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Abstract. Breathing motion leads to a significant displacement and de-
formation of organs in the abdominal region. This makes the detection
of the breathing phase for numerous applications necessary. We propose
a new, purely image-based respiratory gating method for ultrasound.
Further, we use this technique to provide a solution for breathing af-
fected 4D ultrasound acquisitions with a wobbler probe. We achieve the
gating with Laplacian eigenmaps, a manifold learning technique, to de-
termine the low-dimensional manifold embedded in the high-dimensional
image space. Since Laplacian eigenmaps assign each ultrasound frame a
coordinate in low-dimensional space by respecting the neighborhood re-
lationship, they are well suited for analyzing the breathing cycle. For the
4D application, we perform the manifold learning for each angle, and
consecutively, align all the local curves and perform a curve fitting to
achieve a globally consistent breathing signal. We performed the image-
based gating on several 2D and 3D ultrasound datasets over time, and
quantified its very good performance by comparing it to measurements
from an external gating system.

1 Introduction

Imaging organs in thorax and abdomen is affected by respiratory motion. For
consecutive processing steps, it is often necessary to assign to each image its
corresponding breathing phase. This is achieved with external gating devices,
which the patient gets connected to. These devices, however, have long setup
times, prolong the overall acquisition, are costly, and consequently, rarely used
in practice. Moreover, the synchronization of image data and breathing signal
is not trivial. While certain imaging devices, such as CT and MR scanners,
support the connection of respiratory gating systems, we are not aware of such a
possibility for ultrasound; leaving the synchronization to the user. We propose an
image-based respiratory gating system for ultrasound using manifold learning.
Moreover, we use this technique to provide a solution for acquiring breathing
affected 4D ultrasound with a wobbler probe. The proposed method is fully
automatic, and does not need any prior information or training data.

? This work was partly funded by the European Commission. We want to thank
Athanasios Karamalis and Oliver Kutter for discussions.
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Fig. 1: Wobbler angle (blue) and respiratory phase (gray) over time. Dashed
lines indicate respiratory change d within one sweep. Dash dotted line indicates
frames from same angle over several breathing cycles.

One of the applications for which the assignment of the respiratory phase is
important is 2D and 3D ultrasound mosaicing. In order to achieve good results,
images from the same respiratory phase have to be combined. An alternative to
breathing gating are breath-hold acquisitions, but they further complicate the
procedure and are dependent on the patients ability for breath-hold. Another
application that we investigate in more details throughout the article, and for
which we have not yet found a solution proposed in the literature, is the acquisi-
tion of breathing affected 4D ultrasound with a mechanically steered transducer,
also referred to as wobbler. The problems for using a wobbler in such a scenario
is that images in one sweep do not contain consistent information, but repre-
sent the anatomy in different breathing phases. We illustrate this in figure 1,
where we schematically plot the deviation angle of the wobbler together with
the respiratory signal over time. The phase difference d indicates the range of
breathing phases accumulated in one sweep. We propose to select all frames ac-
quired from the same angle (dash dotted line) and apply the image-based gating
on each of those sets of images. Having the respiratory signal estimated for each
angle, we align these curves and apply a robust spline curve fitting to create
a globally consistent respiratory signal. This, consequently, allows us to recon-
struct volumes for specific breathing stages. An alternative to the application
of a wobbler would be a native 3D transducer with elements arranged on a 2D
array. Those systems, however, are still expensive and the access to their data
streaming and radio frequency data is very restricted.

1.1 Related work

There are several papers on image-based gating in ultrasound for detecting the
cardiac motion [1–4]. These approaches apply techniques that are either (i) spe-
cific to detecting the cardiac signal e.g . centroid algorithm [4], (ii) based on user
interaction [1], or (iii) designed for intravascular ultrasound [2, 3]. We are only
aware of the work of Sundar et al . [5], where an automatic technique for breath-
ing gating in ultrasound is proposed. It bases on the phase correlation technique
to estimate the motion between successive frames. The breathing phase is esti-
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mated from the energy change between consecutive frames. The inherent limi-
tation of the phase correlation algorithm is that it finds the global translation in
the image plane. Considering the case of 2D ultrasound, the organ motion is not
necessarily in-plane, and consequently, there is no uniform global translation.

Several manifold learning techniques were proposed in the literature with
common techniques being Isomap [6] and Laplacian eigenmaps [7]. Since its
introduction, manifold learning has been applied for a multitude of applications,
including segmentation [8], registration [9], tracking [10], recognition [11], and
4D CT reconstruction [12]. The approach taken in the reconstruction is similar
to ours because Isomap is used to estimate the breathing phase on CT slabs. In
our work, we deal with the specific challenges of the integration of 4D ultrasound
wobbler data. To this end, we focus on Laplacian eigenamps, since we achieved
better results in comparison to Isomap.

2 Method

The general idea of manifold learning is to project a manifold in high dimensional
space RN to a low dimensional space Rn, while preserving the local neighbor-
hood. For our application, we consider one dimension of the ambient space for
each image pixel, so N is corresponding to the resolution of the ultrasound im-
ages. For the low dimensional space, we set n = 1, because we want to use
the coordinate of the points directly as breathing phase estimation. Considering
k ultrasound images U = {u1, . . . ,uk} that are acquired over several breath-
ing cycles, the manifold learning m assigns each image a coordinate in the low
dimensional space φi

m : RN → R1 (1)

ui 7→ φi, (2)

with 1 ≤ i ≤ k. The suggestion that ultrasound images lie on a low dimen-
sional manifold in the ambient space seems to be justified because variations
between neighboring slices are smooth, and further, slices from the same respi-
ratory phase but different acquisition times are similar. Moreover, since manifold
learning techniques try to optimally preserve local information [7], meaning that
similar images are mapped to similar positions in the low dimensional space, it
is reasonable to use φi as an estimate for the respiratory phase.

2.1 Laplacian Eigenmaps

We propose the application of Laplacian eigenmaps [7] for the respiratory phase
estimation because the technique is well founded on mathematical concepts
(Laplace Beltrami operator) and computationally efficient. Laplacian eigenmaps
build upon the construction of a graph, which represents the neighborhood infor-
mation of the data set. Subsequently, the graph Laplacian is applied to calculate
a low-dimensional representation of the data that preserves the local neighbor-
hood information in an optimal way.
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Fig. 2: Breathing signals from manifold learning. Illustrated is the case for 3
angles (3 colors). X-axis indicates ultrasound frame number. The plots show the
signals before and after alignment.

We construct a graph with a node for each point ui and with edges connect-
ing neighboring nodes. We select for each image ui the l nearest neighbors, by
evaluating the norm ||ui−uι||2. Further, heat kernel-based weights are assigned

to the edges with wiι = e−||ui−uι||
2/(2·σ2) and σ2 the variance [7]. The similarity

measure is important for neighborhood selection and weighting, where the calcu-
lation of the Euclidean norm between the points is equivalent to calculating the
sum of squared differences (SSD) between the images. A vast number of similar-
ity measures is proposed in the context of medical image registration. Since we
deal with monomodal data for our application, we investigate the performance of
SSD and the correlation coefficient (CC). The calculation of CC is similar to the
calculation of SSD on normalized input images. Once the neighborhood graph
is constructed, the eigenvectors of the graph Laplacian provide the embedding
map.

2.2 Global Consistency

After the breathing gating is performed for each angle, we have to establish
the correspondence between different angles in order to construct the global
respiratory signal. Be U the set of all acquired images. We partition the set in
disjunct subsets U1, . . . ,Uα, corresponding to the number of different deflection
angles α of the wobbler (dash dotted region in figure 1). We perform the manifold
learning for each of the subsets separately mj(ui) = φji , with 1 ≤ j ≤ α. So
depending on the acquisition angle of the ultrasound image ui, the corresponding
manifold learning mj is performed. Considering all the phases estimated from
one angle, we have the local respiratory signals Φj = {φj1, . . . , φjv}, with v the
number of frames per angle. Each local signal contains a consistent estimation of
the breathing signal. It is, however, not possible to directly compare local signals,
because the 1D projection of the manifold learning can be in an arbitrary range.
This is illustrated in figure 2(a) with exemplary three local signals corresponding
to three angular positions. A simple normalization of each of the local signals
Φj is not sufficient because the extreme positions of the breathing cycle may not
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Fig. 3: Aligned local signals (green crosses). Robust spline fitting (red). Ground
truth (blue). Dotted lines indicate separation of breathing cycle into several
stages. For each stage a volume is compounded, with an exemplary volume
rendering on the right image.

be reached within them. Consequently, we affinely register local signals in order
to retrieve the best scaling sj and translation tj

Φj 7→ sj · Φj + tj . (3)

This is, in fact, a groupwise registration scenario, where we choose to align each
pair of neighboring curves with a pairwise registration, starting from the middle
one. The result of the alignment is shown in figure 2(b).

The values of the partial signals Φj are now comparable, however, may still
contain outliers. Consequently, we apply a robust curve fitting to all the sample
points to retrieve the global breathing signal. We experimented with various
curve models, including Fourier, sum of sine waves, and splines. We achieved
best results with fitting a spline curve because it allows for the most flexibility,
which is important due to irregularity of breathing. The value of the fitted curve
then represents the breathing phase of the ultrasound frames.

In a final step, the breathing cycle is classified into several breathing stages.
For each of the breathing stages, the ultrasound frames along the various angles
are gathered, and compounded into a final volume, see figure 3.

3 Experiments

For our experiments we use the ultrasound system from Ultrasonix (Richmond,
Canada) and the optical tracking system from A.R.T. (Weilheim, Germany).
Both systems are connected to a workstation PC. For the synchronization, we
time stamp the data on the tracking system and use a network time server to
calculate the time offset. For the ultrasound data, we use the direct streaming of
B-mode images over the network. We perform tests on multiple patient datasets
acquired from different positions, focusing on the liver and kidney.
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Fig. 4: Analysis of the phase correlation technique for synthetic images. Three
different motion scenarios with corresponding energy (gating) curves.

In order to validate our results, we compare them to the measurements of
an external gating system. In [13], four different gating systems are compared
with best results for an elastic belt and an optical tracking system. We use the
tracking system with markers attached to the chest of the patient. We apply
a principal component analysis of the 6D tracking data to find the principal
component along whose direction we measure the breathing motion. Further, we
low-pass filter the signal to remove cardiac motion and extract the respiratory
signal. We refer to the tracked signal as ground truth, which is not completely
correct because it contains tracking errors. However, it is the best that can
currently be achieved [13] and is sufficient to validate the performance of our
image-based approach.

We compare our approach to the phase correlation technique [5] 1. Unfortu-
nately, we do not achieve meaningful results for our datasets. We think that this
is due to the limitation of the technique of approximating the 3D motion with
a global translation in 2D. In order to illustrate this limitation, we produced
synthetic images which show periodic motion. The first scenario consists of a
rectangle moving up and down, see figure 4. For the second, we add a fixed rect-
angle, and for the third we add a rectangle that grows and shrinks (see additional
material for videos). We plot the corresponding energy curves of the phase corre-
lation technique. For the first scenario (blue) the signal is correct. The addition
of a fixed object (red) already leads to a slight distortion, while the addition of
the shrinking/growing object (green), leads to an extraction of a false motion
signal. Since already the addition of the shrinking/growing object avoids the
extraction of the correct motion, it is comprehensible that this approach is not
best suited for breathing estimation in a noisy ultrasound environment with 3D
anatomy moving in and out of plane.

The resolution of our ultrasound images is 640× 480 pixels. We downsample
the images in each direction by a factor of 2, leading to N = 1

4 · 640 · 480.
This enables a faster processing and leads to no noticeable degradation of the
manifold learning. We show excerpts of two data sets in figure 5. We perform all
our experiments with a graph neighborhood of l = 14. The number of images
for manifold learning varies between 100 and 300, where we did not notice a
dependency of the performance on the number of input samples.

1 We want to thank the authors of [5] for sharing source code.
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Fig. 5: 2D Ultrasound images over time from liver (abdomen, right upper quad-
rant, oblique section) and kidney (left lateral decubitus position, right intercostal
flank section).

In figure 6, we show the result of the respiratory gating for one of the 2D
datasets together with the ground truth signal. We also calculate the correlation
coefficient for multiple 2D data sets, shown in table 1. It is remarkable that the
ground truth signal is almost perfectly detected. All peaks in the ground truth
signal also appear in the detection. Further, the calculation of the correlation,
which is in the range of 95%, confirms the visual similarity of the graphs. We also
experimented with normalizing the images before passing them to the manifold
learning, noticed however no significant improvement.

For the 4D experiments, we show the result of a fitted curve in figure 2. We
also calculate the correlation coefficient between the fitted curves and ground
truth for four datasets, see table 2. We experimented with three different angular
ranges, 30◦, 45◦, and 60◦ (maximum of probe), for which the probe steers to
15, 21, and 29 different angular positions. We split the breathing signal into 9
different breathing stages, and compound a 3D volume for each of the stages.
A volume rendering of one of the volumes is shown in figure 3. The additional
material contains a video showing the 4D volume rendering.

All image-based approaches rely on ultrasound acquisitions from the same po-
sition, because otherwise it is not possible to differentiate between probe motion
and breathing motion. To investigate this assumption, we attached a tracking
target to the transducer and analyzed its trajectory. This analysis showed only a
negligible deviation. The still position therefore does not limit the applicability
of our method, which is also confirmed by our good gating results.

4 Conclusion

We presented an automatic, image-based respiratory gating method for ultra-
sound using manifold learning. Moreover, we proposed a solution for acquiring
4D breathing data with a wobbler probe. Our method has the advantage that
it is fully automatic and does not require a training phase or prior information
about the underlying anatomy. We demonstrated this in our experiments by
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Fig. 6: Breathing gating results for 2D (red:
estimated signal, blue: ground truth).

2D Correlation

liver1 95.4
liver2 94.4
liver3 93.6
kidney 97.3

Table 1: 2D

3D Correlation

liver 30◦ 94.3
liver 45◦ 95.8
liver 60◦ 96.8

kidney 45◦ 94.4

Table 2: 3D

performing our analysis on various datasets showing different organs and sec-
tions. The results of these experiments were very good, for both, 2D and 3D
ultrasound data over time. Our approach therefore presents an attractive alter-
native to external tracking and gating systems with their various setup issues
and synchronization problems.
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13. Martinez-Möller, A., Bundschuh, R., Riedel, M., Navab, N., Ziegler, S., Schwaiger,
M., Nekolla, S.: Comparison of respiratory sensors and its compliance for respira-
tory gating in emission tomography. In: Journal of Nuclear Medicine. (2007)


