vt,j(x, y) = 1.

As the virtual image contains exactly one convex ellip-
soid, we can represent Vt,j by just describing the left and
right ellipsoid edges e(y) = (el(y), er(y)) for each line y of
the image. Also the repeated evaluation of pixel sums in the
image can be improved by using a pre-computed sum image
St,j(x, y) =

∑x
i=0Bt,j(i, y). This optimization makes sense,

as typically 3̃00 hypotheses are evaluated per image and per-
son. The optimized likelihood computation is expressed in
equation 3.

Reasoning in 3D
As our people tracking maintains the position of the humans
in 3D we can use this knowledge to reason about the particle
weights. If the Euclidean distance of particle xk,j

t of person
k to the average position xl

t−1 of another person l is less than
twice the length of the semi-axes (b or c) of their spheroid,
the particle weight is set to zero. As we set the semi-axes
b and c to 0.25 meters, this makes a minimum distance of
0.5 meters between the centers of the spheroids. If prior 3D
knowledge of the environment is available, this information
can be used to reason further about particle weights.

3.3 Instantiation and Deletion of Particle Fil-
ters

To robustly estimate the positions of the people within
the scenery, the system needs to know about every human
entering or leaving the observed area. These mechanisms
are kept simple and are briefly introduced here.

Instantiation
At spaced time intervals, the system recognizes new objects
within the scenery by a blob detection algorithm on the
background subtracted images. Blobs that pass some early
checks on constraints, e.gobject size, are used for instantia-
tion. But only if no already tracked person is near the blob
a new Particle Filter will be instantiated at the Blobs rough
position in respect to the ground plane.

Deletion
The covariance of the particles can be interpreted as the
belief of a person’s state with respect to the mean value.
If samples of a particle filter are widely distributed in the
environment, this is taken as an indicator that the filter does
not represent the person any more, and the filter is deleted.
This mechanism cares for objects that are either occluded
or have left the scenery. It results in the deletion of the
associated particle filter.

4. EXPERIMENTAL RESULTS

4.1 Experiment Setup
We have evaluated our tracking system using a single cam-

era (FOV ≈ 35, framerate ≈ 15Hz, resolution = 640× 480)
mounted at the ceiling in our offices at a height of ca. 3.60
meters. The camera’s sensor plane is nearly parallel to the
observed ground floor (3.60 × 4.70 meters). The camera
images were directly undistorted using Zhangs method [12],
such that the conics could be projected onto the image plane
without an additional correction for radial distortion. The
people tracking system ran on a standard Intel Core 2 Duo
platform, running at 2.5 Ghz, all images could be processed
without loss.

4.2 Accuracy
We carried out three different experiments in order to

evaluate the accuracy of our tracking system. For all ex-
periments we measured various positions of different diffi-
culty for the tracking system within the observed area in
advance. By placing a marker on the ground plane we could
measure the various positions in respect to the common co-
ordinate system of the ground plane, also defined by placing
a marker. These positions were than marked on the floor
and given different labels ranging from A1 to E2. See figure
3 for the various locations and visibility of the person. The
position starting with the same latter were used for estima-
tion under occlusion, were the 1 indicates the outer position,
were a person is generally worse visible.

In the first experiment a persons had to step at the ten
marked positions such that the spot was roughly centered
under the point of highest gravity of the person. We than
recorded the position of the person at this spot for a pe-
riod of 30 seconds (∼ 450 frames) without any intentional
movement of the person. From this data we calculated the
mean error and the standard deviation of our tracking sys-
tem, which is listed in table 1 in the upper row. The overall
archived error of the people tracking system under no move-
ment can be stated as 0.09 ± 0.04 meters and demonstrate
the capabilities this monocular tracking system.

In a second experiment we recorded the positions of two
persons standing near to each other. The persons again po-
sitioned themselves over the marked areas and their location
was recorded. This time we were especially interested in the
position accuracy of the occluded person. And estimated
the position error for this constellation. As it can be seen
from the results the position of the person which is occluded
from the other person has less accuracy. The final result
with an error of 0.15± 0.09 meters for the outer person and
0.12± 0.09 meters for the inner person is little higher than
for a single person but still within the range of a human
bodies circumference. With this error our system is also in
the range of Fleuret’s et al [4] multi-camera system, where
they used a slightly different evaluation method.

In the final experiment we estimated the tracking accu-
racy of the system for a moving person. The person was
advised to walk from one marker to the another in a di-
rect way. First the subject had to visit all outer marker



(a) Background Subtraction (b) Region of Evaluation (c) Particles

Figure 2: Tracking result dealing with partial occlusion between two person.Subfigure 2(a) shows the back-
ground subtracted and thresholded image that is used as an input. Subfigure 2(b) shows the yellow region of
evaluation of one person. Note that pixels corresponding to the last position of the other person are masked
out within this region. Subfigure 2(c) shows the original camera output with colored ellipses for the detected
persons and the particles for each persons, blue particles represent a high weight and red is for low weights.

(a) One Person (b) Two Persons (c) Trajectory

Figure 3: The different evaluation positions on the floor are marked with crosses. One can easily observe the
different visibility levels of the person at these positions.

starting at A1 finally ending up in E2. So the order was
A1 → B1 → . . . → E1 → A2 → . . . → E2. The trajectory
of this movement was recorded and can be seen in figure 3(c).
At each timestep we estimated the error by constructing the
perpendicular line from the measured position to the direct
path and calculating the euclidean distance of this perpen-
dicular line. The results can be seen in table 2. Interestingly
the error 0.0813± 0.0712 meters from the moving person is
similar to the error from no movements at all Error. (See
table 2)

4.3 Robustness
To evaluate the robustness of our tracking system we recorded

three sequences with 5 difficult situations each. We paid at-
tention that the persons were similar dressed (red top and
brown trousers) to show the advantage of our method com-
pared to color based methods, which we expect to fail in
the same task. We asked three experts, not belonging to
the authorship of this paper, to judge about the general
level of difficulty of these events for a people tracking sys-
tem. The results can be seen in table 3. All sequences
rated as 1 or 2 have been processed without problems but
one. In one sequence, rated as 2, the identities of two per-
sons were swapped. We believe that this happened from
our simple background subtraction method that does not
respect reflections and shadows on the ground plane, which
were visible on the floor here. Three of the hardest and
second hardest sequences could be solved without problems.
At two of these sequences (one rated as 4, the other as 5)

the tracking dropped one person due to heavy occlusion.
Later on, the person was detected again and given a new id,
when the person was well observable again. In one of the
medium sequences the tracking performed well. Especially
in the case where one hardly visible person was not tracked
at all, but at the same time it did not confuse the tracking
of the other person. We provided two additional videos for

Sequence 1 Sequence 2 Sequence 3
Expert 1 2 3 ∅ 1 2 3 ∅ 1 2 3 ∅
Situation 1 3 2 1 2 5 5 5 5 4 4 3 4
Situation 2 2 3 1 2 5 5 4 5 5 5 4 5
Situation 3 3 1 2 2 2 5 2 3 4 3 2 3
Situation 4 1 1 1 1 3 5 2 3 4 4.5 1 3
Situation 5 1 2 1 1 3 2 2 2 5 3.5 4 4

Table 3: Levels of difficulty of the sequences. The
mean values are already rounded to the nearest in-
teger value.

the experts, each one with one longer difficult situation. In
these sequences all tracked persons wore black suits, similar
to common office environments. The first video with five
persons was always rated as 4, the second video was two
times rated 4 and once 5. There was no problem in the first
sequence but in the second sequence the identities of two
persons were swapped at the end, when one person sneaked
through the other two persons.



Position A1 B1 C1 D1 E1 A2 B2 C2 D2 E2

Mean [cm] 5 11 8 13 7 8 10 10 5 10
Std. Dev. ± 2 ± 3 ± 2 ± 4 ± 3 ± 3 ± 6 ± 2 ± 3 ± 2

Mean [cm] 8 16 8 31 13 8 26 5 18 5
Std. Dev. ± 4 ± 4 ± 4 ± 2 ± 3 ± 2 ± 5 ± 2 ± 5 ± 2

Table 1: The upper row shows the accuracy of the tracking for a single person being tracked at the different
locations. The lower row shows the accuracy at the different locations while two persons are being tracked.
At position D1 the occluded person could only be tracked for 108 frames. The person was then deleted from
the system due to heavy occlusion.

Position A1B1 B1C1 C1D1 D1E1 E1A2 A2B2 B2C2 C2D2 D2E2
Mean [cm] 10 7 15 7 7 11 5 9 4
Std. Dev. ± 8 ± 5 ± 13 ± 4 ± 3 ± 4 ± 3 ± 4 ± 3

Table 2: The table shows the error from the estimated trajectory to the shortest path from one location to
the other.

We and one expert also noticed a major advantage of our
tracking approach in case of hardly visible persons. It is
capable of tracking a previously detected person robustly
even if only small parts of the body, e.g. the shoes, are
visible to the camera.

In case of one person occluding another completely there is
no reliable forecast which identity will be lost as the particle
filters are non optimal and deterministic in their computa-
tion of the position. But it can be assumed that most likely
the identity of the occluding person will remain as there is
still more image information from that person visible within
the camera. This behavior could also be seen in our two
cases mentioned earlier.

5. CONCLUSION
Our system concentrates on imitating the processes of pic-

ture generation within a camera to reliably estimate the like-
lihood of hypotheses in an intuitive way. With the projective
approach introduced in this paper as much information as
possible is kept until the likelihood of the measurement is
calculated, as we interpret a complete image as a measure-
ment and avoid the early extraction of information which
can result in errors at a much prior stage in the data ac-
quisition. The additional optimization step we introduce
allows to use multiple Particle Filters with many hypothe-
ses at the same time, meeting real-time conditions. Rather
than optimizing the prior distribution function this seems
to be promising as the prediction of human’s movements
are always hard to model in an optimal way even in certain
environments when knowledge about human movements can
be retrieved (e.g. sports arena).

In general it is possible to track more than five persons
as the computational costs rise linearly with the number of
persons, such that the system can easily be scaled to an ar-
bitrary number of persons. This results from the fact that
we do not compute a joint likelihood for the states of all
particles. As long as the objects to track can be approxi-
mated by simple geometric shapes, as in our case a spheroid,
the computational costs do not exceed the performance of
present end user systems (see section 4). This is important
for satisfying real-time requirements, e.g. with respect to
HCI and Augmented Reality applications.
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