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Abstract

In this paper we design a novel planar 2D fiducial
marker and develop fast detection algorithm aiming easy
camera calibration and precise 3D reconstruction at the
marker locations via the bundle adjustment. Even though
an abundance of planar fiducial markers have been made
and used in various tasks, none of them has properties nec-
essary to solve the aforementioned tasks. Our marker, X-
tag, enjoys a novel design, coupled with very efficient and
robust detection scheme, resulting in a reduced number of
false positives. This is achieved by constructing markers
with random circular features in the image domain and en-
coding them using two true perspective invariants: cross-
ratios and intersection preservation constraints. To detect
the markers, we developed an effective search scheme, sim-
ilar to Geometric Hashing and Hough Voting, in which the
marker decoding is cast as a retrieval problem. We apply
our system to the task of camera calibration and bundle ad-
justment. With qualitative and quantitative experiments, we
demonstrate the robustness and accuracy of X-tag in spite
of blur, noise, perspective and radial distortions, and show-
case camera calibration, bundle adjustment and 3d fusion
of depth data from precise extrinsic camera poses.

1. Introduction
Identification and pose estimation of planar fiducial

markers has a long gone history in photogrammetry, aug-
mented reality and computer vision. 2D planar markers, one
common form of fiducials, are the primary instruments for
obtaining reference coordinates in controlled scenes. They
were successful in constraining the algorithms in many
tasks such as 3D reconstruction and camera calibration [5].
These simple artificial landmarks can be designed in a task
specific way, and can be located with high speed, high re-
peatability and accuracy, contrary to the natural features.

In spite of all the developments in this field (see Fig. 3),
practitioners still face the problem of mis-detected codes,

Figure 1: Our markers, can be used in very cluttered scenes.

low true positive rates, or inaccurate localization of the
markers due to various distortions. Moreover, different ap-
plications have different demands, requiring custom code
designs. Some of the available markers are not fully per-
spective invariant [29], while the others which have this
property either require a good estimate of the intrinsics [6]
for getting the marker pose or the detection complexity
enormously increases with the increase of their number [7].
In this work, we propose the novel X-tag as a flexible alter-
native, which enjoys true projective invariance, high accu-
racy localization and fast identification. In the core of the
method, we use a random-dot style marker design, which
is described by a set of extended joint projective invariants,
composed of multiple cross ratios and intersection preser-
vation constraints. We then use a geometric-hashing frame-
work, as illustrated in Fig. 2, to index a set of pre-generated
dot positions. Simply, this forms the marker database. The
decoding is cast a retrieval problem, in which the same fea-
tures, extracted from query tags, are matched across the
database through an inverted file. The correct matches
are subject to further verification using Homography con-
straints. In contrast to previous works, which are also based
on random dot patterns [29], our marker is truly projective
invariant and thus is robust to viewpoint changes. This lets
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Figure 2: Our pipeline. See text for details.

us to find more correct tags, enabling more advanced appli-
cations such as camera calibration, bundle adjustment and
3D object reconstruction. Due to the adjustable size of the
marker, we could design codes which are resilient against
radial distortions. Moreover, thanks to the increased num-
ber of internal dots, we could obtain more reliable pose es-
timates, and thus more reliable initialization for procedures
such as bundle adjustment.

Our design advances on the good traits of both its an-
cestors: The square and circular tags. It is easier to detect
than square tags, while being even more accurate than the
circular counterparts. We apply the X-tag to the problem
of camera calibration, bundle adjustment and object recon-
struction. Our results clearly outperform the state of the art.

(a) (b) (c) (d) (e) (f)

Figure 3: Markers from different methods. (a) AR-Tag, (b)
Intersense, (c) Pi-Tag, (d) Linearis, (e) Rune-Tag, (f) Ours

2. Prior Art
Markers enjoy a wide literature in computer vision and

augmented reality. While the history is rather unclear, the
current simple targets are square markers. They typically
contain the description in the inner region of the square as
a form of binary code, or a unique image/geometry. AR-
Tag [13], Aruco [14], ARToolkit [18] and AprilTag [26] are
some examples. On the pro side, these targets are very ef-
ficient to locate and identify either by correlation methods,

or by a binary decoding schemes. However, the use of the
squares, rectangles and lines limit the accuracy when de-
tecting subpixel locations on the markers. This makes these
markers inapplicable to certain scenarios, requiring high ac-
curacy, such as camera calibration. Moreover, the neces-
sity to spot a quad (collinearity) causes the marker to get
affected from the radial distortions and occlusions easily.
Thus, some of the aforementioned studies had to explicitly
address such issues.

Motivated by the limitations of corner features of the
square tags, the next generation fiducial tags made use of
circular features, which are more accurate to localize and
less sensitive to noise. Intersense [23] combines data-matrix
concept with concentric circles to create bar-coded mark-
ers. Their design allows generation of 215 codes for iden-
tification, but the pose estimation remains to be problem-
atic [18]. Pi-Tag [7] uses a fiducial design composed of
ordered circles. The detection benefits from cross-ratio in-
variants to handle perspective distortions. While, this ap-
proach is promising, the matching of cross-ratios is an is-
sue, and the worst-case complexity is reported to beO(N4),
which could quickly become impractical. Inspired by [24],
random dots [29] choose to approximate the projectivitiy
with affine constraints, resulting in an easier and more sta-
ble feature. The authors also devise a geometric hashing
[30] framework to cast the code reading problem to a re-
trieval one. Yet, random dots still exhibit affine features
and cannot handle full projectivity. In addendum, due to
the frameless design, a large number of dots are required
for reliability, increasing the computational load. In the re-
cent state-of-the-art work [6], authors of Pi-Tag take a dif-
ferent standpoint proposing RuneTag, a non-concentric and
disconnected arrangement of circular marks around multi-
ple rings, invariant to the projective transformations. This
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Figure 4: (a) Canonical marker frame with features over-
layed. (b) Projectively transformed version of (a).

reduces the burden imposed by the feature extraction. The
result is a very robust and occlusion tolerant fiducial marker,
being reasonably fast to detect. A common point in all three
designs of [29, 7, 6] is the fact that the tags are composed
of individual circles, which link to form the whole. While
this eases the processing stage, introduction of clutter, es-
pecially in the form of false ellipses causes the runtime to
significantly increase, if not fail the detection completely.
Another observation is that, many of the codes are designed
to be large and redundant, i.e. close-by placement of in-
dividual ellipses are prone to merge under camera noise or
blur, especially in distant views. This is not desired for ap-
plications targeting camera calibration, as it is important to
distribute as many markers in 3D space as possible.

The circular fiducials are also the method of choice,
when implementing photogrammetry systems. Linearis [1],
Aicon3d [3] or GOM TriTop [15] are some of those end-
to-end measurement systems. The exact algorithms used
in such products are not publicly available and hidden. Yet,
we are aware, for example, that Linearis cannot handle large
perspective distortions.

3. Method
We’ll now deeply review the design, description and re-

trieval of X-tag, with an application to bundle adjustment.

3.1. Marker Design

X-tag consists of a random arrangement of several (>
5) black circular marks, distributed around a black central
dot and on a white background. The design includes an
additional black frame, acting as a contrast agent to ease the
localization. The actual shape of the frame is irrelevant and
can also be designed to be circular. Additionally, two white
circles are placed on one side of the base frame. They are
used for multiple purposes of feature extraction, verification
and pose estimation. The marker is shown in Fig. 4.

3.2. Marker Description

We describe X-tag via a new extended invariant set(EIS).
EIS is composed of two parts: Cross ratios and intersection
preservation constraints encoded by the sector type.
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Figure 5: Illustrations of cross ratio.

3.2.1 Cross Ratio

Cross ratio (CR) is the fundamental invariant in projective
geometry. Its simplest form is defined for a pencil of lines,
passing through a centerO and intersecting two lines `1 and
`2 at points {p1, p2, p3, p4} and {q1, q2, q3, q4} respectively.
This configuration is visualized in Fig. 5(a). The cross ratio
of 4 such collinear points is defined as:

cr(p1, p2, p3, p4) = cr(q1, q2, q3, q4) =
|p1p3||p2p3|
|p1p4||p2p4|

(1)

This invariant is naturally extended to 2D space [27], when
the points are non-collinear, but co-planar. In this case, the
configuration of five points defines the cross ratio using the
ratio of product of triangle areas:

cr2D(z,p1,p2,p3,p4) =
∆(z,p1,p2)∆(z,p3,p4)

∆(z,p1,p3)∆(z,p2,p4)
(2)

∆ denotes the triangle area. This is illustrated in Fig. 5(b).
Clearly, one could generate multiple CR, by altering the per-
mutations of points. Thus, a set of points define 24 CR, of
which only 6 are unique.

Probability Distribution Both PDF and CDF of cross ra-
tio are analytically defined in multiple works [2, 17]. We
found out that also in practice, distribution of a set of CR
closely approximates the analytical one. Fig.6 plots the ana-
lyitcal PDF and CDF of cross ratios as well as the estimated
one over a synthetic point dataset.

Joint Invariants Even though [4] raise a contradictory
claim, it is well known that cross ratio is very sensitive to
noise [22, 21, 20]. This sensitivity and the non-uniqueness
of single cross ratios, however, can be circumvented up to
a certain extent by relying on multiple invariants extracted
from multiple sets of points [4]. Such a set is termed as the
joint invariants, and defines the point set uniquely up to a
projective transformation.

X-tag’s first invariant feature consists of the set of all
cross ratios that can be computed from the inner dots, tak-
ing the central dot as the 5th point z. Fixing such a point
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Figure 6: (a) Analytical distribution of cross ratios. (b) Ap-
proximated distribution of cross ratios.

increases the stability as opposed to complete randomness
[29]. To further boost the discrimination power, we intro-
duce the latter descriptor, sector type, which relies on the
preservation of the intersection of lines.

3.2.2 Sector Type

Formally, we partition our fudicial into 4 regions. 4 parti-
tions are given birth by the intersection of two lines formed
by joining the outer white dots, with the center point. These
lines also separate the large inner white circle into 4 par-
titions. For each CR computation, i.e. for each 4 points
taken out of the randomly generated points, our descrip-
tor encodes the presence of the points within the sector.
This can be seen in Figure 4. In particular, the sector type
s = {x ∈ R : 4 ≤ x ≤ 500} is computed as the polynomial
expansion:

s(p1,p2,p3,p4) = s1α
3 + s2α

2 + s3α+ s4 (3)

where si is the number of points out of {p1,p2,p3,p4},
lying within sector i. For our configuration we set α = 5.
Note that due to the intersections being preserved, this is a
true projective invariant.

Our final descriptor is the concatenation of the two dis-
tinct invariants described here, forming the set D = {di =
{cri2D, si}}.

3.3. Tag Localization

The first step in the pipeline is the low level image pro-
cessing, in which we identify and localize the X-tag candi-
dates. To do so, we apply a simple image processing algo-
rithm. First, the dark regions are selected as marker candi-
dates. Then, a connected component labeling is performed
and blobs, which do not satisfy a relaxed set of constraints
(area and dimensions) are discarded. Later, each candidate
blob is tested for inclusion of a light (e.g. white) region and
sufficient circular points. We also check for the two white
dots, and the center dot, explicitly. At each step of this op-
eration, elliptical regions are selected via the properties of
the elliptic axis. Note that, even if we find false positives at
this stage, the database search and verification are likely to
fully suppress them.

Indexing Markers and Database Creation For each
marker with id i, we obtain Di, a long, extended descrip-
tor. Indexing such a descriptor for nearest neighbor re-
trieval purposes is not always trivial. Here, we explain how
we benefit from the special nature of our descriptors to use
them in a geometric hashing framework.

The basic idea behind our algorithm is that we quantize
the descriptor for each marker sequentially and store the
quantized codes in an inverted file, along with the occur-
rence information ci and the marker id mi. ci also helps us
to compress the inverted file, as multiple occurrences of the
same marker are stored as a single entry in the hashtable.
The Indexing part of Fig. 2 illustrates this scheme.

Because the probability distribution of cross ratios is
highly non-linear, a simple uniform quantization of the fea-
tures wouldn’t work, i.e., many cross ratios would fall in the
same bin. Thus, we rely on a quantization scheme, which
is aware of the joint feature distribution (see section 3.2.1).
Our essential idea is to create a binning such that the integral
of PDF in each bin is roughly equal. Formally, let f denote
the PDF, F the CDF and F−1 the inverse CDF of cross ra-
tios. Because we now (or can) estimate both F and F−1,
we choose to map any given cross ratio cr via CDF and to
perform a uniform quantization in this domain. Formally a
b− bit quantized value fq[cr] is obtained by:

fq[cr] = b

⌊
F (cr) + Eq[cr]

b

⌋
, Eq[cr] ∼ U

([
− δ

2
,
δ

2

])
(4)

Eq[n] is uniformly distributed, due to the assumption that
the errors are uniformly spread into the bins. In our imple-
mentation, we prefer to use the approximate CDF F ∗, in-
stead of the analytical F as F ∗ is a better representative of
the data-subset. Such quantization requires a look-up over
the CDF, which we perform via binary-search. Faster im-
plementations might benefit also from interpolation search,
as the distribution is available. By quantizing directly on
F , we could avoid using F−1 to map back to the PDF, f .
However, Fig. 2 plots the partitions in the PDF domain.

While the cross ratios are non-uniformly distributed real
values, the sector type is a simple integer and is very
friendly for indexing operations. Our hash index is simply
hcr = {fq[cr], scr}.

Identification of Tag IDs Once the features are extracted
for all combinations of points {pi} in a candidate scene, we
could resolve the tag id using the inverted file. To avoid the
distance computation overhead and to retain the robustness,
we achieve this through a procedure, similar to Hough vot-
ing. Each quantized feature hcr retrieves a set of probable
markers from corresponding bucket and casts a vote to the
corresponding marker id. The vote is proportional to the
occurrence in the database. Ideally, after voting for all joint
invariants, the maximum vote reveals the marker ID.



3.4. Verification and Pose Estimation

Even though the voting is very robust, it doesn’t always
guarantee the best solution. For that reason, we retain a
set of surviving hypotheses for further verification. More-
over, the match-ability of the marker necessitates the correct
identification of only three points: The center and two sup-
port points. This leaves us with one unknown to determine
the projective transformation. Note that, using conics for
pose estimation might be bad in this situation because it is
very likely that a single ellipse would appear as a small dot.

To find the ID of the 4th point, we could simply enumer-
ate over all the possible point combinations and evaluate
the reprojection error, but to save computation, we instead
apply similar voting procedure as we use for matching of
marker IDs. For each dot in marker cross-ratios with all
other points are calculated and stored in the hashtable. On
the verification stage the voting for dot ID is performed sim-
ilarly to voting for the marker ID using all cross ratios for
given dot. Resolving the correspondences finally becomes
more efficient since we verify the best hypothesis first. For-
mally, the fourth landmark is found via:

p∗ = arg min
p

n∑
j=1

‖H(p)mj − rj‖ (5)

where H(p) is a homography found after matching refer-
ence point to point p via voting procedure, m1..n are dots
locations inside marker, rj..n are their correspondences in
reference frame. Under occlusions or noise, a one-to-one
correspondence is enforced for robustness. H is computed
from 4 points using DLT algorithm [16]. The final pose
is estimated using PnP algorithm [19] using all dot coordi-
nates in marker. This is superior to standard square tags in
two aspects: 1. The used dots are circular and are more ac-
curate to localize. 2. We have always Nd > 4 dots in our
marker. As we utilize all the found dots, our estimation is
expected to be more correct.

4. Multi-Camera Bundle Adjustment
A useful application area for X-tag is camera calibration

and bundle adjustment (BA)[28]. We propose to use X-tag
as a calibration target and compute the extrinsics and in-
trinsics with BA. Our idea is to make the user entirely free
from the using precise targets. We rather rely on the central
ellipse of X-tag to give us the image cue. Our approach is
similar to [12], but we do not constrain ourselves to planar
targets. Given a set of images, captured either from mov-
ing cameras, or changing scenes, we run the following op-
timization:

min
P,X

m∑
i=1

n∑
j=1

ρ
(
wijd(PiXj ,xij)

2)+ k∑
i=1

k∑
j=1

(d(Xi,Xj)−σij)
2

where X1..Xn are 3D points, P1..Pm are projection ma-
trices of m cameras, xij is image coordinate of point j for

Figure 7: Shots from synthetic scenes for different noise,
blur and radial distortion conditions.

camera i. The distance d(·) between any two points is sub-
ject to a weighting wij which based on the detection qual-
ity of image points. ρ(·) is a robust Cauchy norm. We
compute its scale parameter from the elliptic axis proper-
ties. The second term is regularization that brings the recon-
structed scene to metric space by keeping distance between
known 3D points (Xi,Xj) at the value σij . We initialize
this BA procedure from the pose of the most frequently vis-
ible marker. The pose is estimated using the inner random
dot locations, w.r.t. the canonical marker frame. In BA,
we simultaneously solve for (P,X), using Brown distor-
tion model [10].

5. Experimental Evaluation
We assess the performance of our method with extensive

qualitative and quantitative evaluations.

Evaluation Metrics Throughout this paper, the individ-
ual errors for the distinct pose components (rotations and
translations) read as:

εR(R1,R2) = arccos

(
trace(R−1

1 R2)− 1

2

)
(6)

εt(t1, t2) = ‖t1 − t2‖ (7)

We will also speak about performance metrics of accuracy,
which is defined as Ac = (TP + TN)/Nexp.

5.1. Experiments on Synthetic Data

We first evaluate the validity and robustness of our ap-
proach on a synthetic set. This way, we observe the perfor-
mance under various degradation and capture the behavior
of parameters. For this stage, our synthetic data is com-
posed of NM = 2000 markers. For testing, we sample 200
of this set and combine it with 20 other markers, which are
outside of the database. The test data is subject to 50 warps
per image, each having a different augmentation. These
augmentations include blur, additive noise and radial dis-
tortion. The synthesized images are shown in Fig. 7.

Effect of Hashtable Size As the initial stage of experi-
mentation, we would like to tune our system to use the opti-
mal parameters. We asses how the performance, as well as
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from next best place in voting table for different sizes of
marker databases (b) Votes for markers with different num-
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detection rate on synthetic scenes

the computation time is affected with the varying number
of markers, number of bins and number of dots. Therefore,
we conduct incremental evaluations. First, we want to find
the optimal size of a hash table for the marker set. Ideally,
the true marker ID should get the most votes from the hash
table. So by tuning the hash table size we aim for the max-
imum percentage of votes for marker with the highest rank
and largest deviation from the second best. While the de-
sired number of dots is a parameter for our method, within
the context of experiments, we fix it to 7. On our synthetic
set, we conduct the aforementioned performance analysis
and plot this in Fig. 8(a). It is visible that independent of the
database size the optimal number of bins for markers with
7 dots is 100. It is interesting to see that only the number
of cross ratios for one marker influences the optimal hash
table size.

In a further experiment in Fig. 8(b), we fix the number of
markers in our database to 2000 and also the hashtable bin
sizes to 100. By varying the number of dots we could see
that having 100 bins for markers with 7 dots will provide
optimal voting results for that configuration. It is therefore
immediate that when more dots are desired, the hashtable
size should be tuned accordingly.

Next we evaluated matching time for markers with opti-
mal hash table size. The time of matching depends both
on number of cross ratios for one marker and the num-
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Figure 9: (a) Robustness to Viewing Angle.

ber of markers in database. Matching one marker takes
O(n log(b) + bN) time in worst case, where n is number
of cross-ratios, b - number of bins, and N - size of mark-
ers database. The matching time for markers with 5, 7 and
10 dots for Intel i7 3.20 GHz processor is shown on Fig.
8(c). In practice matching a single marker takes less than
3ms, given that in real life, a database of 2000 markers is
more than sufficient. Note that, thanks to the grouped in-
verted file structure and the quick voting, our computational
time only marginally increases even when the database size
is significantly increased. In that manner, our approach is
very scalable and therefore amenable for real life applica-
tions requiring an abundance of fudicial tags.

Robustness to Image Distortions We assess the robust-
ness (as detection accuracy) to different noise and perturba-
tions and the computational performance in Fig. 8(d). The
x-axis shows the image quality, which is gradually reduced
by different augmentations. For real-life scenarios, quality
level hardly exceeds 3. It is evident that while X-tag is gen-
erally robust, it is least affected by the blur. Increasing noise
would have the most severe effect, while significant radial
distortion is in general handled slightly better than noise.

5.2. Real Scenarios

Robustness to Viewing Angle To quantify the robustness
under perspective changes, we print 4 of each RuneTag[6],
Aruco[14], ARToolkit[18] and X-tag on a common paper as
shown in Fig. 9(a). We image 4 different rotations of this
pattern in varying distances and from severe (8◦) to mod-
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Figure 10: (a) Images for checkerboard calibration and calibration with X-tag. (b) Focal length estimation (c) Estimation of
principal point (x) (d) Estimation of principal point (y)

erate (25◦) camera angles. We then run each detector and
compute the overall detection rate. The results are plotted
in Fig. 9(b). It is shown that while most methods perform
very well, ours is slightly above all others, justifying the
good detectability. RuneTag [6] and RandomDots [29] are
not taken into this plot because: 1. RuneTag circles quickly
get invisible with the increasing distance and tag starts to
underperform. 2. RandomDots are only robust up to affine
warps and cannot handle perspective variations. Thus, the
detection rate appears to be low for this experiment. While
the square fiducials are known the best for this type of chal-
lenge, our circular tag still outperforms the rest.

How Reliable is the Estimation of Intrinsics? As ex-
plained in Section 4, our method is suitable for complete
bundle adjustment, where the intrinsics and extrinsics are
jointly minimized. While it has always been a challenge to
assess the accuracy of calibration (as exact principal point
and focal length are not directly observable), we argue that,
it is more important to obtain repeatable estimates, rather
than accurate ones i.e. one could always use an offset to
compensate for biases, once the repeatibility is achieved.
We, therefore, use a slightly unorthodox experimentation
and run our bundle adjustment multiple times for intrinsics
estimation, repeatedly. We perform the same test with a
OpenCV checkerboard calibration [9], which seems to be
the de-facto standard in computer vision. The number of
detected corners roughly equate to the number of detected
ellipse centers. Fig. 10 plots our estimations along with
the ones from checkerboard for principal point, as well as
focal length. The standard deviation overlays the curve. It
is apparent that our results are more deterministic and less
prone to initialization errors, as well as errors in feature
point computation. The deviation plots indicate that even
with small number of images our estimations are more reli-
able than the standard techniques. Note that, an analogous
experiment shows a similarity between OpenCV’s checker-
board method and RuneTag calibration [6]. It is also worth
mentioning that while both OpenCV and RuneTag rely on

the availability of the 3D model of a calibration pattern, we
are completely pattern-free and our markers could be posi-
tioned anywhere in the observed space.

Evaluation of Pose Estimation Here, we evaluate the
power of a single tag for estimating extrinsic pose. For that,
we set up a scene of 80 markers composed of 40 Aruco and
40 ours as shown on Fig. 11. This scene is then viewed from
100 distinct camera locations, including viewpoint varia-
tions. Afterwards, we run our bundle adjustment proposed
in Section 4 on Aruco markers and our markers separately
and multiple times. We always initialize the adjustments by
using the pose of one of the markers selected as a reference.
We deliberately alter the selected reference over different
BA runs to reduce the selection bias. BA procedure corrects
for 3D locations as well as camera poses. Finally, the re-
fined pose of the selected reference tag is compared against
the initial estimation, both for Aruco and ours, disjointly.
The difference in these poses is naturally the computed up-
date by BA. The smaller the update is, the more correct the
initialization, and therefore the better the estimation of ex-
trinsics from a single marker. The results, averaged over a
set of runs, are shown in Table 1 for the scene in Fig. 11.
The findings indicate that our markers are much better at
providing camera pose than Aruco. The pose difference is
computed via Eq. 6. The reason why the reprojection error
enjoys a relatively higher improvement is because it absorbs
both the errors on the pose and on the 3D structure. An im-
provement of both increases the impact on the reprojection.

Figure 11: Scene Table 1: Errors

Aruco Ours

Rot Err 0.0216 0.0145
Tra Err 0.0091 0.0067
Repr Err 0.2472 0.0694
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Figure 12: Comparisons of reconstructing Teddy object with the aid of RuneTag and X-Tag.

Object Reconstruction Performance At last, we evalu-
ate our method for the problem of 3D object reconstruction
using depth sensors. Our procedure is similar to Kinect-
Fusion [25], however, we replace the ICP (iterative closest
point) [8] stage with poses coming from X-tag detection,
and perform the conventional SDF-fusion [11]. This way,
the object is not needed to be tracked and we could operate
with only a handful of scans. Our setup consists of Teddy
object, which is a 3D print from an ideal CAD model. The
object is positioned on a turn-table sequence. The tags are
distributed around different regions of the space. Because
the state of the art fiducial tag for object reconstruction is
RuneTag [6], we find it sufficient to evaluate against this
method. Therefore, we also augment the scene with Rune-
Tag marks. A shot from this setup can be viewed in the first
column of Fig. 12. Following the sequential image acqui-
sition, we then run our bundle adjustment both for our tags
and for RuneTag. Note once again that, X-tag BA assumes
neither camera calibration nor an apriori 3D model, while
RuneTag is designed to operate best on calibrated settings
(While RuneTag could also handle uncalibrated case, this
capability depends on an enumeration over all possible fo-
cal lengths until a reasonable estimate is found. We consider
this to be still calibration dependent.). Therefore we initial-
ize RuneTag with the correct bundle adjusted intrinsics and
let it estimate only the camera poses. BA output provides us
both refined poses and point coordinates. In this stage, we
use only the poses and discard the 3D structure. We retrieve
this structure from the depth images of the 3D scanner.

We convert the absolute poses to the relative ones and

starting from an initial volume, we run an SDF Fusion to
capture the final 3D reconstruction. Thanks to the pres-
ence of the ideal model, we compare both results to the
ground truth. These comparisons are depicted in Fig. 12.
The colors are associated to the unsigned error magnitudes.
Because our markers are located on non-coplanar regions
of the space, they are better at binding the 3D transforma-
tion. This demonstrates that, better geometric constraints
are more favorable than the availability of prior calibration
targets. Finally, one could always think of the bundle ad-
justed 3D points as our calibration rigs.

6. Conclusion
In this paper we proposed the X-tag and posed it as a

flexible tag amenable for model-free calibration, pose es-
timation and 3D reconstruction. X-tag is truly invariant
to projective changes, detectable in high clutter and its ro-
bustness to radial distortions are demonstrated. Moreover
the matching time of a single marker is extremely fast and
the devised method is suitable to scaling large marker sets.
Our fiducials can be generated and spotted in varying sizes
within the same application, without any constraints.

There are many possible future directions. Even though
not experimented here, X-tag has large potential for occlu-
sion handling. That’s because the joint invariants of random
arrangements make the code partially redundant. Moreover,
multiple X-tag could be assembled to form and act as 3D
models. In the future we will also focus on the extending
X-tag to be able to do a complete SLAM.
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