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Abstract. Acquisition geometries for tomographic reconstruction are
usually densely sampled in order to keep the underlying linear system
used in iterative reconstruction as well–posed as possible. While this
objective is easily enforced in imaging systems with gantries, this issue
is more critical for intra–operative setups using freehand–guided data
sensing. This paper investigates an incremental method to monitor the
numerical condition of the system based on the singular value decompo-
sition of the system matrix, and presents an approach to find optimal
detector positions via a randomized optimization scheme. The feasibility
of this approach is demonstrated using simulations of an intra–operative
functional imaging setup and actual robot–controlled phantom experi-
ments.

1 Introduction

Three–dimensional imaging modalities such as X–ray CT, PET or SPECT have
turned out to be indispensable tools for diagnosis in modern medicine. Their
size requirements due to a big imaging gantry, however, prevents wide-spread
use also in intra–operative therapy. In the operating room, the state of the art
of imaging mostly encompasses the use of one– and two–dimensional modalities
like gamma probes or ultrasound, possibly combined with previously acquired
volumetric images.

A possible solution to provide intra–operative volumetric imaging are space–
efficient acquisition setups using small detectors guided by humans (e.g. freehand
ultrasound or freehand SPECT [8]) or robots (e.g. laparoscopic ultrasound with
the Da Vinci robot [6] or C–arm X–ray imaging [2]), and using these measure-
ments for tomographic reconstruction. In this case, it is essential to quickly
generate useful acquisition trajectories such that a minimal number of acqui-
sitions yields the best possible sampling of the region of interest, and thus an
optimal reconstruction for the task at hand.

In this paper we will present an incremental optimization approach based
on the singular value decomposition of the system matrix to compute optimized
acquisition trajectories. The feasibility of this approach is demonstrated using
simulations of an intra–operative functional imaging setup and actual robot–
controlled phantom experiments.



2

1.1 Terminology

We consider a series expansion approach [4] for iterative reconstruction. In a
volume of interest Ω ⊂ R3 the unknown signal f : Ω → R is approximated
using a set of n basis functions bi : Ω → R, such that f ≈

∑n
i=1 xibi with a

corresponding coefficient vector x = (xi) ∈ Rn. x is informally referred to as the
reconstruction of f . Popular choices for basis functions are for example voxels,
Kaiser–Bessel functions, or wavelets.

The set of measurements from the detector is denoted m = (mj) ∈ Rm. In
order to relate these sensor readings with the image function f , we define physical
measurement models Mj that map f to the corresponding value Mj(f) = mj .
In the case of X-ray CT, for example, the Radon transform is a suitable model.

Assuming the modelsMj are linear, the series expansion approach combines
the discretization and the physical model:

mj =Mj(f) ≈Mj

(∑
i

xibi

)
=
∑
i

xiMj(bi).︸ ︷︷ ︸
=: aji

For a specific measurement modelMj encapsulating a sensor pose, the aji form
a unique row vector aTj = (aji) ∈ Rn describing the coverage of each of the n
basis functions when viewed from the respective sensor’s perspective, and we get
mj = 〈aTj ,x〉 in case of a good reconstruction x.

Using all m measurements mj , this leads to a linear system Ax = m with
the system matrix A = (aji) ∈ Rm×n. A is generally not invertible, and to
compute a reconstruction x we solve a least–squares problem instead (typically
with iterative methods):

min
x

1
2‖Ax−m‖2.

1.2 Quality of Acquisition Geometry

In devices using imaging gantries, the acquisition protocol is designed such that
the solution of the linear system is as well–posed as possible. For instance in
X–ray CT, the X–ray source/detector pair rotates around the region of interest
Ω, and measurements are being collected on an arc–shaped trajectory of at least
180◦.

In case of freehand– or robot–guided data acquisition, however, the acquisi-
tion geometry is very sparsely and irregularly sampled, leading to very ill–posed
problems. Fewer available measurements often result in under–determined sys-
tems, where a good sampling of the region of interest is mandatory. As communi-
cating accurate instructions — particularly when orientation is involved — to a
human operator is a complex and largely unsolved problem, we restrict ourselves
to robot–controlled acquisitions in this work.

Ignoring application–specific approaches and focusing on a general setting,
some of the approaches to characterize the ill–posedness of a system equation
are:
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1. Column sums [8]. Given m measurements, the linear system effectively con-
tains m dot products between every row of the system matrix and the re-
construction x. Vice versa, the i’th column of the system matrix contains all
the m contributions of the basis function coefficient xi to the measurements.
A low value of the sum over all of column values is consequently an indica-
tor for under–sampling, and enforcing maximal column sums yields better
reconstructions.

2. Singular spectrum of A [5]. Over– and under–determined linear systems are
solved via least squares methods, and the solution is for example obtained
from the normal equation ATAx = ATm. In order for this system to have
full rank, and thus a well–defined solution, the eigenvalues of ATA need to be
of sufficiently large magnitude. This spectrum is exactly the set of singular
values of A, and optimizing them accordingly during the acquisition improves
the numerical condition of the system.

3. Null–space of A [9]. If x is a solution to Ax = m, and if x̃ is in the null–space
of A, i.e. x̃ is a solution to Ax̃ = 0, then x+ x̃ is also a solution of Ax = m.
To gain a unique solution for the inverse problem, the null–space has to be
reduced to {0}, which is typically not feasible. However, if all null–space
vectors have a common sub–region of zero values, that region is uniquely
determined by the acquisition geometry.

2 Methods

We generate a trajectory by iteratively selecting the best next sensor perspective
out of a set of candidates. Such an approach requires two major components,
generation of candidate perspectives, and quality estimation of each single can-
didate.

Using the notation from above, each sensor location is characterized by a
unique row-vector aT ∈ Rn. Describing the current state after k measurements
by the system matrix A ∈ Rk×n and the measurement vector m ∈ Rk, we are
interested in finding an additional perspective, such that extending the linear
system by the corresponding row aTk+1 and measurementmk+1 yields an equation

A′x = m′ or

(
A

aTk+1

)
x =

(
m

mk+1

)
with a better quality estimate η(aT ).

2.1 SVD–based Quality Estimation

In order to specify this aim accurately, we use a quality measure based on the
singular value spectrum. Ideally, in comparison to A, the new system matrix A′

will exhibit larger singular values. We enforce this objective by selecting new
sensor poses that maximize the sum of singular values

η(aT ) :=

k+1∑
i=1

σ′i
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where σ′1 ≥ · · · ≥ σ′k+1 ≥ 0 are the singular values of the extended matrix A′,

and aT is constrained to be generated by a legal sensor perspective.

2.2 Incremental Computation of the SVD

Computing the singular values of a matrix is a numerically expensive opera-
tion, in particular considering the size of a typical system matrix. Due to the
incremental nature of the system, it is reasonable to use a known decomposi-
tion of A when computing the factors of the extended matrix A′ during the
step k → k+1. We focus on underdetermined systems (k < n), and use the
economy-sized definition A = UDV T

1 , where U ∈ SO(k) is an orthogonal ma-
trix, D = diag(σ1, . . . , σk) ∈ Rk×k a diagonal matrix holding the singular values
σ1 ≥ · · · ≥ σk ≥ 0, and V1 ∈ Rn×k a matrix with orthonormal columns.

Updating the SVD after adding a single row or column to a matrix is a prob-
lem already investigated in the fields of Data Mining, Latent Semantic Analysis,
and also Computer Vision. There are several approaches, depending on whether
exact values are required or whether approximations suffice. Also, some applica-
tions use the dominant singular values only, and omit the smaller ones entirely.

In our case, we are interested in the full spectrum of the squared system
matrix ATA, and we use the exact method presented by Gu and Eisenstat [3],
including the optimizations proposed by Chetverikov and Axt [1]. Using A =
UDV T

1 , we can preliminarily decompose A′ into

A′ =

(
A
aT

)
=

(
U 0
0T 1

)
︸ ︷︷ ︸

=: M

(
D 0
zT ζ

)
︸ ︷︷ ︸

=: L

(
V T
1

vT

)
︸ ︷︷ ︸
=: NT

=

(
UDV T

1

zTV T
1 + ζvT

)
,

where z = V T
1 a ∈ Rk is the projection of a into the subspace defined by the rows

of V1. The other unknowns, ζ ∈ R and v ∈ Rn, can be solved from the equation
w := a−V1V T

1 a = ζv which is obtained from the last row of the decomposition
of A′. If the additional vector aT is linearly independent of the rows of A, v is
orthogonal to all columns of V1, as required. Computing the SVD of the inner
— relatively small — square matrix L ∈ Rk×k using standard methods yields
the decomposition L = ŨD̃Ṽ T with both, Ũ , Ṽ ∈ SO(k) orthogonal matrices.
Using this and the preliminary decomposition A′ = MLNT , the economy-sized
SVD of A′ = U ′D′V ′T1 is given by U ′ = MŨ , D′ = D̃, and V ′ = NṼ .

We have extended this algorithm to support the addition of linearly depen-
dent rows. This situation appears to be uncommon in other settings where real–
world measurements are used, but may appear when searching for additional
sensor poses in a structured way. In this case, ‖w‖ ≈ 0 and ζ ≈ 0, as expected,
but v is usually no longer orthogonal to all columns of V1 — leading to errors
in the following step k+1→ k+2. We detect this, and reinitialize v by creating
an orthogonal vector by means of applying the Gram-Schmidt orthogonalization
procedure to a random initial vector.

Please note that these equations are valid for underdetermined systems only,
as we expect such a setting in our application of functional imaging. Equivalent
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rules can be developed for all other linear systems in a very similar way, but
we omit them here for brevity. The reader is kindly referred to the two original
publications [3, 1] for in–depth explanations and analyses.

2.3 Optimization and Trajectory Generation

Given a current system matrix A and a set of possible successor poses C(1), we
can now select the best next pose out of that set using the techniques presented
above. The remaining problem is that of generating that candidate set.

Given the singular value–based energy measure η(aT ), an optimal candidate
row aT will be as orthogonal as possible to the existing rows, thus optimizing
the coverage of the basis functions bi. Such a position is typically rather far away
from the current pose, and a global search will be required to find it.

Identifying an orthogonal row, however, is a complex operation, but random
selection has been shown to be a good replacement with high average success
rate [7]. We consequently select candidate positions arbitrarily within a space
of possible poses. The latter is used to impose constraints caused by geometric
limitations, maximal measurement distances, etc.

The entire optimization procedure will thus start at an initial location given
by row-vector aT(0) and the corresponding system matrix A(0) = (aT(0)) ∈ R1×n

with known SVD. With C(1) denoting the randomly selected candidate set, the
second sensor perspective is chosen as

aT(1) = arg max
aT∈C(1)

η(aT ),

yielding an extended system matrix A(1) ∈ R2×n with maximal sum over the
singular value spectrum. That process is repeated until the required number of
poses has been reached.

Such a random path will obviously contain large hops, and to minimize the
acquisition path length and time to scan it is essential to post–process it. We use
a two–stage approach to sort the poses into a useful sequence, first partitioning all
positions into local clusters, and then reordering each of them individually using
an approximative Traveling–Salesman–solver based on the Minimum Spanning
Tree heuristic. If steps of large size remain, we insert ‘safe positions’, and recom-
bine the partitions, yielding a smooth acquisition path that can for example be
traced by a robot in reasonable time.

3 Experiments and Results

3.1 Experiments

In order to test the optimization procedure, we created a Matlab script comput-
ing trajectories. Path planning has been performed on a laptop computer with
an Intel Core i7 CPU with 4 processing cores at 2.3 GHz and 8 GB of memory.
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The experiments are based on an intra–operative functional imaging setup
similar to freehand SPECT [8], using a tracked gamma detector to generate local-
ized reconstruction of a radioactivity distribution. Assuming a region of interest
surrounded by a bounding box of (10 cm)2 × 5 cm, we used two alternative pa-
rameterizations of two degrees of freedom, generating locations on a hemisphere
around the base plane’s center, then retracting the sensor along that direction
to reach the surface of the bounding box. The first parameterization used spher-
ical coordinates, the other directly created unit directions in Cartesian space.
Of the six sides of the cuboid, we only measure on the top plane, as well as on
two orthogonal side planes, thus imitating the spatial constraints of an intra–
operative situation where patient body and operating bed place constraints on
accessibility.

Using a rather coarse discretization of that region of 10 × 10 × 5 voxels, we
were able to generate a path of 300 positions in about 140 seconds. The coarse
discretization is reasonable as the small system matrix shows similar behavior
as observed when working with its full–size equivalent. Furthermore, when using
a robot to traverse the trajectory, additional data can be recorded during the
movements to record considerably more than just 300 measurements.
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Fig. 1: Evaluation. (1a) Energy curves denote, from bottom up, a human mea-
surement, random sampling with 1 candidate and spherical coordinates (SC),
with 1 candidate and Cartesian coordinates (CC), 5 candidates SC, 5 candidates
CC, 12 candidates SC, 12 candidates CC. (1b) Sampling of the (invisible) region
of interest; acquisition locations on three bounding box planes (red/green/blue
= left/front/top), and robot trajectory (cyan).

3.2 Results

Singular-Values-Spectrum over Path Length In a first experiment, we compared
the energy η(aT ) at different evolution stages for different sampling strategies.
The result is shown in figure (1a). We used candidate sets of size 1, 5, and 12 and
the two mentioned parameterizations. In general, more samples yielded better
results, and sampling in Cartesian space turned out to be slightly superior —
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this parameterization does not show any clustering, as can be observed around
the poles when using spherical coordinates.

We also evaluated the evolution of the energy η(aT ) for a trajectory recorded
while a human performed a standard protocol. In terms of our energy, this path
is the worst, potentially due to the fact that the probe is primarily translated,
while the orientation vector remains almost static for a considerable amount
of time. Also, the number of measurements per side is not proportional to the
surface area.

Simulated Measurements Next, we generated ground truth volumes and simu-
lated measurements, and compared the reconstruction results for several tra-
jectories, generated by humans and the optimization procedure. The recon-
structions were considerably underdetermined (300 measurements for 500,000
unknowns), solved by MLEM [4] (20 iterations), and show SPECT–typical dis-
placement errors. Nevertheless, the reconstructions based on trajectories created
by the proposed method show better separation between the hot spots, and con-
siderably less ‘activity bleeding’. Examples are shown in figures (2a) and (2b).

Real Robot-Guided Measurements Finally, we fed our trajectories to a robot
arm guiding the gamma detector. An example image showing the partitioned
sets of probe positions, and the robot trajectory (omitting the intermediate safe
positions) is shown in figure (1b). Results are given in figures (2c), (2d).

4 Discussion and Conclusion

We have presented a method to generate an optimized trajectory for tomographic
reconstruction in intra–operative settings. This optimality is defined based on
the singular value spectrum, and the corresponding measure is computed using
fast incremental updates of the SVD. Since this only depends on the system
matrix, this approach is applicable for any imaging modality. Even though our
experiments used a regular bounding box, more complicated geometries given as
a polygon mesh, for instance obtained by laser–scanning the patient, could also
be used to generate trajectories.

Several improvements can be made. Runtime can be improved by an efficient
implementation as well as by exploiting the ‘broken–arrowhead’ structure of the
inner matrix while computing its SVD, thus enabling the computation of longer
trajectories. Furthermore, it would be interesting to investigate other energy
measures based on the kernel or column sums.

The most interesting point will be to convert this approach to a real–time
path planning application considering the kinematics of a robot. While the en-
ergy measure is sufficiently fast, a näıve local search for candidates is prone to get
stuck at local maxima. A strategic planner will need to consider now what other
positions to visit later, while still guaranteeing both full coverage and smooth
motion.
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(a) Human (b) SVD-based (c) Robot 1 (d) Robot 2

Fig. 2: Reconstruction results, looking top–down, with blue circles denoting
ground truth locations of activity seeds. (2a)–(2b) show the logarithms of the
per–column standard deviations of the intensities in a simulated setting. The
path generated by our method yields a better separation and improved circum-
scription of the hot regions. (2c)–(2d) show the results of two real acquisitions
performed by a robot following a trajectory created by our method.
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