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Abstract. Dynamic perfusion magnetic resonance (MR) imaging is a
commonly used imaging technique that allows to measure the tissue per-
fusion in an organ of interest via assessment of various hemodynamic
parameters such as blood flow, blood volume, and mean transit time.
In this paper, we tackle the problem of recovering perfusion MR im-
ages from undersampled k-space data. We propose a novel reconstruc-
tion model that jointly penalizes spatial (local) incoherence on temporal
differences obtained based on a reference image and the patch-wise (non-
local) dissimilarities between spatio-temporal neighborhoods of MR se-
quence. Furthermore, we introduce an efficient iterative algorithm based
on a proximal-splitting scheme that solves the joint minimization prob-
lem with fast convergence. We evaluate our method on dynamic sus-
ceptibility contrast (DSC)-MRI brain perfusion datasets as well as on a
publicly available dataset of in-vivo breath-hold cardiac perfusion. Our
proposed method demonstrates superior reconstruction performance over
the state-of-the-art methods and yields highly accurate estimation of per-
fusion time profiles, which is very essential for the precise quantification
of clinically relevant perfusion parameters.

1 Introduction

Medical diagnosis and research heavily employ perfusion-weighted magnetic res-
onance imaging (MRI) techniques to estimate the blood flow and volume through
examination of the spatio-temporal changes of the signal intensities following the
injection of a blood bolus via exogenous paramagnetic tracers. In neuroimaging,
these techniques have become widespread clinical tools in the diagnosis of stroke
– for the assessment of the tissue at risk –, and the treatment of patients with
cerebrovascular disease. One of the major obstacles in the clinical use of perfu-
sion imaging is the need to track the rapid kinetics of contrast agent (tracer)
uptake for accurate perfusion quantification [6]. Moreover, the short scanning
time available for each frame often results in limited spatial and temporal res-
olution, or poor signal-to-noise ratio (SNR) images. In order to improve the
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spatial or temporal resolution, one widely used approach is to accelerate the
acquisition of each frame through the undersampling of k-space by acquiring
only a subset of k-space lines [3,15]. However, the undersampling often results in
aliasing artifacts in image space and in the context of perfusion MRI, accurate
reconstruction of the complete temporal perfusion signal with its peak and high
dynamics becomes an even more challenging task.

In recent years, various approaches have been proposed to solve the recon-
struction problem in related dynamic imaging tasks, considering, such as piece-
wise smoothness in the spatial domain [17], high correlation and sparsity in
the temporal domain [10,4,3], sparse representations of local image regions via
learned dictionaries [3] and low-rank property of MR sequences in the full spatio-
temporal space [10,14,17]. Although these methods allow highly accurate recon-
structions from fewer k-space data, the main drawback is that their performance
is very sensitive to motion and rapid intensity changes occurring over the du-
ration of image acquisition as encountered in perfusion MRI. In addition, these
methods often result in over smooth and blurry image regions that are lacking
finer details when the acquired data are contaminated with high noise.

In this paper, we integrate two fundamentally different approaches that both
increase the robustness of the reconstruction for perfusion MRI: (i) we enforce
pixel-wise local sparsity constraint on the temporal differences that limits the
overall dynamic of the perfusion time series, (ii) we enforce patch-wise similarity
constraint on the spatio-temporal neighborhoods of whole MR sequence, which
provides smooth spatial image regions with less temporal blurring especially
when there is significant inter-frame motion and noise. We present the main op-
timization problem in a joint formal framework and introduce a new proximal
splitting strategy that benefits from the weighted-average of proximals – thus,
overcome a key limitation of the widely used Fast Composite Splitting Algo-
rithm (FCSA) [9] –, and efficiently solves the joint minimization problem with
fast convergence. The proposed method is validated on different types of MR per-
fusion datasets in comparison with the state-of-the-art methods and extensive
experiments demonstrate the superior performance of our method in terms of
reconstruction accuracy and accurate estimation of perfusion time profiles from
undersampled k-space data even when being presented with high noise levels.

Contributions. Our main contributions are four-fold: (1) We present a new
reconstruction scheme which cannot only produce high-quality spatial images
for dynamic MRI but also enable to reconstruct the complete temporal sig-
nal dynamics for perfusion MRI from undersampled k-space data (Sect. 2). (2)
We introduce an efficient proximal-splitting algorithm based on a generalized
forward-backward splitting scheme [13]. This algorithm provides fast conver-
gence and can be easily applied to various medical image applications that con-
sider optimization problems where the objective function is the sum of several
convex regularization terms (Sect. 3). (3) We demonstrate the efficiency and
effectiveness of our method by comparing with state-of-the-art techniques on
clinical datasets (Sect. 4). (4) Our proposed reconstruction model can enable ac-
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curate quantification of clinically useful perfusion parameters while accelerating
the acquisition through the use of fewer k-space samples.

2 Formulation

For the sake of simplicity, throughout the paper, we consider the reconstruction
problem only on 2D+t data (i.e., on a single slice followed over time), however
the idea presented here can also easily be extended to 3D+t data. We assume
that X3D ∈ CM×N×T is a 2D perfusion image series represented as a spatio-
temporal 3D volume. Let xt ∈ CM×N denote one perfusion MR frame at time t
with M ×N pixels, yt is the corresponding undersampled k-space measurements
of xt, and T = {1, 2, ..., T} is the set of frame number indices in the sequence.
The main goal is to recover all xt’s from the collected k-space measurements yt’s.
The observation model between xt and yt can be mathematically formulated as

yt = Rt(F2Dxt + η) (1)

where Rt denotes the undersampling mask to acquire only a subset of k-space,
F2D is the 2D Fourier Transform operator and η is additive Gaussian noise in k-
space. We also denote the partial 2D Fourier operator for frame t as Ft = RtF2D,
and stack the Ft for all frames of the sequence as Fu = diag{F1,F2, ..,FT }.

We propose solving the following optimization problem for the reconstruction
of perfusion MR sequences:

X̂ = arg min
X

{
1

2
‖FuX − Y ‖22 + λ1G1(X) + λ2G2(X)

}
(2)

where X ∈ CMN×T denotes the whole perfusion MRI sequence and Y ∈ CMN×T

represents the collection of all the k-space measurements. λ1 and λ2 are the
tuning parameters for two regularization terms.

Local (G1) regularizer: The first regularization term in (2) penalizes the sum of
spatial finite differences on the difference images calculated based on a reference
for every image frame xt ∈ CM×N , and this term is named as dynamic total
variation (TV) [4] and for the whole MR sequence, it can be defined as

G1(X) =
∑
t∈T

M×N∑
n=1

√
(∇x(xt − x̄)n)

2
+ (∇y(xt − x̄)n)

2
(3)

where x̄ is the reference image computed by averaging all the frames in MR
sequence, ∇x and ∇y represent the finite-difference operators along the x and y
dimensions, respectively. The intuition behind using dynamic TV over standard
TV is that it is better adjusted to the variation in time, and this regularizer
serves as a penalty on the overall dynamic of the temporal perfusion signal.

Nonlocal (G2) regularizer: The second regularization term in (2) penalizes
the weighted sum of `2 norm distances between spatio-temporal neighborhoods
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(patches) of MR sequence, and this penalty term can be specified by [16]

G2(X) =
∑

(px,py,pt)∈Ω

∑
(qx,qy,qt)∈Np

w(p, q)‖Pp(X3D)− Pq(X3D)‖22 (4)

where p = (px,py,pt) and q = (qx, qy, qt) are two voxels, and the voxel of
interest is p ∈ Ω, where Ω = [0,M ]× [0, N ]× [0, T ]. The term Pp(X3D) denotes a
spatio-temporal 3D patch of the MR sequence centered at voxel p. We represent
Np as a 3D search window around voxel p, and the size of the patch should
be smaller than the size of the search window. We simply denote Np and Nw
as the size of a patch and search window, respectively. The weights w(p, q) are
determined based on `2 norm distance between the patches and calculated as

w(p, q) = e−
‖Pp(X3D)−Pq(X3D)‖22

h2 (5)

where h is a smoothing parameter controlling the decay of the exponential func-
tion. The use of exponential weighting ensures that a voxel which is more similar
to the voxel of interest in terms of Euclidean distance receives higher weight.

This regularizer is capable of exploiting the similarities between patch pairs
in adjacent frames and it can enforce smooth solutions in the spatio-temporal
neighbourhoods of MR sequence even when there is significant inter-frame mo-
tion and high noise introduced during acquisition.

3 Algorithm

To efficiently solve the primal problem (2), we propose to apply a proximal-
splitting framework to this problem. Before describing our proximal-splitting
based algorithm, we should first give the definition of a proximal map.

Proximal map: Given a continuous convex function g(x) and a scalar ρ > 0,
the proximal operator associated to convex function g can be defined as [9]

proxρ(g)(z) := arg min
x∈H

{
1

2ρ
‖x− z‖22 + g(x)

}
(6)

Now we can reformulate the problem (2) as the following denoising problem

X̂ = arg min
X

{
1

2
‖X −Xg‖22 + ρλ1G1(X) + ρλ2G2(X)

}
(7)

Since each of the regularization term in the cost function (2) is convex, the prob-
lem (7) can be represented as the proximal map of the sum of two regularization
terms as described in Fast Composite Splitting Algorithm (FCSA) [9]

X̂ = proxρ(λ1G1 + λ2G2)(Xg) (8)

The problem (7) admits to a unique solution as given in (8). However, the prox-
imity operator of the sum of two functions is usually intractable. To compute it
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iteratively, one can adopt an efficient proximal-splitting method to this problem.
Proximal-splitting methods are first-order iterative algorithms that solve rela-
tively large-scale optimization problems with several nonsmooth penalties. They
operate by splitting the convex objective function to minimize and generating
individual subproblems which are evaluated easily via proximal operators.

To solve our main problem in (7), we split the objective function into two
individual subproblems that we term G1-subproblem and G2-subproblem.

G1-subproblem: The proximal map for this subproblem can be defined as

XG1 = proxρ(λ1G1)(Xg) = arg min
X

{
1

2ρ
‖X −Xg‖22 + λ1G1(X)

}
(9)

In order to solve the subproblem (9), we first reformulate it by introducing new
variables dt = xt − x̄ and dtg = Xt

g − x̄, in this way the problem turns into

d̂ = arg min
d

{∑
t∈T

(
1

2ρ
‖dt − dtg‖22 + λ1‖dt‖TV

)}
(10)

where d = {d1, ..., dT } and ‖dt‖TV = ‖[Q1dt, Q2dt]‖2,1, where Q1 and Q2 are
two MN ×MN first order finite difference matrices in vertical and horizontal
directions, and `2,1 norm is the sum of the `2 norm of each row of given matrix.

Given a reference image x̄, the cost function in (10) can be minimized indi-
vidually for every frame xt of MR sequence. This guarantees that the sum of
the costs in (10) is also minimized. The cost function can be efficiently mini-
mized by using the fast iteratively reweighted least squares (FIRLS) algorithm
[5] based on preconditioned conjugate gradient method. This algorithm enables
fast convergence and low computational cost by adopting a new preconditioner
which can be accurately approximated using the diagonally dominant structure
of the matrix FHt Ft, where H is the conjugate transpose. Once the problem (10)
is solved, the estimated solution for problem (9) can be calculated as

X̂G1 =
[
d̂1 + x̄, d̂2 + x̄, ...., d̂T + x̄

]
(11)

G2-subproblem: The proximal map for G2 subproblem can be specified by

XG2 = proxρ(λ2G2)(Xg) = arg min
X

{
1

2ρ
‖X −Xg‖22 + λ2G2(X)

}
(12)

The problem (12) can be solved using a two-step alternating minimization scheme
in an iterative projections onto convex sets (POCS) framework [11]. In each itera-
tion, the first step involves the projection of image estimate onto the data fidelity
term via a steepest descend update and the second step performs the minimiza-
tion of the neighborhood penalty term on the projected data. The minimization
of the penalty function in (12) is equivalent to applying non-local means (NLM)
filter [2] to the projected images. This is mathematically derived in [12] with a
single assumption that only one sub-iteration of the penalty term is performed
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Algorithm 1: Proposed algorithm

Input: Undersampled k-space data Y , Fu, λ1, λ2

Initialize: z01 = z02 = FH
u Y , w1, w2, X0 =

∑2
i=1 wiz

0
i , α0 = 0.5, γ = 1, k = 0

while stopping criteria not met do

Xg = Xk − γFH
u (FuX

k − Y ) ;

zk+1
1 = zk1 + αk(prox γ

w1
(2λ1G1)(Xk +Xg − zk1 )−Xk) ;

zk+1
2 = zk2 + αk(prox γ

w2
(2λ2G2)(Xk +Xg − zk2 )−Xk) ;

Xk+1 = w1z
k+1
1 + w2z

k+1
2 ;

αk+1 = 1 + 2(αk − 1)/(1 +
√

1 + 4(αk)2) ;
k ← k + 1 ;

end
Output: Reconstructed image data X

with constant and predetermined weights. The mathematical formulation of a
NLM filter is given as [12]

X̂(px,py,pt) =

∑
(qx,qy,qt)∈Np

w(p, q)X(qx, qy, qt)∑
(qx,qy,qt)∈Np

w(p, q)
(13)

We have now iterative solvers for each subproblem G1 and G2. In this work,
we have developed an efficient algorithm by adopting a generalized forward-
backward splitting (GFBS) framework [13] that minimizes the sum of multiple
convex functions. Basically, FCSA and GFBS are operator-splitting algorithms
and they both use forward-backward schemes. The main difference between
GFBS and FCSA is that GFBS enables the use of weighted-average of the out-
puts of individual proximal mappings for finitely many convex functions, whereas
FCSA only applies simple averaging. The weighted-average of the outputs of
proximals may practically yield better results depending on the effectiveness of
each penalty (regularization) term employed in various applications.

We further accelerate the convergence of the algorithm with an additional
acceleration step similar to the Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) [1]. This step adaptively increases the value of step size parameter (αk)
through iterations and make it sufficiently close to 1. Our proposed reconstruc-
tion algorithm is outlined in Algorithm 1. The most computationally expensive
step of our algorithm is solving each proximal map. Fortunately, the computation
of proximal maps can be done in parallel since there is no dependency between
the inputs of proximity operators. All the other steps involve adding and mul-
tiplying vectors or scalars, and are thus very cheap in terms of computational
complexity. The GFBS method has been shown to converge when γ < 2/L if
the convex function f = 1

2‖X −Xg‖22 has a Lipschitz continuous gradient with
constant L [13]. We refer the readers to original GFBS paper [13] for details
concerning the proof of the convergence of the algorithm.
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4 Experiments

Experimental Setup: We evaluate our method on two different types of per-
fusion MRI datasets. We use three DSC-MRI brain perfusion sequences (128×
128×60) and one in-vivo breath-hold cardiac perfusion sequence1 (192×192×40)
from [4] with normalized intensities. All the perfusion datasets used in the ex-
periments are acquired with full-sampling and the fully-sampled sequences are
artificially corrupted by multiplying its corresponding k-space representation
with a binary undersampling mask and subsequently adding Gaussian white
noise. To simulate undersampling, we retrospectively apply a time-varying vari-
able density Cartesian mask in our experiments (see Fig. 1). The sampling ratio
is set to 1/4 for brain sequences and 1/6 for cardiac sequence. We compare our
method with three state-of-the-art reconstruction methods: the dynamic total
variation (DTV) [4], (k,t)-space via low-rank plus sparse prior (kt-RPCA) [14],
and fast total variation and nuclear norm regularization (FTVNNR) [17]. To en-
sure fair comparison, similar to the experiments presented in [3], we empirically
fine-tune the optimal regularization parameters for all methods individually for
each dataset and depending on noise level. For our proposed method, we specif-
ically set λ2 = 0.25 for all noise levels and set λ1 = 0.025 for relatively high
level noise and λ1 = 0.001 for low noise levels. We test the following noise lev-
els and report the results: σ = {10−1, 5 × 10−2, 10−2, 5 × 10−3, 10−3}. For the
proposed method, we set Nw = 7 × 7 × 7, Np = 5 × 5 × 5, and w1 = w2 = 0.5
for all sequences. We consider using small cubic neighborhoods for Nw and Np
since large neighborhoods drastically increase the computation time. To reduce
the computational burden, we also employ an optimized blockwise version of
the non-local means filter that was proposed by Coupé et al. [7] for 3D med-
ical data. We adopt the Peak Signal-to-Noise Ratio (PSNR) as the metric for
quantitative evaluation. Instead of directly calculating PSNR on a whole image
or 3D sequence, we employ a region-based analysis by calculating the PSNR on
randomly selected 100 image blocks (50×50) in 2D frames. This allows us to test
for statistical differences using paired t-test when comparing different methods.

Results: Fig. 1 and 2 demonstrate a single reconstructed frame of the first
and third brain perfusion dataset, respectively, and the estimation of perfusion
time profiles averaged over voxels inside a small region of interest. The results
in Fig. 1 reveal that kt-RPCA and FTVNNR show quite similar performances,
and the DTV yields both better reconstruction and estimation of perfusion signal
compared to these two methods. Compared with all three methods, our proposed
method can achieve the best reconstruction and very accurate estimation of
perfusion time profiles even when the k-space measurements are contaminated
with a relatively high level noise (σ = 5×10−2). The reconstruction results of our
method are also statistically significant (p-value < 10−5) when compared with
all other methods. Moreover, both kt-RPCA and FTVNNR result in over spatial
smoothing (see close-up views in Fig. 1) and along time as well, which can be
clearly seen from smoothening of the perfusion peaks in the third-fourth column

1 Available at: http://web.engr.illinois.edu/~cchen156/SSMRI.html

http://web.engr.illinois.edu/~cchen156/SSMRI.html
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Fig. 1. (Top) Results (mean±std, h-value) of the 22nd frame of the first brain dataset
and close-up views of two regions of interest (yellow and green square). h=1 specifies the
statistical significance between the results of proposed and compared method, (Bottom)
An exemplary undersampling mask and for each method, estimation of perfusion time
profiles averaged over the voxels inside the red square shown in top-left figure. The
standard deviation of added Gaussian noise is σ = 5 × 10−2. Our method achieves
both the best frame-based reconstruction and the most accurate estimation of peaks
and temporal pattern of perfusion signal.
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Fig. 2. (Top) Results (mean±std, h-value) of the 15th frame of the third brain dataset
and close-up views of two regions of interest (yellow and green square), (Bottom) For
each method, estimation of perfusion time profiles averaged over the voxels inside the
red square shown in top-left figure. The standard deviation of added Gaussian noise is
σ = 10−3. Our method again achieves both the best frame-based reconstruction and
the most accurate estimation of peaks and temporal pattern of perfusion signal.
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Full Sampling

DTV 

 (31.71 ± 1.95 dB, h = 1)

kt−RPCA 

 (31.49 ± 2.21 dB, h = 1)

FTVNNR 

 (31.67 ± 2.31 dB, h = 1)

Proposed 

 (33.11 ± 2.07 dB)

Fig. 3. (Top) Results of the 18th frame of the cardiac dataset with added noise
σ = 10−2, (Bottom) Temporal cross sections by the red dashed line. All methods
can produce high quality spatial frames, however, our method yields less noisy and
blurry temporal profiles, and the aliasing artifacts are also mostly removed.

of Fig. 1. In contrast, the proposed method reconstructs a perfusion pattern that
is in good agreement with the pattern of the fully sampled data (see Fig. 1 bottom
fifth column), and produces less blurry image regions and sharper edges. The
perfusion time profiles obtained from the third dataset (see Fig. 2 bottom plots)
also demonstrate the success of our proposed method. Considering the spatial
outputs, when looking at details in close-up views of Fig. 2, the reconstructions
obtained by kt-RPCA and FTVNNR are more blurry and thus lacking some
finer details in yellow region, whereas the reconstruction obtained by proposed
method involves more finer information in yellow region and provides sharper
edges in green region.

We also validate our method on a cardiac perfusion data from [4] and the
results are presented in Fig. 3. All methods here can produce high quality images,
however, when looking temporal cross sections at bottom, it can be observed that
our method gives less noisy and with lower aliasing artifacts reconstruction on
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Fig. 4. PSNR results versus noise std (σ) for (left) Brain, (right) Cardiac datasets.
Our joint local and nonlocal regularization based method performs the best.
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myocardium surface while FTVNNR provides more blurry result. The reason is
that our method can utilize both local consistency in temporal differences and
nonlocal similarities between spatio-temporal neighborhoods of MR sequence
while the FTVNNR does not explicitly exploit sparsity in temporal domain.

Quantitative results of different reconstruction methods on both brain and
cardiac perfusion datasets are shown in Fig. 4. Note that the NLM only solves
the G2-subproblem of Sect. 3. From the figure, one can clearly see that our
proposed method achieves the highest mean PSNR for all noise levels applied.
The running time of all methods on the brain and cardiac datasets is provided in
Table 1. Compared with the other three methods, our method needs the highest
amount of processing time. However, due to its faster convergence, our method
can achieve the best reconstruction accuracy within the first 3-4 iterations on
average, which approximately takes 4.5 minutes for cardiac dataset on a desktop
with Intel Xeon CPU E3-1226 v3 Processor.

Table 1. The time cost of different reconstruction methods.

Time (Seconds) DTV kt-RPCA FTVNNR Proposed

Brain (128× 128× 60) 54.5 194.5 74.3 304.6
Cardiac (192× 192× 40) 46.2 263.9 81.7 278.1

5 Conclusion

We have presented a robust reconstruction model for perfusion MRI, which is
based on a joint regularization of pixel-wise and patch-wise spatio-temporal con-
straints. Numerical experiments validate the efficiency of our method over the
state-of-the-art methods in terms of reconstruction accuracy and estimation of
perfusion time profiles in varying noise conditions. We also introduce an iterative
algorithm that efficiently solves convex optimization problems with mixtures of
regularizers. Our algorithm provides fast convergence and can be easily extended
to other medical image applications, in particular denoising and super-resolution.
The proposed method can be also extended to parallel MR imaging [8] and be
applied to multi-coil data. Future work will aim at expanding our work with the
fitting of pharmacokinetic models and quantitative analysis of perfusion param-
eters on 3D+t brain perfusion data using partial k-space measurements.
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