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Abstract

We address the alignment of a group of images with si-
multaneous registration. Therefore, we provide further in-
sights into a recently introduced class of multivariate sim-
ilarity measures referred to as accumulated pair-wise esti-
mates (APE) and derive efficient optimization methods for
it. More specifically, we show a strict mathematical deduc-
tion of APE from a maximum-likelihood framework and es-
tablish a connection to the congealing framework. This is
only possible after an extension of the congealing frame-
work with neighborhood information. Moreover, we ad-
dress the increased computational complexity of simultane-
ous registration by deriving efficient gradient-based opti-
mization strategies for APE: Gauß-Newton and the efficient
second-order minimization (ESM). We present next to SSD,
the usage of the intrinsically non-squared similarity mea-
sures NCC, CR, and MI, in this least-squares optimization
framework. Finally, we evaluate the performance of the op-
timization strategies with respect to the similarity measures,
obtaining very promising results for ESM.

1. Introduction
The analysis of a group or population of images requires

their alignment to a canonical pose. Examples are the align-
ment of 2D face images for their later identification [4], the
alignment of 3D tomographic images for the creation of an
atlas [14], or the creation of mosaics from ultrasonic vol-
umes [12]. First approaches to this groupwise registration
problem identified one image as template, and registered all
other images to it with a pair-wise approach. While this is
a valid strategy for certain applications where such a tem-
plate exists, in most cases it leads to an unwanted introduc-
tion of bias with respect to the a priori chosen template.
Simultaneous registration presents a method to circumvent
this problem, however, it necessitates multivariate similar-
ity measures and an optimization in a higher-dimensional
space.

The direct estimation of multivariate measures with
high-order joint density functions is prohibitive, because for

a reliable estimation of the joint density, the number of sam-
ples would have to grow exponentially with the number of
images, however, it only grows linearly. Approximations
are therefore necessary, like the congealing framework pre-
sented by Learned-Miller [5]. Another approach was pre-
sented by Wachinger et al. [12], which accumulates pair-
wise estimates (APE). The derivation of APE was mainly
based on analogies. Moreover, the relationship between
congealing and APE has not yet been investigated.

When aligning multiple data sets simultaneously, one
has to consider two consequences for the optimization
method. First, the registration scenario becomes more com-
plex because the parameter space increases linearly with the
number of images. And second, the evaluation of the multi-
variate similarity measure is more expensive. One is there-
fore interested in an efficient optimization procedure, which
finds the the optima robustly and with a minimal amount of
evaluations of the objective function. We focus on gradient-
based methods because they promise a fast convergence rate
due to the guidance of the process by the gradient.

In this report, we address the afore mentioned prob-
lems of simultaneous registration. First, we present a strict
mathematical deduction of APE from a maximum likeli-
hood framework. Second, we describe an extended ver-
sion of congealing, enriched with neighborhood informa-
tion, which allows us to show the connection between APE
and congealing. And finally, we derive efficient gradient-
based optimization strategies for simultaneous registration
with APE as multivariate similarity framework.

1.1. Related Work

Simultaneous registration has many applications in com-
puter vision and medical imaging when it comes to the
alignment of multiple images. Learned-Miller [5] proposed
the congealing framework for the alignment of a large num-
ber of binary images from a database of handwritten dig-
its and for the removal of unwanted bias fields in magnetic
resonance images. Huang et al. [4] applied congealing to
align 2D face images, essential for their later identifica-
tion. Zöllei et al. [14] used congealing for the simultane-
ous alignment of a population of brain images for brain at-

1



las construction. Studholme and Cardenas [10] construct a
joint density function for multivariate similarity estimation,
which has the afore mentioned problem for larger image
sets. Cootes et al. [3] use the minimum description length
for the alignment of a group of images in order to create sta-
tistical shape models. This criterion demands a great deal
of memory so that it only works for a limited number of
volumes [14]. Wachinger et al. [12] proposed simultaneous
registration for volumetric mosaicing. This poses slightly
different requirements on the multivariate similarity mea-
sure, because the number of overlapping images varies and
can be rather small on specific locations. The therein intro-
duced APE is flexible enough to deal with such situations.

A good overview of gradient-based optimization meth-
ods is provided in Baker and Matthews [1] and Madsen
et al. [7]. Based on their results, we do not consider the
Levenberg-Marquardt algorithm because of its very simi-
lar behavior to Gauß-Newton. A new method, which is not
covered in these articles, comes from the field of vision-
based control. It is an efficient-second order optimization
method introduced by Benhimane and Malis [2]. They
showed that ESM has striking advantages in convergence
rate and convergence frequency in comparison to Gauß-
Newton (GN) and steepest-descent (SD). Vercauteren et
al. [11] achieved good results for the pairwise 2D image
alignment with ESM.

2. Multivariate Similarity Metrics
In this section, we present a deduction of APE from a

maximum likelihood (ML) framework and show its connec-
tion to congealing. Due to limited space we only show the
major steps, but provide a detailed derivation in the supple-
mentary material 1. The ML framework for intensity-based
registration is:

x̂ = arg max
x

log p(I1, . . . , In; x). (1)

with n images I = {I1, . . . , In}, the transformation param-
eters x, the joint density function p, and the correct align-
ment x̂. In the following we will no longer consider x ex-
plicitly in the density function, but it should be clear that it
determines the alignment of the images.

2.1. Accumulated Pair-Wise Estimates

APE approximates the joint likelihood function with
pair-wise estimates [12]:

log p(I1, . . . , In) ≈
n∑

i=1

∑
j 6=i

log p(Ij |Ii). (2)

Assuming a Gaußian distribution of the density p, i.i.d. co-
ordinate samples, and various intensity mappings between

1http://www.webcitation.org/5fdVLazpg

the images, popular similarity measures like SSD, NCC,
CR, and MI can be derived from the log-likelihood term
log p(Ij |Ii) [9]. APE therefore presents a framework for a
class of similarity measures. To deduce it, we take the n-
th power of p and then repeatedly apply a combination of
product rule and conditional independence of the images:

p(I1, . . . , In)n =
n∏

i=1

p(Ii) ·
n∏

i=1

∏
j 6=i

p(Ij |Ii). (3)

Further, we apply the logarithm to this equation to deduce:

log p(I1, .., In) =
1
n

n∑
i=1

log p(Ii) +
1
n

n∑
i=1

∑
j 6=i

log p(Ij |Ii)

(4)

≈
n∑

i=1

∑
j 6=i

log p(Ij |Ii) (5)

where the approximation is justified because the term∑n
i=1 log p(Ii) remains constant during the optimization

and the multiplication with a scalar factor n does not al-
ter the optimization. The presented deduction is not limited
to similarity measures and presents a general approximation
of higher order densities by pairwise ones.

2.2. Congealing

In the congealing framework [5], independent but not
identical distributions of the coordinate samples sk ∈ Ω
in the grid Ω are assumed:

p(I1, . . . , In) =
∏

sk∈Ω

pk(I1(sk), . . . , In(sk)). (6)

Assuming further i.i.d. input images Ii leads to:

p(I1, . . . , In) =
∏

sk∈Ω

n∏
i=1

pk(Ii(sk)). (7)

While the consideration of neighboring pixels, surrounding
a sample sk, was already discussed in [5], referred to as
pixel cylinder, the consideration of neighboring images has
not yet been proposed. So, instead of an independence of
images, we assume that each image Ii depends on a certain
neighborhood Ni of images:

p(I1, . . . , In) =
∏

sk∈Ω

n∏
i=1

pk(Ii(sk)|INi
(sk)). (8)

This extension also allows us to derive the voxel-wise exten-
sion of SSD proposed in [12], see supplementary material.



2.3. Comparison of APE and Congealing

Having APE and congealing derived, the question comes
up about their relationship. It is in fact possible to deduce a
connection between the two approaches. The detailed proof
is stated in the supplementary material. Therein we start
with the congealing and derive APE. To make this possible
the following assumptions have to be made: 1) complete
neighborhood, 2) conditional independence of images, and
3) i.i.d. distribution of coordinate samples. While 3) was
explicitly chosen by the design of congealing and 2) by the
deduction of APE, the novel part is the neighborhood 1),
which relates these two approaches. The extended congeal-
ing in equation (8) presents therefore an intermediate be-
tween APE and congealing.

To conclude, for congealing no specific distribution has
to be selected, because the similarity can directly be cal-
culated with the sample entropy. Extended congealing and
APE do not present actual similarity measures, but rather
frameworks, where further information about the distribu-
tion has to be provided to derive similarity measures. Tak-
ing e.g. a Gaußian distribution and an identity intensity
mapping leads to an SSD like extension. APE, in contrast to
congealing, assumes an identical distribution of coordinate
samples, which makes a reliable estimation for a small num-
ber of overlapping images possible. For congealing a larger
number is necessary, because the estimation is done with
the information at one location at a time. Consequently,
the choice, which multivariate similarity approximation to
choose, is application dependent. We will focus on APE in
the remaining article because it is most versatile.

3. Efficient Optimization Methods
We derive efficient gradient-based optimization methods

for 3D rigid transformations, but the parameterization can
be easily adapted for different types of alignments.

3.1. Transformation Parameterization

We parameterize the spatial transformations with Lie
groups because 3D rigid transformations do not form a vec-
tor space. We perform a geometric optimization using local
canonical coordinates. It has the advantage that the geomet-
ric structure of the group is taken care of intrinsically [6, 8].
This enables us to use an unconstrained optimization. Al-
ternatively, one could embed them into the Euclidean space
and perform a constrained optimization with Lagrange mul-
tipliers.

Each rigid 3D transformation x can be seen as an ele-
ment of SE(3), the special Euclidean group. It is possible
to describe them with a 4 × 4 matrix having the following
structure:

x =
[

R t
0 1

]
(9)

with the rotational part R, element of the special orthogonal
group SO(3), and the translational part t ∈ R3.

SE(3) forms a manifold and is a group under standard
matrix multiplication, therefore it is a Lie group. On Lie
groups, the tangent space at the group identity defines a Lie
algebra. The Lie algebra captures the local structure of the
Lie group. The Lie algebra of SE(3) is denoted by se(3),
and is defined by

se(3) =
{[

Ω v
0 0

]
|Ω ∈ R3×3,v ∈ R3,Ω> = −Ω

}
.

The exponential map relates the Lie algebra to the Lie
group: exp : se(3) → SE(3). It exists an open cube V
around 0 in se(3) and an open neighborhood U of the iden-
tity matrix I ∈ SE(3) such that the group exponential is
smooth and one-to-one onto, with a smooth inverse, there-
fore a diffeomorphism.

Let L = (l1, . . . , l6) be the standard basis of se(3). Each
element h ∈ se(3) can be expressed as a linear combination
of matrices h =

∑6
i=1 hili with hi varying over the mani-

fold [13]. Using the local coordinate charts, there exists for
any y ∈ SE(3) in some neighborhood of x a vector in the
tangent space h, such that:

y = x ◦ exp(h) = x ◦ exp

(
6∑

i=1

hili

)
. (10)

Let us further denote the transformation of a point p ∈ R3

through the mapping x ∈ SE(3) with w(Θ(x),p) in the
Euclidean embedding space Θ.

3.2. Optimization Methods

The global transformation x = [x1, . . . ,xn], with xi ∈
SE(3) maps the points from each of the image spaces to the
joint image space, R3 → R3,p 7→ w(Θ(xi),p). Our cost
function E that we want to optimize is a sum of squared
smooth functions:

E(x) =
∑
i6=j

Fi,j(x) =
∑
i6=j

1
2
||fi,j(x)||2 (11)

with Fi,j representing the pair-wise similarity measure.
Regarding equation (11), we see that we deal with a non-

linear least-squares problem. Therefore efficient optimiza-
tion methods were proposed that achieve in many cases lin-
ear, or even quadratic, convergence without the explicit cal-
culation of the second derivatives.

The starting point from all the following optimization
methods is a Taylor expansion of the cost function around
the current transformation x along the gradient direction h:

E(x◦exp(h)) ≈ E(x)+JE(x)·h+
1
2
h> ·HE(x)·h (12)



with JE(x) = ∂E(x◦exp(h))
∂h

∣∣∣
h=0

and HE(x) =
∂2E(x◦exp(h))

∂h2

∣∣∣
h=0

the Jacobian and Hessian, respectively,
of E at the point x. The general gradient direction h is a
combination of elements from the Lie algebra hi ∈ se(3),
resulting in h = [h1, . . . ,hn]. The Newton-Raphson (NR)
method then has the following compositional update:

HFi,j
hNR

i,j = −J>Fi,j
x← x ◦ exp(hNR). (13)

The global update hNR is obtained by summing up the pair-
wise updates, following the structure of the cost function E
in equation (11), leading to

hNR =

[∑
i

hNR
i,1 , . . . ,

∑
i

hNR
i,n

]
. (14)

Unfortunately, the explicit calculation of the Hessian causes
problems because it is numerically not well-behaved and
computationally expensive, so that its usage is not recom-
mended [1]. In the field of non-linear least squares opti-
mization most of the methods use an approximation of the
Hessian [7]. In the following we present different possi-
bilities for approximating the Hessian by a positive definite
matrix Ĥ.

Steepest-Descent The Hessian is approximated by the
identity Ĥ = α · I, with α the step length, and consequently
only considers a first-order Taylor expansion ofE. The con-
vergence is linear.

α · hSD = −J>E(x) x← x ◦ exp(hSD)

Gauß-Newton The approximation of the Hessian for
Gauß-Newton is based on a linear approximation of the
components of f in a neighborhood of x. For small ||h||
we obtain from the Taylor expansion:

f(x ◦ exp(h)) ≈ f(x) + Jf (x) · h. (15)

For notational ease we often write f instead of fi,j when no
reference to the images i and j is necessary. Setting this
linear approximation in our cost function E as defined in
equation (11) gives:

E(x ◦ exp(h)) ≈
∑
i 6=j

1
2
||fi,j(x ◦ exp(h))||2 (16)

=
∑
i 6=j

1
2
fi,j(x ◦ exp(h))>fi,j(x ◦ exp(h)) (17)

=
∑
i 6=j

(
Fi,j(x) + h>J>fi,j

fi,j +
1
2
h>J>fi,j

Jfi,j
h
)
. (18)

By comparison with Equation (12), and considering the gra-
dient JF = J>f f , we can see that the Hessian is approxi-
mated by Ĥ = J>f Jf .

We approximate the global Gauß-Newton step hGN by
the pairwise optimal steps hGN

i,j , analogously to Newton-
Raphson, see equation (14). This leads to the update:

(J>fi,j
Jfi,j )hGN

i,j = −J>fi,j
fi,j x← x ◦ exp(hGN)

with hGN =
[∑

i hGN
i,1 , . . . ,

∑
i hGN

i,n

]
. Gauß-Newton has

only in specific cases quadratic convergence [7, 2].

ESM The efficient second-order minimization procedure
originally comes from the field of vision-based control [2].
It is an extension of GN and incorporates further knowledge
about the specificity of the optimization problem to achieve
better results.

More precisely, ESM uses the fact, that when the im-
ages are aligned with the optimal transformation xopt, the
images and therefore also their gradients should be very
close to each other. This can be used to ameliorate the
search direction of the Newton methods. For the standard
Newton-Raphson method, the first and second order deriva-
tives around 0 are used to build a second-order approxi-
mation, see Equation (13). The Gauß-Newton method ne-
glects the second derivative and thus can only build a first-
order approximation. In the ESM, the first-order derivatives
around 0 and xopt are used to build a second-order approxi-
mation without the necessity of a second-order derivative.

To deduce the ESM, we start with a second-order Taylor
approximation of the function f :

f(x◦exp(h)) ≈ f(x)+Jf (x) ·h+
1
2
h> ·Hf (x) ·h. (19)

Subsequently, we do a second Taylor expansion around x,
but this time of the Jacobian of f :

Jf (x ◦ exp(h)) ≈ Jf (x) + Hf (x) · h. (20)

Plugging this first-order series in the approximation shown
in equation (19) we get the second-order approximation:

f(x◦exp(h)) ≈ f(x)+
1
2

[Jf (x)+Jf (x◦exp(h))]h. (21)

Comparing this equation with equation (15) shows the
similarity between the Gauß-Newton and ESM procedure.
For the development of the update rule we proceed therefore
analogously to Gauß-Newton. The only difference is the
usage of JESM

f = 1
2 (Jf (x) + Jf (x ◦ exp(h))) instead of

only Jf (x). Leading to an approximation of the Hessian by
Ĥ = JESM>

f JESM
f . The compositional update is:(

JESM>
fi,j

JESM
fi,j

)
hESM

fi,j
= −JESM>

fi,j
fi,j x← x◦exp(hESM)

with hESM =
[∑

i hESM
i,1 , . . . ,

∑
i hESM

i,n

]
. ESM has at least

quadratic convergence [2].



3.3. Gradient Calculation

In the last section, we introduced the gradients JE , Jf ,
and JESM

f without further explaining their calculation. This
will be the subject of this part, where we also want to fo-
cus on how the gradient calculation changes for different
similarity measures.

Steepest-Descent We begin with the gradient for the gen-
eral cost function E by considering only one moving image
at a time. W.l.o.g., we assume Ii as fixed and Ij as mov-
ing image leading to Fi,j(x ◦ exp(h)) = SM(Ii(x), Ij(x ◦
exp(h)), with SM a pair-wise similarity measure. More
precisely we would have to write Ij(xj ◦ exp(hj)) but we
continue with the relaxed notation because it should not lead
to ambiguities. The gradient has then the form:

JE(x) =
∂E(x ◦ exp(h))

∂h
=
∑
i 6=j

∂Fi,j(x ◦ exp(h))
∂h

=
∑
i 6=j

∂SM(Ii(x), Ij(x ◦ exp(h)))
∂h

(22)

=
∑
i 6=j

∂SM(Ii, I)
∂I

∣∣∣∣
I=I↓j

∂Ij(w(x); q)
∂q>

∣∣∣∣
q=p

∂w(y; p)
∂y>

∣∣∣∣
y=Θ(Id)

∂Θ(exp(hklk))
∂hk

∣∣∣∣
hk=0

=
∑
i 6=j

∇SM(Ii, I
↓
j ) · ∇I↓j · Jw ·Θ(l) (23)

with setting I↓j = Ij(x ◦ exp(h)) and Ii = Ii(x). ∇SM is
the derivative of the used similarity measure, ∇I↓j the gra-
dient of the transformed image I↓j , [Jw]p the derivative of
the transformation, formulated in the Euclidean embedding
space, which depends only on the homogeneous coordinates
of the considered voxel p = [x, y, z, 1]> (3× 12 matrix):

[Jw]p =
∂w(Θ(x); p)
∂Θ(x)

∣∣∣∣
x=Θ(Id)

=

 p> 0 0
0 p> 0
0 0 p>


and Θ(l) stacks the basis vectors of se(3) expressed in the
Euclidean embedding space (12× 6 matrix):

Θ(l) = [Θ(l1), . . . ,Θ(l6)]

with the embedding Θ from the Lie group SE(3) to the Eu-
clidean space R12, SE(3)→ R12, x 7→ Θ(x).

Gauß-Newton For the derivation of the gradient Jf ,
which is part of the Gauß-Newton optimization, we have
to guarantee that the cost function fulfills further presump-
tions; the Gauß-Newton procedure was deduced by start-
ing at a least-squares problem E(x) =

∑
i 6=j

1
2 ||fi,j(x)||2,

see equation (11). When considering SSD we can simply
set E(x) =

∑
i 6=j SSDi,j(x), since SSD is intrinsically a

least-squares problem.
This is not the case for other similarity measures like

NCC, CR, and MI. In order to ensure the least-squares na-
ture, we square the similarity measures, leading to E(x) =∑

i 6=j SM2
i,j , with SMi,j = SM(Ii, I

↓
j ). Obviously, opti-

mizing the squared similarity measure has far-ranging con-
sequences, which we investigate further in section 3.3.1.
The gradient Jf at a certain voxel p in the grid is then cal-
culated as:

Jfi,j
(x) =

∂fi,j(x ◦ exp(h))
∂h

∣∣∣∣
h=0

(24)

=
∂SM(Ii(x), Ij(x ◦ exp(h)))

∂h

∣∣∣∣
h=0

(25)

= ∇SMi,j · ∇I↓j · Jw ·Θ(l). (26)

ESM The last gradient that remains is JESM
f for the ESM.

Here we also consider the squared similarity measures like
for GN. The calculation of JESM

f is difficult because part of
its calculation is Jf (x ◦ exp(h)), which depends on h that
we want to solve for. Taking the optimal transformation
xopt = x◦exp(hopt) that is reached after the optimal update
step hopt, the main assumption of ESM is that the gradi-
ent of the perfectly aligned image Ij(x ◦ exp(hopt)) can be
approximated by the gradient of the fixed image Ii(x), so
∇Ij(x ◦ hopt) ≈ ∇Ii(x), leading to

Jfi,j (x ◦ exp(hopt)) ≈ ∇SMi,j · ∇Ii · Jw ·Θ(l). (27)

Obviously, this only makes sense for images of the same
modality. Considering the definition of the gradient JESM =
1
2 (Jf (x) + Jf (x ◦ exp(h))), and equations (26) and (27),
we finally get:

JESM
fi,j

(x) =
1
2
· ∇SMi,j · (∇Ii +∇I↓j ) · Jw ·Θ(l). (28)

3.3.1 Gradient of Similarity Measures

As mentioned in the last section, we optimize the squared
similarity measure for normalized cross-correlation (NCC),
correlation-ratio (CR), and mutual information (MI) to en-
sure the least-squares nature of the optimization problem.
For sum of squared differences (SSD) this is not neces-
sary. The interesting question is what the consequences
are by optimizing the squared function instead. Assum-
ing a function φ and its squared version Φ = φ2. The
first and second derivatives of Φ are Φ′ = 2 · φ · φ′ and
Φ′′ = 2 · (φ′)2 + 2 · φ · φ′′. Problematic is the introduction
of new extrema for φ = 0 and the change of their type for
φ < 0. NCC, CR, and MI have a lower bound, which is -1
and 0, respectively. To avoid these optimization problems,
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Figure 1. Plot of the average residual error for each iteration step for SSD, CR, and squared CR. Comparing CR and squared CR shows the
much better performance of GN and ESM. ESM converges the fastest and leads to the smallest residual error.

we can simply add a constant ν to the similarity measures
SMi,j + ν, to guarantee that they are in the positive range.

We list the actual derivatives of the similarity measures
in the supplementary material. Note that for the calcula-
tion of the update h of the least-squares problems, either an
LU- or Cholesky-decomposition could be used on the nor-
mal equations (J>f Jf )h = −Jf f , or a QR-decomposition
on Jfh = −f . Since the normal equations worsen the nu-
merical condition of the problem, the QR-decomposition
presents the stabler choice.

4. Experiments
The experiments were conducted on four 3D ultrasound

acquisitions from a baby phantom, having a resolution of
64 × 64 × 64 voxels, see Figure 3. The registration of ul-
trasound images is challenging because of the degradation

with speckle noise and the viewing angle dependent nature
of the volumes. We displaced the volumes randomly from
the correct position, guaranteeing an accumulated residual
error of 30 over all the volumes. We weight 1mm equal to
1◦ to make translational and angular displacement from the
ground truth comparable. Starting from the random initial
position we run the registration 100 times for each configu-
ration to assess its performance.

In Figure 1 and 2, the averaged residual error is plot-
ted with respect to the iteration number. For SSD, see Fig-
ure 1(a), we only have one plot because we do not have to
consider the squared variant of it, like already mentioned.
The best performance was obtained with ESM, leading to
the fastest convergence. But also the Gauß-Newton method
lead to a robust convergence. The gradient-descent did not
perform well. Although it seems to appraoch the correct
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Figure 2. Plot of the average residual error for each iteration step for NCC, squared NCC, MI, and squared MI. The convergence of GN
and ESM is much better for the squared similarity measures. ESM is converging the fastest.

alignment nicely at the beginning, it diverges into another
optimum. In the table in Figure 1(b), the number of regis-
trations that diverged are listed. We consider a registration
diverged, when the residual error after 30 steps is larger than
half the initial error.

For CR, see Figure 1(c), the results for GN and ESM
are not good. All of the 100 runs diverged. SD, although
slower, performed much better. The situation changes a
lot, when optimizing the squared function, see Figure 1(d).
The ESM quickly approaches the correct alignment and al-
though it diverges a bit afterwards, the error stays below 5.
Also GN improves, but the result is still not good. We also
plot the curve for SD as reference, although it is the one of
CR, because we do not use the squared variant for SD.

For NCC and MI, see Figure 2, the situation is pretty
similar to CR. The performance of GN and ESM when

using the non-squared similarity measures is insufficient,
leading to a high divergence rate. The situation improves
enormously when optimizing the squared function instead.
ESM always performs better than GN, both, with respect
to speed and robustness. Furthermore, the performance of
SD is interesting. Although the convergence is slower, com-
pared to the others, it is in most cases robust.

All the registrations were performed on an Intel dual-
core 2.4 GHz processor having 2 GB of RAM. The time for
one registration, where we allowed for 30 iterations, was
below one minute.

5. Discussion

The experiments show the good performance of simulta-
neous registration using the APE framework and gradient-



Figure 3. Mosaic of baby phantom from 4 acquisitions.

based optimization. The performance of the optimization
methods, however, depends on the chosen similarity mea-
sure. In our experiments, the squared versions of NCC, CR,
and MI performed better for GN and ESM.

For all measures, the fastest approximation to the correct
results are obtained with ESM. In most cases GN was faster
than SD. Using SD has the additional drawback that the step
length α has to be set manually, when no line search is used,
which would require further evaluations of the expansive
cost function. But surprisingly most of the graphs are not
monotonic. Normally, one would expect strictly monotoni-
cally decreasing graphs like we obtained it for GN in combi-
nation with SSD; approaching the ground truth further with
each iteration until the convergence is achieved. In most
cases, the graphs are increasing to the end. For ESM the
increase is pretty low, though.

We see the reasons for the increase, one the one hand,
in the averaging over the 100 registrations, thus diverg-
ing algorithms lead to a large residual error that is aver-
aged over. On the other hand, we see the reasons in the
complex registration scenario. Even though the structures
seem clear, these are still ultrasound volumes we are deal-
ing with, which are inherently contaminated by speckle pat-
terns. This has consequences on the cost function, and more
importantly on the gradient calculation, making it a hard
registration problem. ESM is more robust in such a noisy
scenario because the gradient information of both images
are considered.

6. Conclusion
We presented further insights about multivariate similar-

ity measures and optimization methods for simultaneous
registration of multiple images. First, we deduced APE
from a ML framework and showed its relation to the con-
gealing framework. This required an extension of the con-
gealing framework with neighborhood information. Sec-
ond, we focused on efficient optimization methods for APE.
We started the deduction of the optimization methods from
the same Taylor expansion, to provide the reader a good
overview of the methods and further insights into the rela-

tively unknown ESM. We also presented the optimization
of intrinsically non-squared similarity metrics in a least-
squares optimization framework. Our experiments showed
a superior performance of ESM with respect to speed and
accuracy.
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