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Abstract— In this paper, we study the problem of 3D de-
formable surface tracking with RGBD cameras, specifically
Microsofts Kinect. In order to achieve this we introduce a
fully automated framework that includes several components:
automatic initialization based on segmentation of the object of
interest, then robust range flow that guides deformations of
the object of interest and finally representation of the results
using mass-spring model. The key contribution is extension of
the range flow work of Spies and Jähne [1] that combines
Lucas-Kanade [2] and Horn and Shunk [3] approaches for
RGB-D data, makes it to converge faster and incorporates color
information with multichannel formulation. We also introduced
a pipeline for generating synthetic data and performed error
analysis and comparison to original range flow approach. The
results show that our method is accurate and is precise enough
to track significant deformation smoothly at near real-time run
times.

I. INTRODUCTION

Deformable surfaces are ubiquitous in real world and, thus,
are of great interest to computer vision researchers. While the
research in the area is quite new, many advanced methods
have already been developed. Most of these methods rely
on stereo computations or try to solve the under-constrained
problem of recovering surface deformations from monocular
scenes. Recently, there has been an increasing number of
depth (RGBD) cameras available at commodity prices. These
cameras can usually capture both color and depth images in
real-time, with limited resolution and accuracy. In this paper,
we present a complete framework for automatic capture of
surface deformations from RGB-D data. We initialize an area
of interest in the RGB-D image and recover the motion of
every pixel from frame to frame. This is equivalent to optical
flow in RGB images, but here we obtain the flow vectors in
3D and we consider this to be scene or range flow.

Our method is inspired by the approach of Spies and
Jähne on range flow [4], which was first proposed as an
adaptation of optical flow to RGB-D data. When Spies
proposed range flow, commodity RGBD sensors were not
available, and thus the technique didn’t become popular. By
introducing several novelties compared to their approach,
we show that recent developments in the field of tracking
can well be adapted to the methodology, making it a usable
tool for state of the art applications. First, we propose a
fully automatic surface segmentation technique to capture the
initial pose of a deformable region of interest. This allows
complete automatic initialization and does not require any
user interaction. In addition the improvements on Range
Flow are as follows:

• incorporation of combined Lucas Kanade and Horn and
Schunk in order to get more accurate and denser fields

• use of image pyramids to speed up convergence and to
converge better

• incorporation of color information with a multichannel
formulation

Overall this reduces the global error and together with speed
enhancements performs faster and better than the original
range flow. Our error analysis and the computation time
shows that our technique is reasonable for global deformation
capture of moving surfaces and works better the original
range flow approach of Spies and Jähne [4]. Our method
uses a single RGBD camera in a fully automated manner.
This approach is efficient and works in near real-time.

II. RELATED WORK

Because of computational reasons 3D deformable object
tracking, at its current state is very immature in comparison
to the rigid analogous. Yet, a decent variety of approaches
exist to track 3D surfaces.

The work in this field begins with optical flow (OF), which
uses photometric information to recover motion (either 2D or
volumetric 3D) [3], [2]. Within many years the methods have
obtained an impressive level of reliability and accuracy. The
relation of optical flow to 2D deformation capture was made
clear by [5]. Hilsmann utilizes flow and distance constraints
to recover for deformable 2D mesh from 2D images. How-
ever, to the best of our knowledge this has not been extended
to 3D. Applying optical flow to surfaces still stays in its
nut-shell. Recently, researchers made use of multi-camera
systems and one of the first surface flow algorithms was so
called scene flow [6]. Developed by Vedula and Baker, scene
flow was designed to work on multi-view settings and single
view experiments were reported to generate very erroneous
results. Even though it has then evolved into a variational
framework [7], its multi-view nature is retained. For this
reason, scene flow is not applicable to our problem.

Other recent studies were carried out on 3D deformation
recovery from monocular images [8], [9]. However, these
approaches are far from efficiency and they somehow require
the point correspondences to be known. Not favoring this
requirement, for the deformable case, it is very hard to obtain
point correspondences (3D-2D).

Our work is inspired by range flow of Spies and Jähne on
range flow[4]. Their approach consisted of taking the well
studied Horn & Schunk method and extending to RGBD
surface capture. By contrast we introduce robustified depth
capture, together with automatic initialization. Our new for-
mulation benefits from recent improvements in optical flow,
while maintaining its extendibility. Therefore we improve



accuracy and speed. We believe that our framework is a solid
demonstration of the possibilities of how range flow could
be advanced and of how fully automatic surface flow could
be achieved.

Our work is most similar to what B. Petit and A. Letouzey
proposed recently [10], [11]. However, their approach relies
on flow constraining points, which require the successful
extraction of SIFT features in a deforming sequence. Our
method is free from such a condition and yet it still maintains
a dense flow. Finally, other than computing the flow, we
also pose our method as a complete framework of tracking,
including the post-processing steps.

III. SURFACE SEGMENTATION

Our method begins with surface segmentation on Kinect,
which acts as an initial step to deformation recovery.

A. Preprocessing

To begin with, we median-filter Kinect’s depth over time
to gain certain temporal smoothness [12]. The second step
of segmentation is the triangulation of the structured mesh.
Such triangulation is nothing but connecting the neighboring
pixels. Next, we need to filter out the connected mesh
elements which we will not use. To accomplish that we
treat the entire mesh as a connected sparse adjacency graph
and apply Tarjan’s algorithm to find the strong connected
components [13]. Finally, additional filling is performed on
the resulting connected regions to refine the segmentation.
This approach, as described achieves to find 3D connected
components in realtime. Figure 1 demonstrates an example
of segmented Surface of Interest (SOI).

Fig. 1. On the left depth image, on the right segmented initial surface

IV. SURFACE MOTION FROM RANGE FLOW

After segmenting the surface, a robust, dense 3D tracking
is required. For this reason, we will be using an adapted
version of Range Flow Algorithm as proposed in [4].

A. Range Flow

Range Flow, proposed by Spies & Barron [4] is actually
a modified 3D Horn & Schunk (HS) [3] method to cope
with moving surfaces. In this setting, observed surface Z
is treated as a depth function Z = Z(X,Y, t) described in
terms of space and time. The optical brightness constraint
is replaced by range flow motion constraint (RFMC) which
reads as

ZXU + ZY V +W + Zt = 0 (1)

where fR = [U, V,W ]T is the range flow. Note that the
derivation is not exactly similar to HS. Rather than having a

brightness constraint, the assumption that the object is made
of locally planar patches is used and the constraint is imposed
on the derivative of the depth, rather than the depth values
itself (Because depth is not expected to be constant, but its
derivative is. Recall that the infinitesimally small motion of
the patch is purely translation, causing dZX

dt = dZY

dt = 0) [4].
1) Global Smoothness: Spies writes a globally regularized

energy functional to be minimized as

E(U, V,W ) =

∫
A

[(ZXU + ZY V +W + ZT )
2

+α2(∇U2 +∇V 2 +∇W 2)]dXdY dT (2)

The integral is computed over the integration area A,
where it generally is the entire image and α2 controls the
smoothness. A classical Euler-Lagrange (EL) approach is
used to find the solution.

2) Intensity Constraint: For the intensity data the well
known brightness change constraint equation IXU + IY V +
It = 0 (BCCE) can be added [1].

Combining the RFMC, the BCCE and a simple membrane
model yields the following energy to be minimized:

E(U, V,W ) =

∫
A

[(ZXU + ZY V +W + ZT )
2 +

β2(IXU + IY V + IT )
2 +

α2(∇U2 +∇V 2 +∇W 2)]dXdY dT (3)

As in case of HS, an iterative scheme yields a smooth
solution. To combine the two terms (intensity and depth),
the weights are chosen as β2 = <||∇Z||2>

<||∇I||2> . This prevents
the domination of one term to the other.

B. Improvements To Range Flow

1) Range Flow In Multi-Channel Images: Spies [4] states
that the color channels can be incorporated into the existing
range flow scheme using a simple summation. Furthermore,
Lukins [14] provided a more general representation of chan-
nels, where the range flow constraint for channel C is

CXU + CY V + CZW + CT (4)

where CZ is 0 for color and intensity channels and 1 for
range channels. Adding color channels to the cost function
will help resolve the aperture problem arising in optical and
range flow problems. In our method, we choose to merge the
color channels into the existing cost function. We formulate
the new energy functional incorporating the color channels
as

E(U, V,W ) =

∫
A

M∑
i=1

(βi)2(Ci
XU + Ci

Y V + Ci
ZW + Ci

T )
2

+α2(∇U2 +∇V 2 +∇W 2)dXdY dT (5)

where M is the number of channels (including the depth
channel).

The modification in Euler Lagrange equations results in
a slight change in the solver. It only requires replacing
the depth and intensity channels with the corresponding
summations over the multi-channel image. Thus, we could
write a more general multichannel solver.



(a) Synthetic RGB-D Data from Salzmann

(b) Synthetic RGB-D Data from Inria (Starck)

Fig. 2. Synthetic Data Visualizations a) Salzmann b) Starck

2) Robustifying Range Flow: Andrs Bruhn and Joachim
Weickert propose an interesting method for merging Horn &
Schunk algorithm with Lukas Kanade [15]. To come up with
a unifying formulation, they alter the notation of the previous
approaches. Let f denote homogeneous pixel-wise flow. So,
f = (u, v, 1)T and it follows that ∥∇f∥2 = ∥∇u∥2+∥∇v∥2.
Let p = I(x, y) and hence ∇3p = (px, py, pt)

T . To clean
up the equations, it is comfortable to denote Jρ(∇3p) =
Kρ ∗ (∇3p∇3p

T ) where ∗ is the convolution operation and
Kρ is Gaussian kernel with neighborhood size=ρ. From
here, it becomes evident that a combined HS & LK (CLG)
formulation can be derived as

JCLG(f) =

∫
Ω

fTJρ(∇3p)f + α2|∇f |2dxdy (6)

It should be noted that these equations are hardly more
complicated than the original HS equations and all one has
to do is to evaluate the terms containing image data at a
nonvanishing integration scale. Because of the simplicity of
the results, we find it worthwhile to extend this formulation
to range flow.

a) Extension to Range Flow: As described, Spies &
Barron succeeded to present Range Flow as a framework
not very different from optical flow. Such similarity calls for
application of improvements in optical flow to range flow. As
mentioned above for CLG method, the only slight modifica-
tion involves Gaussian convolutions of the data terms. This
in fact is very applicable to range flow, because we solve the

problem in a very similar way. Before starting, let us note
that we will alter the notation to cover multichannel images
as well. This requires the terminology used in section IV-
B.1. We will take our energy functional to be 5 and rewrite
a new set of equations. This brings the entire problem to

JCLG(f3) =

∫
Ω

(fT3 Jρ(∇4p)f3 + α2|∇f3|2) (7)

This formulation adds the robustness of the local methods
into the variational framework of dense global methods. Thus
it enjoys a dense and smooth flow field.

The final contributions are on the implementation causing
an enhancement on the speed and robustness. First of all,
we use Gaussian pyramids to speed up the convergence.
Next, we utilize sparse solvers to achieve high speed and
stability. It is known that median filtering robustifies the
optical flow estimation [16]. Thus, we choose to apply it
after each incremental estimation step to remove outliers.
After the range flow is complete, we penalize the unrealistic
deformations by imposing the range flow velocities as a
proportion of the force field on the mass spring system
(MSS). Automatically, MSS pulls together the vertices and
constrains the range flow.

V. DATA SYNTHESIS AND ACQUISITION FOR
EVALUATION

A. Generating Synthetic Data

The ground truth synthesized is composed of : Depth
Images Of Deforming Sequence For Each Frame, RGB
Images Of Deforming Sequence For Each Frame and Precise
Ground Truth Range Flow per Each Pixel in Generated
RGB-D Data. For computation of this data we require: 3D
Coordinates of Deforming Vertices Over Time, Texture Of
The Deforming Surface and 4D Motion of Deformation.

To approximate the real deformation as close as possible
we benefit from two different datasets to carry out the
synthesis. First one is made public by Mathieue Salzmann
[17] and the second by Starck and Cagniart [18], [19].
Salzmann’s data is just the mesh of a deforming cardboard.
So our algorithm to come up with a synthetic data from
this deformation is as follows: First we refine the provided
mesh & sort vertices using the motion mapping. Next, the
mesh is texture mapped in front of a virtual camera. To
obtain a correctly interpolated depth, flow and RGB data, we
intersect the rays casted from pixels with the mesh triangles.
At each intersection (discarding the non-visible faces), we
carry out a barycentric interpolation for depth, color and true
flow. Finally we project each data point on a 2D image to
generate the ”depth image”. Such a procedure enjoys from
the subpixel precise depth and RGB values. Data from [19]
consists of camera calibration matrices, RGB images, and
reconstructed 3D meshes. As these meshes are dense and
not temporally consistent, we use the consistent meshes from
[18]. To generate the required information from such a data,
we model the physical cameras in a virtual scene using
OpenGL. The deformation of the mesh, range flow and depth
are again captured using the successive frames and a similar



procedure mentioned above. Note that, because of errors in
camera calibration, mesh capture and linear interpolation on
the GPU, the ground truth obtained from the second data
[19] is less reliable. Figure 2 shows snapshots of synthesized
depth from both references.
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(a) AAE vs Iterations
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(b) RME vs Iterations

Fig. 3. Error Measurement for Synthetic Datasets

VI. ERROR ANALYSIS AND EVALUATION

1) Quantitative Error Measurements for Range Flow:
We extend the well known techniques optical flow error
evaluations to 3D surface flows. We analyze two main error
metrics: AAE(Average Angular Error), RME (Root Mean
Squared Error).

Figure 3 shows the effect of the change in iterations and
regularization parameter (α) to the range flow accuracy. (a)
and (b) define AAE and RME for standard range flow versus
our implementation. Note that Ours−DM − Synth is the
evaluation for dancing man data while Spies− synth is the
evaluation of the original algorithm of Spies on Salzmann’s
synthetic data and Ours − Synth is the evaluation of our

novel method on the same dataset. It is clearly noticed that
there is an improvement to the standard range flow. On part
(c), Figure 3 also demonstrates the quantitative results on
Dancing Man Data.

2) Visualization Results & Errors: While quantitative
evaluation is very important, it is always necessary to
visualize the results. At Figure 4 we present the visual
results obtained from sequence of dancing man. Vectors are
plotted over the depth image, demonstrating the motion in
3D. Furthermore, Figure 5 demonstrates the performance
of range flow on real data. Default parameters as mentioned
above are used and median filtering is applied.

(a) Results on Dancing Man with alpha = 3.0

(b) Results on Dancing Man with alpha = 4.5

Fig. 4. Range Flow On Dancer Head: Different Regularizations



Fig. 5. Range Flow Between 25th and 26th Frames Of Real Data

VII. CONCLUSION

In this paper we introduce a framework for automatic
3D surface deformation capture. The algorithm starts with
automatic initialization based on segmentation, of the area
of interest to be tracked. This surface is then tracked using
an extended and robustified range flow algorithm. Finally,
we used a well studied mass spring model for representing
the deforming surface. An experimental evaluation includes a
pipeline for synthetic data generation and results demonstrate
better performance in comparison to the original range flow
approach. The method performs accurate and precise enough
to track significant deformations smoothly.
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