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Abstract

We report on a new single PC based stereoscopic video-
see-through AR system which we developed for medical ap-
plications. Recent advances in graphics hardware, memory
bandwidth, and computing power of standard PCs made
it possible that this system outperforms an earlier version
which included 3 networked SGI workstations. We de-
signed and implemented a new AR software platform. It
is component based and—in conjunction with XML config-
uration files—provides efficiency, modularity, and extensi-
bility for fast and robust prototyping of AR applications.
The system has a compelling real-time performance with
30 frames/second, displaying stereoscopic augmented video
views with XGA resolution.

1. Introduction

AR visualization in the medical field has first been sug-
gested and investigated at UNC for ultrasound-guided pro-
cedures. Our AR system [3, 2] is based on a stereoscopic
head-mounted display (HMD) of the “video-see-through”
variety as pioneered at UNC [4]. A stereo pair of video cam-
eras serves as artificial eyes, and the live stereoscopic video
view of the real scene is overlaid with computer graphics in
real-time. Figure 1 shows an example of a phantom object
which is augmented with data extracted from a CT scan.
Our AR system’s special feature is the use of single cam-
era tracking of retroreflective markers with a head-mounted
tracking camera, which is rigidly attached to the two cam-
eras that capture the stereo view of the scene [5]. The sys-
tem has been tested in a variety of medical scenarios.

The centerpiece of our AR system is still the video-see-
through HMD as originally described in [3]. However, we
completely redeveloped the underlying AR system to make
it more practical, efficient, modular, and extensible. This
comprised major changes in our computer hardware as well
as the AR software structure.

2. Single PC Based AR System Architecture

Processing the three incoming video streams with 30
Hz frame rate and realizing a correspondingly fast stereo-

Figure 1. Phantom head augmented with data
extracted from a CT scan.

scopic graphics output in XGA resolution puts high de-
mands on the computational bandwidth and architecture of
the AR system. We built our first AR system by using three
networked SGI visual workstations [3]. Recent advances
in graphics hardware, memory bandwidth, and computing
power of standard PCs made it possible for us to transfer
the technology of our AR system from 3 SGI PCs to a single
PC with dual monitor graphics support. Figure 2 shows the
structure of the new system on the left. The graphics sys-
tem (Nvidia Quadro4 900 XGL) is capable of generating a
single monoscopic AR image in 5–15 milliseconds, depen-
dent on the complexity of graphics to be rendered on top of
the video image, which itself is uploaded into the graphics
memory and scaled from VGA to XGA format as part of
the rendering process. This speed is necessary to achieve
real-time performance of 30 Hz, where each stereo image
has to be processed and visualized within 33 milliseconds.

The PC (Dell workstation with dual Xeon 1.7 GHz pro-
cessor) has 2 PCI buses, which—equipped with 3 frame
grabber cards—provide enough bandwidth to transfer all
three video streams to the main memory in real-time. The
three cameras are genlocked so that the video streams ar-
rive at the computer in a synchronized way. Since we pre-
serve the synchronization of the incoming frames, there is
no time lag between video and augmenting graphics, which
contributes to a very believable AR perception.
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Figure 2. Left: Scheme of the new single PC based AR system with 3 NTSC camera inputs and 2 XGA
outputs. Right: Software component structure of the extensible AR system.

3. Component AR Software Architecture

A powerful and flexible AR system requires a good ab-
straction hierarchy during the development of reusable AR
software components. Basic concepts and program struc-
tures are topics of ongoing research, e.g. [1]. We designed
a modular, extensible, and very efficient component based
AR software library. The major issues were:

• Easy integration of new components into the system,
• Ability to configure each component independently,
• Defining AR application structures on a higher level.

By component we generally mean some piece of code that
fulfills a specific task, e.g. providing an interface to a cer-
tain hardware device like a camera, a video file on the hard
drive, or an external tracker, executing a computer vision
algorithm, rendering some part of a virtual 3D scene, or
dealing with user interactivity. The definition of an AR ap-
plication structure should be based on a certain abstraction
level of the incorporated components.

The principal idea behind this programming environ-
ment is depicted in Figure 2 on the right. The right side
of the chart illustrates how the components of an AR appli-
cation interact with each other by using signals and slots,
which permits real information encapsulation, a fundamen-
tal concept of component programming. For example, if
a component changes states it can emit according signals
without knowing which other components are receiving
them and thus act on them. In Figure 2 a signal/slot connec-
tion is represented by an arrow from the component emit-
ting the signal to the component receiving the signal (with
its slot). The abstract interface to the signals of a compo-
nent is indicated by a broken framed box, e.g. ‘VideoInput’.
The actual implementation of the component is specific and
symbolized by a closed framed box, e.g. ‘Frame grabber 2’.
On the one hand, this level of abstraction allows an inde-
pendent generation and configuration of each specific com-
ponent, and on the other hand allows the definition of the
AR application structure on an abstract level.

XML is utilized to configure the component attributes
and the application structure. One or more XML files define
the properties of the particular components. The structure
of the AR application is specified in an independent XML
file by using the abstract interfaces of the components. This
separation allows use of the same AR application structure
on different systems or algorithms. For instance, one might
want to use a certain AR application on a laptop for demon-
stration by using video files and on a real-time system by
using live connected cameras. In this case, one loads a dif-
ferent XML component configuration file—the XML appli-
cation structure file is the same in both cases.

Using XML has the advantage that there are many exter-
nal tools available to create and edit those files. Thus, XML
serves as a meta-language on the one hand to easily create
and maintain AR applications and on the other hand to con-
figure each single component. The actual components and
the frame application are efficiently implemented with C++.
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