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Abstract

We propose a structural image representation and show
its relevance for multi-modal image registration. Struc-
tural representation means that only the structures in the
image matter and not the intensity values of their depiction.
The representation is formulated as a dense descriptor. We
specify three properties an optimal descriptor for structural
registration has to fulfill: locality preservation, structural
equivalence, and discrimination. The proposed entropy im-
ages are an approximation to such a representation. We im-
prove their discriminative potential by integrating spatial
information in the density estimation. We evaluate entropy
images for rigid, deformable, and groupwise multi-modal
image registration and achieve very good results in terms
of both speed and accuracy. Finally, entropy images seam-
lessly integrate into existing registration frameworks and al-
low an efficient registration optimization.

1. Introduction
The objective of image registration is to find the cor-

rect spatial alignment of images. This task is made diffi-

cult by intensity variations between them. Such variations

can originate from a multitude of sources, such as illumi-

nation changes in optical images, field inhomogeneities in

magnetic resonance (MR) images, and, simply, different

imaging modalities. A common approach in iconic regis-

tration methods is to integrate similarity metrics that are

robust to those intensity variations, assuming a functional

or statistical intensity relationship, instead of an identical

one. On the other hand, geometric registration approaches

that build upon an automatic keypoint extraction and de-

scription have to apply methods that are robust to intensity

variations. Widespread descriptors such as SIFT [8] and

GLOH [12] achieve such robustness by building upon in-

tensity differences, rather than absolute intensity values, by

calculating histograms of image gradients. The registration

of images from different modalities is, however, affected by

more substantial intensity variations.

In this article, we present a representation of images that
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Figure 1. Illustration of the process for calculating entropy images.

For each pixel in the image, the local neighborhood patch is se-

lected. For these patches, the PDF of the intensity is estimated, in

this example with the Parzen-window method. Finally, the entropy

is computed and the result is stored in the corresponding location

in order to create the entropy image.

is only dependent on the depicted structures, not on the in-

tensities used to encode them. Such a structural represen-
tation can assist several image processing tasks. We focus

on registration, where this representation enables us to ap-

ply fast, mono-modal similarity measures for the alignment

of multi-modal images. In our experiments, we measure an

average speed-up factor of 6.6 for deformable registration

with respect to standard methods. Our process of the cre-

ation of such structural images is illustrated in Fig. 1, and

can be regarded as a dense descriptor. Examples of struc-

tural images are shown in Fig. 2.

We theoretically analyze the properties for a structural

representation. We show that the minimal coding length

for transferring a patch over a channel, calculated with the

Shannon entropy, properly captures the information con-

tent of a patch invariant to the intensity. However, there

is a risk of ambiguities, i.e. several patches can lead to the

same entropy value. Therefore, we propose to integrate spa-

tial information to the density estimation. Additionally, we

thoroughly evaluate the processing steps of the entropy es-

timation in order to find the best suited representation for

registration. The advantages of the structural representa-

tion for multi-modal registration are a faster evaluation of

the similarity metric and the possibility of using the effi-

cient second-order minimization [2]. In our experiments,

we evaluate the application of entropy images for rigid, de-
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Figure 2. Multi-modal images (T1, T2, PD) from BrainWeb dataset together with entropy images used for rigid registration.

formable, and groupwise registration. We achieve for most

multi-modal registration tasks a better accuracy than mutual

information, combined with a significant speed-up.

2. Related Work

We summarize, first, methods that are related because of

the application of entropy for registration, and second, ap-

proaches that deal with transforming a multi-modal registra-

tion to a mono-modal one. Mutual information (MI) [18, 4]

and the congealing framework [7, 19] are widely used tech-

niques for image registration. MI-based methods build upon

the entropy calculation of joint and marginal probability dis-

tributions, whereas congealing calculates the entropy of a

pixel stack of multiple images. Mutual information is ap-

plied to gradient images [15] and local phase images [11]

for multi-modal registration. In [3], the entropy of the dif-

ference image is calculated to align mono-modal images.

Also based on the calculation of the entropy is the scale

saliency algorithm by Kadir et al. [6]. Salient regions are

identified in images with the criterion of unpredictability in

feature and scale space, where the local entropy is used for

quantifying the unpredictability. Our approach is different

from [6] because we do not extract keypoint locations but

build a dense description.

Techniques that reduce a multi-modal to a mono-modal

registration can again be differentiated into two classes. The

first ones try to simulate one modality from the other. Ex-

amples are X-Ray to CT (Computed Tomography) regis-

tration with the creation of digitally reconstructed radio-

graphs [13] and ultrasound to CT registration with the simu-

lation of ultrasound images [17]. The second group consists

of methods that transfer both images into a third, artificial

modality. Examples are (i) the application of morphologi-

cal tools [10], (ii) recoloring images depending on the vari-

ances of the image regions [1], (iii) the usage of edge- and

ridge-information [9], (iv) cross-correlating gradient direc-

tions [5], and (v) the creation of shadow-invariant optical

images [14]. In our case, we are interested in a general

structural representation, so that the application specific ap-

proaches are not applicable. Further, (ii) and (iv) use cross-

correlation for the comparison, indicating that the descrip-

Weighting MaskPatch 2Patch 1 Patch 3

Figure 3. Patch 1 and 2 show the same structure but encoded with

different intensities. All three patches have the same entropy of

2.0749 for an identical spatial weighting. Integrating a location

dependent weighting with the modified Gaussian weighting mask

shown on the right, we can differentiate patch 3 from the others.

tion is not truly identical. The morphological approach [10]

mainly leads to a surface extraction, and although it has gray

values instead of only binary values, much internal infor-

mation is lost. Finally, edge, ridge, and gradient estimation

is problematic for points where more than two regions are

meeting, e.g. T-junctions. This is further discussed in Sec. 5.

3. Method
Consider two images I, J : Ω → I defined on the image

grid Ω with intensity values I = {1, . . . , n}. The registra-

tion is formulated as

T̂ = arg max
T∈T

S(I, J(T )), (1)

with the space of transformations T and the similarity mea-

sure S. For images with structures being depicted with the

same intensity values, so I(x) = J(T̂ (x)) for x ∈ Ω, SSD

(sum of squared differences) or SAD (sum of absolute dif-

ferences) are a good choice for S. For more complex inten-

sity relationships between the images, such as affine, func-

tional, or statistical ones, typical choices for S are the corre-

lation coefficient, correlation ratio, and mutual information,

respectively. These are, however, more computationally ex-

pensive. Therefore our goal is to find representations of the

images so that SSD and SAD become applicable.

Consider patches Px : Nx → I that are defined on

the local neighborhood Nx around x. We search a func-

tion f : Px �→ D(x) that assigns each patch a descriptor

D(x) so that the descriptor captures the structural informa-



tion of the patch. The idea is to reduce the problem of find-

ing a structural representation of images to finding such a

representation for patches. For example, the patches 1 and

2 in Fig. 3 should lead to the same descriptor. We define

two patches P1, P2 to be structural equivalent P1 ∼ P2,

if there exists a bijective function g : I → I such that

∀y ∈ Nx : P1(y) = g(P2(y)).
Three properties an optimal function f has to fulfill, with

respect to structural registration, are

P1) Locality preservation:

||Pi − Pj || < ε =⇒ ||f(Pi) − f(Pj)|| < ε′ (2)

P2) Structural equivalence:

P1 ∼ P2 =⇒ f(P1) = f(P2) (3)

P3) Discrimination:

P1 � P2 =⇒ f(P1) �= f(P2) (4)

The first property states that similar patches lead to similar

descriptors, which is important for the robustness to noise

and the capture range. The choice of reasonable ε and ε′ de-

pends on the chosen norm. The second property ensures the

structural representation. The third assures a perfect dis-

crimination of patches, which is desirable, however, less

critical for the proposed dense descriptor, than it would be

for a sparse one.

In order to be able to assess the discrimination ability of

the descriptors, we quantify the number of structural dif-

ferent patches. Let n = |I| be the number of intensity

levels, and k = |Nx| be the cardinality of the patch. We

assume n ≥ k, which generally holds with typical values

for n = 256 and k = 10 × 10. For these numbers, we

exemplarily indicate the order of magnitude of the patch

numbers in the subsequent analysis. The total number of

different patches η1 is calculated with

η1 = nk ≈ 10240. (5)

The number of patches that vary in structure is equivalent

to the Bell number B

η2 = B(k) =
1
e

∞∑
l=0

(
lk

l!

)
≈ 10115. (6)

This corresponds to the number of equivalence classes of

the structural equivalence relation ∼. Patch 1 and 2 in Fig. 3

are in the same class, and are therefore counted only once.

The Bell numbers generally indicate the number of ways a

set with k elements can be partitioned into nonempty sub-

sets. This is also the number of patches an optimal function

f would be able to differentiate. However, from a practical

point of view, it would require more than 47 bytes per pixel

to store, which could exceed the memory limit for volumet-

ric data and decelerate the registration.

3.1. Entropy

A function f that is building upon calculating the mean

value or differences between the entries in the patch (gra-

dient), is not suitable for extracting the structural informa-

tion. A more general concept is to quantify the information

content of a patch or, analogously, the bound for a lossless

compression, as stated by Shannon’s theorem, which is both

achieved with the entropy. The Shannon entropy of a ran-

dom variable Y with possible values I is

H(Y ) = −
∑
i∈I

p(Y = i) · log p(Y = i), (7)

assuming p to be the probability density function (PDF) of

Y . Calculating the entropy on a dense image grid leads to

DI(x) = H(I(Nx)). (8)

The construction of entropy images is illustrated in Fig. 1.

We analyze if the entropy fulfills the listed properties

P1 to P3. Consider two intensity distributions p1 and p2,

corresponding to patches P1 and P2, respectively. Small

changes in the patches also lead to small changes in the dis-

tributions, so that the locality preservation is fulfilled. The

second property, however, does not hold. The number of

different distributions is

η3 =
(

n + k − 1
k

)
≈ 1090, (9)

which corresponds to ball picking of unordered samples

with replacement.

In order to make distributions fulfill also the second

property, we have to sort the entries of the distribution

p′ = sort(p). (10)

The number of sorted distributions p′ is

η4 = P(k) ≈ 1
4k

√
3
eπ
√

2k/3 ≈ 108 (11)

with the partition function P , which represents the number

of ways of writing an integer as a sum of positive integers,

where the order of addends is not considered significant.

The final step, the mapping from ordered histograms

to real values, is performed with the entropy formula in

Equ. (7). For k = 2, the entropy uniquely assigns each

ordered histogram a scalar. However, for k ≥ 3 the map-

ping is no longer injective and consequently η4 presents an

upper bound to the number of different entropy values for

patches. Generally, the desired number η2 is much higher

than the maximally achievable η4. To address this issue, we

propose to add a spatial weighting in the density estimation

in Sec. 4.2, leading to an improved discrimination.



Figure 4. Multi-modal images (T1, T2, PD, CT) from RIRE dataset together with entropy images used for deformable registration.

3.2. Multi-Modal Registration with Entropy Images

In contrast to the regular registration in Equ. (1), the for-

mulation of registration based on entropy images is

T̂ ′ = arg max
T∈T

S(DI , DJ(T )), (12)

with S being SSD or SAD, even for images from differ-

ent modalities. Both registration problems are obviously

related, because the entropy images are calculated on the

original images, but the results of the registrations, T̂ and

T̂ ′, do not necessarily have to be identical.

We would like to point out that the structural representa-

tion is different to a modality invariant one. Each imaging

device has its own characteristics, leading to images with

specific artifacts and noise. Also, structures visible in one

of the images may not be observable in the second one. As

an example, compare the CT and T2 image in Fig. 4, whose

appearance is significantly different. It is also clear that en-

tropy images cannot detect structures, where there are none.

However, we can expect to be robust to such changes, so

that those structures that are present in all images can guide

the registration. This problem is not specific to entropy im-

ages, but rooted in the multi-modal registration scenario,

and therefore also affects multi-modal metrics like MI.

3.3. Efficient Pair- and Groupwise Registration

One part for a fast registration is the discussed simi-

larity measure, but not less important is an efficient opti-

mization method. The efficient second-order minimization

(ESM) [2] is an extension of Gauss-Newton (GN) and was

shown to converge faster than other gradient-based optimiz-

ers [2, 16]. ESM builds a second-order approximation of the

cost function without the explicit calculation of the second

derivative. This is achieved by combining the image gra-

dients of the moving and fixed image ∇I + ∇J . We refer

to the mentioned references for further details. For multi-

modal images this combination is not meaningful, and con-

sequently, ESM has so far not yet been applied for register-

ing them. The structural representation of images, however,

enables us to apply ESM for multi-modal images.

In [16], we deduced ESM for groupwise registration. For

the case of symmetric similarity measures,
N ·(N−1)

2 pair-

wise measures have to be calculated for simultaneous reg-

istration, with N the number of images. Consequently, the

influence of the speed-up of simple matching functions is

quadratic. Concluding the effects of entropy images for

multi-modal registration, they enable the usage of an effi-

cient optimizer, needing less steps, and further, they permit

a faster calculation of each update step.

4. Details on Entropy Estimation

There are several processing steps in the entropy esti-

mation that influence the appearance of the entropy im-

age, compare Figs. 2 and 4. We evaluate their effects for

rigid and deformable registration. Both types of registra-

tion have different requirements and, consequently, lead to

different preferences. We present details about the experi-

mental setup for the evaluation in Sec. 5.

4.1. Local Neighborhood

For rigid registration, we evaluate local neighborhoods

ranging from 5 × 5 to 19 × 19 pixels. Patch sizes of 5 × 5
and 7×7 lead to unsatisfying results. When further increas-

ing the patch size, the similarity plots become wider, be-

cause the entropy images are smoother. For our rigid exper-

iments, we continue with patch sizes of 11 × 11, as a good

compromise between computational complexity and suffi-

cient statistics for an accurate estimation. For deformable

registration, we prefer smaller patch sizes to have a more

local description, and therefore test them in the range from

5×5 to 13×13, with good results for 7×7 patches. In 3D,

we achieved good results with 9× 9× 9 patches, where we

adapt the neighborhood for data with anisotropic spacing.

4.2. Spatially-weighted PDF Estimation

We use histogramming and the kernel-based Parzen win-

dow method for the non-parametric PDF estimation, with

the latter yielding more robust results for a small number

of samples. For both, the bin size has to be specified. A

large number of bins makes the entropy image more sen-

sitive to noise, while a low number deteriorates the unique

patch description.

As discussed previously, we are interested in increasing

the discrimination of the entropy estimation, because of the

large difference between η2 and η4. Consider, for instance,

the three patches in Fig. 3. While it is desired to assign patch



1 and 2 the same value, this does not hold for patch 3. How-

ever, the PDF is the same under permutation of pixels in the

patch. To address this issue, we propose to modify the den-

sity estimation with plug-in estimators. When constructing

the image histogram h, each pixel’s intensity is added with

a constant summand to the histogram. We introduce a spa-

tial weighting function ω : Nx → R, assigning a weight to

each patch location. The histogram update changes to

∀y ∈ Nx : hx[I(y)] ← hx[I(y)] + ω(y). (13)

The Parzen window density estimation changes accord-

ingly. The PDF is obtained by convolution of the histogram

with a Gaussian kernel Gσ of standard deviation σ

px =
1
M

(Gσ ∗ hx) (14)

and normalization with M =
∑

Gσ ∗ hx. In our exper-

iments, we use a Gaussian, a modified Gaussian, and the

identity as weighting functions. The identity corresponds

to the usual density estimation. For the Gaussian we set

ω(y) = Gσ(‖y − c‖) with c the patch center. The discrimi-

nation between patches is not optimal because the Gaussian

is rotational symmetric. We therefore modify the Gaussian

weighting function, see Fig. 3, giving it a unique weight at

each patch location. We assign similar values to neighbor-

ing locations to ensure the locality preservation.

Although each location has a different weight for the

modified Gaussian, the sum of several values, as it is done

in the histogram calculation, can lead to the same value, and

therefore ambiguities. An optimal assignment of weights to

the |Nx| patch locations in the weighting mask, so that they

are unique with respect to addition and that the dynamic

range is minimal, is to use 2−1, 2−2, . . . , 2−|Nx|. How-

ever, even then the dynamic range is too high, considering

2−49 ≈ 10−15, leading to locations that become negligible

in the entropy calculation.

4.3. Intensity Normalization

In order to use the whole range of the histogram, we nor-

malize the intensity values of patches Px. For this, we can

either use the global minimum and maximum

minx = inf
y∈Ω

I(y) maxx = sup
y∈Ω

I(y) (15)

or the local extrema in the patch

minx = inf
y∈Nx

I(y) maxx = sup
y∈Nx

I(y). (16)

Our experiments confirm that a global approach is better

suited for rigid, while the local approach is better suited for

deformable registration.
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Figure 5. Similarity plots for RIRE dataset (black: SSD, blue: MI,

red: eSSD).

5. Experiments
We conduct experiments on T1-, T2, and PD-weighted

MR images from the BrainWeb database1 and CT, T1, T2,

PD, and PET (Positron Emission Tomography) images from

the Retrospective Image Registration Evaluation (RIRE)

database2. For both datasets the ground truth alignment is

provided. We depict axial slices of the original and entropy

images in Figs. 2 and 4. The average time for the creation of

an entropy image in C++ is 0.078s for a slice of 256× 256,

and 11.01s for a volume of 512 × 512 × 29.

For our deformable experiments we use the freely avail-

able deformable registration software DROP3, which ap-

plies free-form deformations based on cubic B-Splines and

an efficient linear programming with a primal-dual scheme.

To emphasize that we consider deformable registration as

an available tool, we perform all experiments with the stan-

dard settings of DROP, without any optimization towards

the application of entropy images. This should also guaran-

tee that similar results are obtainable with alternative regis-

tration approaches.

5.1. Rigid Registration

For rigid registration, the standard configuration for the

entropy images is: 11 × 11 patches (in 2D) and 9 × 9 × 9
patches (in 3D), 64 bins, Gaussian weighting, global nor-

malization, Parzen-window estimation, and Shannon en-

tropy. We evaluate the usage of SSD, MI, and SSD on en-

tropy images (eSSD) for the rigid alignment by analyzing

the similarity plots for the various mutli-modal combina-

1http://www.bic.mni.mcgill.ca/brainweb/
2http://www.insight-journal.org/rire/
3http://www.mrf-registration.net



Table 1. Pairwise registration Study for RIRE. Errors for translation in mm and rotation in degree.

Data Set Sim tx ty tz rx ry rz ttotal rtotal

T1-T2 MI 0.719 0.395 1.531 1.594 2.252 1.467 1.754 3.139

T1-T2 eSSD 0.042 0.224 0.396 1.120 1.582 0.538 0.461 2.013

T1-PD MI 0.190 0.251 0.856 0.635 0.877 0.546 0.944 1.231

T1-PD eSSD 0.061 0.048 0.431 0.344 0.648 0.558 0.442 0.926

CT-T1 MI 1.925 1.004 1.312 1.718 2.951 0.763 2.710 3.951

CT-T1 eSSD 0.963 1.269 0.702 2.433 0.728 0.169 1.997 3.089

PET-T1 MI 9.071 7.730 13.409 29.226 23.578 4.945 20.869 46.234

PET-T1 eSSD 0.053 0.057 0.089 0.040 0.038 0.042 0.135 0.078

tions of both datasets, see Fig. 5. The plots are created by

rotating the images around the image center for the range

of [-40◦, 40◦], with 0◦ corresponding to the correct align-

ment. Generally, we observe that SSD fails, which was to be

expected, whereas MI and eSSD indicate the correct align-

ment. In most cases eSSD provides smoother curves with

a wider bassin than MI, which is advantageous for registra-

tion, because it enables a larger capture range. Remarkable

is also the problem of MI for the registration of PET images.

We further run a pairwise registration study for the vari-

ous combinations of the multi-modal volumes, with an ini-

tial random deviation of maximal ±20 mm in translation

and ±20◦ in rotation from the correct pose, to compare

the performance of eSSD and MI. For each configuration

100 registrations are performed using the best neighbor op-

timizer. In Tab. 1, we show the absolute mean error for

each pose parameter and the total mean error for transla-

tion and rotation for the RIRE dataset. On the BrainWeb

dataset eSSD and MI lead to comparable results, where on

the MR volumes of the RIRE dataset, eSSD performs sig-

nificantly better, matching with our observations from the

similarity plots. For the alignment with CT volumes the

registration error increases for both eSSD and MI. The ex-

periments for the PET registration are performed on vol-

umes with a lower resolution to match the resolution of the

PET volume (128× 128× 29). The registration with eSSD

achieves excellent results, in contrast to MI.

We measure an average computation time for SSD being

a factor of 15 faster than for MI. Moreover, since SSD is

better suited for parallelization than MI, a GPU implemen-

tation could lead to further benefits.

5.2. Deformable Registration

We first evaluate the application of gradient direction

(GD) [5] and gradient magnitude (GM) for deformable reg-

istration. GM achieved the best results in a comparison

of edge- and ridge-based methods [9]. GD and GM have

problems with several areas meeting in one point, such as

T-junctions, as it is illustrated for two synthetic images in

Fig. 6. We overlay the gradient fields from both images, in

red and blue, on the second image. It becomes clear that

the directions are completely different at the junction, so

that also the in [5] proposed normalization cannot correct

this. Further, the representation with GM changes with the

intensity values. Contrary, the entropy images correctly rep-

resent the structure of the images, leading to good registra-

tion results.

On the medical databases, we deform one of the two im-

ages with a deformation dg serving as ground truth. Next,

we run the registration with the deformed image as target

and the image from the other modality as source to cal-

culate the estimated deformation dc. We calculate the av-

erage euclidean difference of the deformation fields τ =
1
|Ω|

∑
x∈Ω ‖dc(x) − dg(x)‖ for quantifying the residual er-

ror of the registration.

The results for the experiments are shown in Fig. 7 and

Tab. 2. The error of the registration with the original im-

ages using normalized mutual information is stated in the

table as reference. The standard configuration for the en-

tropy image for deformable registration is: 7 × 7 patches,

16 bins, Gaussian weighting, local normalization, Parzen-

window estimation, and Shannon entropy. In our experi-

ments, we evaluate each of the parameters by changing one

of them from the standard configuration and letting the oth-

ers constant.

From Fig. 7, we see that best results are achieved around

16 bins. While reducing it further to 8 bins also leads to

good results, increasing it further to 32 bins leads to an in-

crease in error. A good compromise in the patch size for

the different datasets and modalities is approximately 7×7.

Larger patch sizes still lead to good results on the RIRE im-

ages, but on the Brainweb images we observe a significant

increase of the error. Smaller patches lead to an inaccurate

density estimation because of the small number of samples.

For the weighting, we observe a general reduction of the

error when using a more advanced weighting than the stan-

dard identical one.

From Tab. 2, we see that a local normalization of the



Figure 6. Illustration of two synthetic multi-modal images (1st & 2nd) together with a zoom on gradient fields (3rd & 4th), gradient

magnitude images (5th & 6th) and entropy images (7th & 8th). The best structural representation is achieved with entropy images.
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Figure 7. Evaluation of error τ for deformable registration for varying bin number, patch size, and spatial weighting on RIRE.

intensity values and the Parzen window method for the den-

sity estimation are essential for good deformable registra-

tion results. For the entropy estimation, we obtain best re-

sults for the Shannon entropy. The results for the special

Rényi entropy H2 are comparable, while the ones for the

Burg entropy are not good.

The results of the deformable registration on T1, T2, and

PD images show a slight advantage for normalized mutual

informaiton (NMI) on the Brainweb dataset, while for the

RIRE dataset the entropy images lead to a significant im-

provement. The registration with CT and PET is more chal-

lenging, because of the significant differences in the images.

The registration of CT with entropy images is inferior to

NMI. For the registration of PET, entropy images are supe-

rior to NMI.

The registration with eSSD is in average 6.6 times faster

than with NMI. This includes the time for the creation of

the entropy images.

5.3. Groupwise Registration

Finally, we perform a simultaneous, rigid registration

study for the three BrainWeb and RIRE MR volumes. We

compare the usage of ESM with eSSD, Gauss-Newton with

eSSD, and Gauss-Newton on the original images with MI.

We run 50 registrations, each starting from a random ini-

tial position. Each initial position has an accumulated RMS

error of 45 over all volumes from the correct alignment,

weighting 1mm equal to 1◦. The average residual error for

each step is shown in Fig. 8. We observe that ESM con-

verges significantly faster than GN. For BrainWeb, GN on

the original and entropy images are comparable. For RIRE,

GN on the entropy images works well. For GN on the origi-

nal dataset with MI, however, most registrations do not con-

verge, confirming our previous experiments.

6. Conclusion

We proposed entropy images as a structural representa-

tion for images, and validated their relevance for image reg-

istration. Entropy images are not optimal, because the dis-

crimination is below the theoretical maximum, however, we

also showed that such an optimal representation, if known,

would yield practical problems. We further analyzed each

of the processing steps for the entropy calculation with

the objective to find the best components. Among others,

we proposed the integration of a spatial weighting into the

density estimation. We evaluated the performance of en-

tropy images on multiple datasets for rigid, deformable, and

groupwise registration. The alignment accuracy is in almost

all cases comparable or better than for mutual information,

with a significant registration speed-up. Finally, entropy im-

ages allow us to use the efficient ESM optimizer for multi-

modal registration, where our experiments confirm its fast

convergence rate.
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Table 2. Registration errors τ in mm for various configurations for calculating the entropy images. (B: Brainweb, R: RIRE dataset)

Technique T1-T2B T1-PDB T2-PDB T1-T2R T1-PDR T2-PDR CT-T1R PET-T2R

NMI (reference) 0.63 0.79 0.66 0.94 1.04 1.33 1.84 3.42

Local Norm. 0.42 0.58 0.56 0.48 0.44 0.41 5.86 0.64

Global Norm. 0.99 2.08 0.87 2.76 4.30 4.11 6.87 1.83

Parzen Window 0.42 0.58 0.56 0.48 0.44 0.41 5.86 0.64

Histogramming 0.54 0.91 0.66 0.94 1.12 1.42 6.02 0.97

Shannon 0.42 0.58 0.56 0.48 0.44 0.41 5.86 0.64

Rényi, H2 0.47 1.11 0.64 0.49 0.54 0.64 6.39 1.25

Burg 1.82 4.61 2.43 2.81 2.37 2.68 6.71 3.46
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Figure 8. Groupwise convergence study for BrainWeb (left) and

RIRE (right) volumes.
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