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Abstract. We propose a novel alternative approach to estimate phar-
macokinetic (PK) parameters of dynamic contrast enhanced (DCE)-
MRI. Our approach leverages machine learning field and mainly targets
to automatically learn temporal patterns of the voxel-wise concentration-
time curves (CTCs) from a large amount of training samples in order to
make accurate parameter estimations. We consider the estimation of pa-
rameters as a regression problem and specifically use Random Forest
(RF) regression. We demonstrate its potential and utility to improve the
conventional model-fitting based quantitative analysis of DCE-MRI es-
pecially in various noise conditions, and validate our method on clinical
brain stroke datasets.

1 Purpose

The T1-weighted dynamic contrast enhanced (DCE)-MRI is an imaging tech-
nique that provides a quantitative measure of pharmocokinetic (PK) parame-
ters, such as vascular permeability (Ktrans) and fractional plasma volume (v

p

)
[4]. Tracer kinetic (TK) modeling [10,8,9] is usually applied on the dynamic
image series to estimate these physiological parameters which can be primarily
used for diagnostic purpose in tumor and stroke studies. One of the key limita-
tion of TK modeling methods is that they are simply based on the fitting of the
voxel-wise PK parameters to contrast agent concentration-time curves (CTCs).
However, the acquired voxel-wise CTCs are generally very noisy, hence the model
fitting may likely produce substantial errors in PK parameter mapping [5]. In
this work, we demonstrate a machine learning based approach to identify and
learn the important features in temporal CTCs to directly output more robust
estimates of PK parameters in DCE-MRI.
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2 Methods

Dataset. We perform experiments on fully-sampled DCE-MRI datasets ac-
quired from three patients with first clinically evident mild ischaemic stroke.
DCE-MRI was acquired using a 1.5T clinical scanner with a 3D T1W spoiled
gradient echo sequence (TR/TE = 8.24/3.1 ms, flip angle = 12�, FOV = 24⇥24
cm, matrix = 256⇥ 192, slice thickness = 4 mm, 42 slices, 73 sec temporal reso-
lution). The total acquisition time for DCE-MRI was approximately 24 minutes.
Two pre-contrast acquisitions were carried out at flip angles of 2� and 12� to
calculated pre-contrast longitudinal relaxation times (T10).

Preprocessing. To generate noisy data, the noise-free (reference) data was
corrupted by (1) undersampling the k-space, or (2) adding zero-mean Gaus-
sian noise to the image space. Undersampling was retrospectively done in the
k
x

� k
y

plane using a randomized golden-angle sampling pattern [11]. Dynamic
image intensities S(r, t) were converted to contrast agent concentration C(r, t) by
the steady-state spoiled gradient echo (SGPR) signal equation [3]. The Parker’s
population-based arterial input function (AIF) [7] was generated to obtain PK
parameters using Patlak model [8].

Random Forest Regression. The parameter estimation task is formulated as
a regression problem which takes the voxel-wise C(r, t) as input and generates
the PK parameters (Ktrans, v

p

) as output. In this work, we adopt the random
forest (RF) regression that has been shown to be e↵ective in a wide range of
classification and regression problems [1,2]. We train a separate RF model to
estimate each PK parameter. The overall regression task is defined as,

M(C(r
i

, t)) = y
i

; i 2 [1, N ], (1)

where y
i

is the target parameter value for voxel i, N is the total number of
training samples (voxels), andM is the trained RF model. The target (reference)
PK parameter values were estimated on noise-free data using Patlak model.

Training-Testing. Training and testing were carried out based on leave-one-
patient-out cross-validation. The RF model M was trained with almost 340K
voxels to learn important features from the input data to attain better parameter
estimation. The pipeline of training-testing of RF model is shown in Figure 1.

Evaluation. The parameter estimates of our RF based method was compared
with the estimations obtained from Patlak model in both noise-free and various
noise conditions. The root-mean-square-error (RMSE) was used for quantitative
evaluations of parameter estimation based on the following formula,

RMSE =

vuut 1

N
i

NiX

i=1

(y
i

� f
i

)2, (2)
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Fig. 1. A diagram illustrating the pipeline of the training and testing procedures of
our method. Each subject’s data is represented with a matrix where each row involves
a concentration-time curve (CTC) per voxel. Training data is created from randomly
selected 12 slices of held-in subject’s data and test data is obtained from randomly
selected 2 slices of held-out subject’s data. A RF model is trained from the training
data and its corresponding target values. Testing is then performed by giving the test
data as input to the RF model which outputs the estimated PK parameters. This
process is repeated 50 times (trials) for each subject to obtain unbiased estimation.

where y
i

is the target value, f
i

is the estimated value, and N
i

is the number of
test samples.

3 Results

Figure 2 shows PK parameter maps estimated from noise-free data. The pro-
posed RF model can yield parameter maps that are highly similar to reference.
This is also evident in Bland-Altman plots shown in Figure 3. From the RMSE
statistics in Figure 3, we can clearly observe that RF model provides more accu-
rate estimation of v

p

than Ktrans. Figure 4 depicts estimated PK maps in various
noise conditions. The proposed RF model is able to mitigate the over-estimation
of parameters that is observable in Patlak model and caused by high level of
noise introduced into the data. Figure 5 quantitatively reveals that RF regres-
sion model achieves lower RMSE of PK parameters with respect to increasing
noise levels, therefore it appears more robust to noise than Patlak model.
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Fig. 2. PK parameter maps estimated by RF model on noise-free data taken from each
subject. The reference maps are also provided for comparison. In no-noise condition,
the estimated maps by RF model are almost similar with reference maps. This asserts
that it is possible to directly estimate accurate PK parameters of a subject using other
subject’s data with the use of a RF based machine learning approach.

4 Conclusion

We have demonstrated a new machine learning based approach to directly es-
timate PK parameters in DCE-MRI. This approach leverages large cohort of
training data to learn significant characteristics and features of CTCs. Extensive
experiments validated its e�cacy in parameter estimation and robustness to var-
ious noise levels. The proposed method is considerably faster than conventional
model fitting. Training more than 300K samples takes around 5 minutes whereas
testing takes only 1 second per slice. Future studies will involve improving the
estimation performance of RF model for high subsampling rates to potentially
enable accelerated acquisitions of DCE-MRI, and testing it on di↵erent tracer ki-
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Fig. 3. (a) Boxplot displaying the RMSE statistics of PK parameters for each subject
estimated from RF method on noise-free data. (b) Bland-Altman plots and 95% con-
fidence intervals within two black lines for Ktrans (left) and vp (right) parameters of
Subject 1. The RF model yields significantly lower median RMSE and less variance
for vp compared to Ktrans. The di↵erence (bias) between estimated and target values
for both PK parameters are very close to 0. This indicates that estimated parame-
ters by RF model significantly overlap with target values as quantitatively evaluated
with concordance correlation coe�cients (CCCs) displayed at the top-left corner of
Bland-Altman plots.

netic models such as extended Tofts model [10] and two-compartment exchange
model [6].
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Fig. 4. PK parameter maps estimated by RF regression model and Patlak Model in var-
ious noise conditions: (a) Increasing subsampling rates, (b) Increasing Gaussian noise
levels. The reconstruction of undersampled data was performed via direct FFT. The
reference maps are also provided for comparison. The Patlak model usually produces
over-estimated PK paramater regions and corrupted or missing boundaries inside the
brain when the level of the noise introduced into the data is increased. However, RF
model can considerably eliminate these deficiencies and yield parameter maps which
are closer to reference maps. The results demonstrate that RF model is more robust
to noise than Patlak model.
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Fig. 5. Boxplots displaying the RMSE statistics of PK parameters – Ktrans(left), vp
(right) – obtained from our RF regression model and Patlak model on noisy data. The
top plots depict results for increasing subsampling factors whereas the bottom plots
show results for increasing additive Gaussian noise levels. The RMSE statistics are
reported from in total 150 trials of three subjects. The results demonstrate that RF
model mostly produces lower median RMSE compared to Patlak model for both PK
parameters. Another main conclusion is that RF model is more robust to increasing
noise levels rather than subsampling rates.


