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Abstract

This work proposes a method to segment a 3D point cloud of a scene while simultaneously reconstructing it via Simultaneous
Localization And Mapping (SLAM). The proposed method incrementally merges segments obtained from each input depth image
in an unified global model leveraging the camera pose estimated via SLAM. Differently from other approaches, our method is able
to yield segmentation of scenes reconstructed from multiple views in real-time and with a complexity that does not depend on the
size of the global model. Moreover, we endow our system with two additional contributions: a loop closure approach and a failure
recovery and re-localization approach, both specifically designed so to enforce global consistency between merged segments, thus
making our system suitable for large scale and long standing reconstruction and segmentation. We validate our proposal against
the state of the art in terms of computational efficiency and accuracy on several benchmark datasets, as well as by showing how our
method enables real-time reconstruction and segmentation of diverse real indoor environments.
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1. Introduction and Related Work

Scene segmentation is one of the most important and re-
searched topics in the field of robotic perception, since seg-
mentation is typically a pre-requisite for several robotic tasks
such as object modeling and object recognition [1], autonomous
grasping and manipulation of objects [2], object tracking [3],
and scene understanding and object discovery of unknown en-
vironments [4]. Within the robotic perception and computer
vision communities, a great effort has been made to develop ef-
ficient 3D segmentation algorithms, i.e. real-time processing of
depth maps obtained from RGB-D or 3D sensors. The focus
on 3D data is motivated by the additional insight that geom-
etry and shape provide, with respect to texture and color, for
the task of segmentation, as well as the opportunity to deter-
mine segments that lie in the 3D space in front of the robot
and not just on the image plane. Fast real-time segmentation of
depth maps has been recently investigated by the works of Uck-
ermann et al. [5, 6], Pieropan et al. [7] and Abramov et al. [8].

Recently, 3D reconstruction methods, which aim at a real-
time registration of depth maps from multiple viewpoints ob-
tained from a moving sensor, are becoming increasingly ex-
ploited for higher level robotic perception tasks, since they of-
fer additional information for the surrounding environment and
are fundamental for robot navigation tasks: this is the case of
Kinect Fusion [9], as well as dense SLAM [10, 11, 12]. While
the former method yields a 3D mesh of the reconstructed envi-
ronment by exploiting a specific data representation internally
deployed, the output of SLAM methods is generally in the form

of a 3D point cloud.

As a consequence, in addition to segmentation methods
aimed at processing single depth maps, some works have re-
cently addressed the problem of segmenting 3D reconstruc-
tions obtained via Kinect Fusion or SLAM. Toward this goal,
segmentation methods specifically devised to work on 3D
meshes [13] or point clouds [14, 15, 16] are generally deployed
to yield a segmentation of such 3D representations, as proposed
in the object discovery approach of [4]. One main limitation
of such methods is clearly the computational cost, since they
cannot run in real-time. This aspect strongly limits their use
in those application scenarios characterized by real-time con-
straints, as it is the case in most of the aforementioned robotic
perception tasks. In addition, their computational burden tends
to increase with the size of the 3D mesh or point cloud. Hence,
to limit the overall computational requirements, only up to a
certain number of merged depth maps can be deployed with an
off-the-shelf hardware.

Aiming at the same goal, [17] proposes incremental ob-
ject segmentation in a dense RGB-D SLAM framework. The
method is based on Kintineous [10], a dense RGB-D SLAM
approach which builds upon KinectFusion [9], and relies on
a 3D representation called Truncated Sign Distance Function
(TSDF). In this method, newly merged depth frames in the
TSDF are, from time to time, extracted in the form of “slices”
(i.e., a 3D mesh) according to the estimated camera position,
segmented via graph-based segmentation [13], and merged into
a global segmentation map. Although this yields a much higher
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Figure 1: The proposed framework is capable of providing a long-standing SLAM reconstruction embedding a globally consistent segmentation of the scene
(bottom, left and right). It involves specific approaches for loop closure and failure recovery, which can enforce global label consistency among the segments while,
respectively, globally optimizing the camera poses and handling tracking failures. This can be seen by comparing the top left image (before loop closure) with the
bottom right one (after loop closure). In addition, an example of our failure recovery is portraryed in the bottom right image, which shows the merged result of the
two independent sequences shown in the top right image. Blue lines depicts the edges of the key-frame graph, while grey points represent the estimated camera
poses.

efficiency than the previous approaches, the use of a segmenta-
tion method such as [13] on each “slice” (represented as a 3D
mesh), as well as the fact that the segments extracted from each
slice are successively merged in the global segmentation map,
still does not allow this method to produce the segmentation of
the current input data in real-time, and, as stated in [17], gen-
erates an overall computational complexity that grows with the
size of the global segmentation map.

Moreover, the work by Salas-Moreno et al. [18] aims at real-
time plane segmentation and SLAM reconstruction. In this
method, planes are segmented from each input depth map, then
they are incrementally merged into a global model. The main
limitation of such a method in the context of segmentation is
the fact that it considers only planar surfaces, while curved sur-
faces are not segmented, posing a limit to the generality of the
processed shapes especially in the presence of arbitrary objects.

To tackle this problem, [19] proposed a SLAM-based place
recognition method based on object detection. The method rec-
ognizes the same place on different maps by detecting object
segments that are common between partially overlapping maps.
Although this method can attain label consistency of the objects
appearing in different maps, it is still limited to specific shapes,
since the object detection method relies on the objectness which
cannot detect relatively flat surfaces. Moreover, the segment
merging procedure is only partial, since it is carried out only on
those segments which are recognized as objects.

Our approach aims at overcoming the limitations of the meth-
ods currently available in literature by simultaneously perform-
ing reconstruction and segmentation. In particular, while re-
construction is carried out within a point-based fusion SLAM
framework so to deal with noisy 3D data, segments are ex-
tracted from the current depth frame and incrementally merged
together so to build a Global Segmentation Map (GSM) of the
reconstructed environment. As a consequence, it achieves the
important advantage of a constant runtime regardless of the
size of the GSM and the number of merged depth maps in
the global 3D model, which makes our approach particularly
suited to large-scale and long-standing reconstruction scenar-
ios. Furthermore, at each frame, the update procedure is effi-
cient enough to be carried out in real-time.

In addition to this approach, our work also includes two ad-
ditional contributions, aimed at making our system apt to deal
with large-scale and long-standing acquisitions. The first is a
peculiar loop closure stage, that, when loop closures are de-
tected, aims at obtaining a globally refined alignment of the
camera poses and of the segment labels so to yield a recon-
structed point cloud which is globally consistent not only in
terms of 3D geometry, but also in terms of 3D segments. An
example is shown in Fig. 1, which illustrates the difference be-
fore (top image) and after (bottom image) applying the pro-
posed label-consistent loop closure approach. The second con-
tribution is the ability to detect when tracking fails to register
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the current depth map to the global model due to the presence
of significant occlusions, rapid camera motions or presence of
big planar surfaces, and to perform re-localization of the newly
tracked sequences via key-frame matching. Also in this case,
the proposed approach aims at enforcing global consistency in
terms of detected segments. This yields a completely automatic
approach for failure recovery, suited to long-standing recon-
struction and segmentation of large-scale environments.

With regards to the experimental results, we first evalu-
ate our simultaneous reconstruction and segmentation frame-
work against the state-of-the-art segmentation algorithms for
3D meshes and point clouds in terms of efficiency and accu-
racy on a benchmark dataset, as well as qualitatively on diverse
indoor environments. Moreover, we evaluate the proposed loop
closure and failure recovery approaches on a benchmark dataset
suited to long-term reconstruction and characterized by multi-
ple tracking failures. Finally, we show qualitative results of the
large-scale reconstruction and segmentation obtained by our ap-
proach.

The paper is structured as follows. In Section 2, we describe
the framework for simultaneous reconstruction and segmenta-
tion. Successively, in Sections 3 and 4, we illustrate the pro-
posed loop closure approach and failure recovery algorithm, re-
spectively. In Section 5, we provide experimental evaluation of
the three main contributions of the paper. Finally, in Section 6,
we draw the conclusions.

2. Simultaneous Reconstruction and Segmentation

This section describes the proposed framework that performs
simultaneous reconstruction and segmentation at each input
depth frame. The flow diagram in Fig. 2 sketches the pipeline
of the algorithm. In this flowchart, the stages regarding SLAM
reconstruction are shown as blue boxes, while the stages regard-
ing segmentation are shown as red.

The SLAM algorithm employed by our system is based on
the point-based fusion method of Keller et al. [20]. Instead
of the standard voxel-based representations, such an approach
uses a point-based representation with normal information re-
ferred to as surfel, i.e. a disk-shaped entity which describes lo-
cally planar regions without connectivity information. The ad-
vantage of using surfel-based representations is that common
operations of map entities such as data association, insertion,
averaging and removal can be performed at a lower memory
footprint compared to voxel-based representations like Kinect
Fusion [9]. Throughout this approach, the camera pose of each
input depth map is estimated and each depth map is merged into
the global model.

At the segmentation stages, the objective is to incremen-
tally (and synergically with respect to the SLAM reconstruc-
tion) build up a Global Segmentation Map (GSM) in real-time
by properly propagating and merging segments extracted from
each depth map. Towards this goal, each depth map is seg-
mented first (Depth Map Segmentation stage). Although any
segmentation method devised to work on depth maps can be
employed at this stage, our approach uses an adapted version of
the real-time method proposed in [6] (described in Sec. 2.2.1).

Successively, during the Segment Label Propagation stage,
the segments building up the GSM and associated with each
surfel on the global model are propagated to the current
depth map by means of the estimated camera pose obtained
via SLAM. In particular, propagated segments are only those
whose surfaces overlap with the current geometry of the depth
map. This allows us to assign a label to each segment of the
depth map, which is consistent with that of the GSM (detailed
in Sec. 2.2.2). The goal of the successive Segment Merging
stage is to detect and merge segments in the GSM that have the
same correspondent in the current depth map, a circumstance
that typically occurs when, in the previous views, the underly-
ing surface had occluding foreground objects. We thus exploit
new vantage points along the SLAM sequence to improve the
consistency of the GSM (illustrated in SubSec. 2.2.3). Finally,
in the Segment Update stage, the labels of the GSM are updated
with the labels computed from the current depth map during the
Segment Label Propagation stage. Since the frame-wise depth
map segmentation might be noisy, it is undesirable to update
the segment label directly on the GSM from the correspond-
ing segment label on the depth map. Therefore, we assign each
element of the GSM to a confidence based on the various la-
bel observations, so that the update process can be carried out
only after each propagated label has reached a certain confi-
dence level, thus removing noisy label associations. This is
explained in Sec. 2.2.4.

In the next Subsection, we introduce notation and the stages
of our pipeline devoted to SLAM reconstruction. Moreover, the
stages carrying out the incremental segmentation are described
in Subsection 2.2.

2.1. SLAM Reconstruction
As proposed in [20], a global model (i.e., the output of the

SLAM reconstruction) consists of an unorganized set of surfels
s1, . . . , sk ∈ S, where each surfel sk is characterized by a 3D po-
sition vk ∈ R3, a normal nk ∈ R3, a radius rk ∈ R, a confidence
ck ∈ R and a time stamp tk ∈ N. In the Preprocessing stage, a
depth image Dt at current frame t is transformed into a metric
vertex map Ṽt(u) = P−1u̇Dt(u), with the camera intrinsic ma-
trix P, a depth map element u = (x, y)> in the image domain
u ∈ Ω ⊂ R2 and its homogeneous representation u̇. The vertex
map Ṽt is then smoothened by applying a bilateral filter [21]
so as to generate a version of the vertex map with less noise,
Vt. Thereafter, the normal map of current frame Nt is simply
generated from the vertex mapVt by central differences.

In the Camera Pose Estimation stage, the current 3D cam-
era pose Tt = [Rt, tt] ∈ SE(3) at frame t, which is composed
of a 3×3 rotation matrix Rt ∈ SO(3) and a 3D translation vec-
tor tt ∈ R3, is updated by incrementally aligning the filtered
vertex map Vt with the global model in the form of the ver-
tex map rendered from the previously estimated camera pose,
Vm

t−1 (hereinafter, we use the superscript “m” to indicate the
rendered version of a 3D point cloud with respect to a partic-
ular camera pose). The alignment is obtained using dense ICP
with a point-to-plane error metric computed by means of the
rendered normal map, Nm

t−1, and the fast projective data associ-
ation algorithm proposed in [9].
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Figure 2: Flow diagram of the proposed incremental segmentation pipeline applied at each input depth map.

During the Global Model Rendering stage, to compute cor-
respondences between the points on the current depth map and
the surfels on the global model, a index map I is created which
maps each surfel vertex of the global model v ∈ S with its pro-
jection on the current depth map at element u = π(PT−1

t v) via
standard pin-hole projection function π based on the updated
camera pose Tt. Additionally, the model vertex map Vm

t and
model normal map Nm

t are rendered to be used for the camera
pose estimation of the successive frame.

Finally, in the Global Model Update stage, the new surfel
measurements v obtained from the current depth map are either
added as unstable surfels or merged with the already present
surfels. The criteria of adding or merging is based on the dif-
ference of the 3D position of corresponding surfels, as well as
on the angle of their associated normals. If the new surfel mea-
surement is matched to certain already present surfels, the new
surfel is merged to the matched surfel. Merging v with a sur-
fel already present in S increments the associated confidence c.
After a certain number of stable measurements, unstable surfels
change their status to stable: this occurs when the associated
confidence grows above a threshold (set to 5 measurements).
Finally, if stable surfels in S are observed in front of a new sur-
fel measurement, the surfel is removed from the global model
and considered as an unstable point belonging to a dynamic ob-
ject.

2.2. Incremental Segmentation

These stages assume, as input, the current depth map Dt as
well as the global model reconstructed via SLAM up to the cur-
rent frame, S, as described in Sec. 2.1. Each depth map is also
associated with a vertex map, Vt, that stores the 3D vertices
v(u) of each element u in the depth map Dt. The goal is to in-
crementally build up and update a GSM L, which has the same
number of elements as the global model S, in which each ele-
ment represents a segment label. To this end, L is updated, at
each new frame, with the segmentation information associated
with the current depth map through the four stages illustrated in
the succeeding Subsections.

2.2.1. Depth map segmentation
To segment each input depth map Dt, we employ a fast seg-

mentation method inspired by the normal edge analysis carried
out in [6], where, at each frame, a binary edge map is com-
puted by comparing nearby normal angles, these edges repre-
senting the segment boundaries. In contrast to [6], we propose
to extract only convex-shape segments by explicitly detecting
concave boundaries. Indeed, this choice is motivated by recent

Figure 3: Normal map (left), normal and geometrical edge map (middle) and
resulting depth map segmentation with shading (right)

works exploiting graph-based segmentation [4, 17, 31], that in-
troduced a penalty for concave regions based on the assumption
that real-world objects mainly consist of convex shapes.

Inspired by these methods, we adapt the concave region
penalty to the normal edge-based segmentation deployed in our
pipeline. First, for each element u in the depth mapDt, we de-
tect concave boundaries by computing the dot product between
the normal at u, denoted as n(u), and each normal of the 8-
connected neighboring points of u, n(ui) for i = 1, . . . , 8. In
particular, we define an operator, Φi(u), as follows:

Φi(u) =

1 (v(ui) − v(u)) · n(u) > 0
n(u) · n(ui) otherwise

(1)

where v(u) and v(ui) being the associated 3D vertices from the
vertex map Vt. This operator takes the value 1 (i.e., its maxi-
mum value) when n(u) and n(ui) lie on a convex surface, while
it takes the dot product between such normals if they lie on a
concave shape. Hence, the higher the concavity, the lower the
value of Φi(u). We compute such an operator for all 8 neigh-
bors, then take its minimum:

Φ(u) = min
i=1,..,8

{Φi(u)} . (2)

Such an operator highlights concavities along at least one of
the eight directions around element u. We thus compute our
concavity-aware normal edge map by thresholding Φ(u) (we
set the threshold 0.94).

Another cue that we take into consideration is the distance
between two vertices in the 3D space: indeed, a commonly de-
ployed assumption is that depth borders define 3D segment bor-
ders. To reach this goal, we define another operator, Γ(u), that
takes into account the maximum 3D point-to-plane distance be-
tween an element u ∈ Dt and its 8 neighbors:

Γ(u) = max
i=1,..,8

{∣∣∣ (v (ui) − v (u)) · n (u)
∣∣∣} . (3)

To threshold Γ(u), we use an uncertainty measure σd (u) com-
puted following the noise model proposed in [22]. Such a mea-
sure adaptively takes into account the noise level of each point
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Figure 4: Toy example explaining the proposed Segment Propagation stage: first segments from the GSM are re-projected onto the current camera plane; then, they
are compared with those of the current depth map, so to identify corresponding segments between GSM and the camera plane.

of the depth map, assuming a noise model that increases with
the distance from the sensor. By thresholding Γ(u), we obtain
a set of geometrical edges, which are added to the previously
computed normal edges to yield the final edge map (shown in
Fig. 3, middle). Finally, we apply a connected component anal-
ysis algorithm to the edge map obtained to yield a label map
Lt, where each element u is associated with a segment label
Lt(u) = l j (shown in Fig. 3, right). In this map, the label 0
(unlabeled segment) is assigned to all points lying within the
detected concave regions and depth border regions.

2.2.2. Segment Label Propagation
As anticipated, the goal of this stage is to propagate the seg-

ments of the GSM that are visible from the current camera
viewpoint onto the label map of the current depth map. With
this in mind, correspondences between the visible segments of
the GSM, li ∈ L, and those on the current depth map, l j ∈ Lt,
are estimated by checking whether the underlying surface of
both segments are the same. The label propagation procedure
is illustrated in Fig. 4. As previously mentioned, given the cur-
rently estimated camera pose at time t, we re-project the global
model onto its image plane, yielding a vertex map Vm

t and a
normal mapNm

t . At the same time, we also compute the vertex
map and the normal map associated with the current depth map,
i.e. Vt, Nt (note the absence of superscript “m” to distinguish
them). In a similar fashion, we re-project the GSM, L, on the
same image plane, obtaining a label depth map Lm

t . Note that
this re-projection allows us to focus only on the elements of the
GSM currently visible from the current camera viewpoint and
to discard all GSM elements that are either occluded or outside
of the camera’s field of view, thus resulting in efficiency and
scalability with respect to the global model size.

To efficiently determine segment correspondences between
Lt and Lm

t , first the number of corresponding points Π(li, l j)
between all points with label li ∈ Lm

t and all points with label
l j ∈ Lt are determined. This is done by considering each pair of
elements li = Lm

t (u), l j = Lt(u),∀ u ∈ Dt, and by thresholding
the distance of the corresponding vertices along the viewing ray
and the angle between the corresponding normals:∣∣∣∣∣(Vt (u) −Vm

t (u)
)
·
Vt (u)
|Vt (u)|

∣∣∣∣∣ < σd (u) (4)

cos−1(Nt(u) · Nm
t (u)) > τN (5)

where σd (u) is the depth uncertainty measure previously used,

and τN is the normal angle threshold (in our experiments,
τN = 20◦). When both conditions are satisfied, Π(li, l j) gets
incremented. We normalize this term by the size of the corre-
sponding segment on Lt:

Π̃(li, l j) =
Π(li, l j)

#(l j)
(6)

(we refer to # as the cardinality operator for a segment).
Hence, Π̃(li, l j) represents the percentage of 3D overlap of

segment l j ∈ Lt with li ∈ Lm
t , computed as the intersection be-

tween the two segment point sets and normalized by the mag-
nitude of the point set of l j. It can be regarded as a confi-
dence measure for both segments to lie on the same 3D sur-
face. We can thus easily associate each segment on Lt with the
maximally-overlapping segment on Lm

t as follows:

Π̃max(l j) = max
li∈Lm

t

{
Π̃(li, l j)

}
. (7)

It is noteworthy to mention that, since we only take into ac-
count those labels of the GSM that appear on the current label
map Lm

t , the complexity of the operation in Equation (7) is in-
dependent from the size of the GSM.

Based on Π̃max(l j), we build up a propagated label map Lp
t

(depicted in Fig. 4, right) by applying to each element l ∈ Lp
t

the following rule:

1. If Π̃max(l j) ≥ τΩ, then l = li, i.e. we propagate the label
of the GSM segment that yielded the highest overlap. τΩ

is set, in our experiments, to 0.3 — i.e., we require at least
30% segment overlap;

2. otherwise, l = l j, i.e. we propagate the label l j directly
from Lt.

Finally, to avoid including in Lp
t new segments derived from

possible data artifacts or bordering regions, we assign the label
0 to l every time the newly propagated segment from Lt has a
size smaller than a certain threshold (50 pixels in our experi-
ments).

2.2.3. Segment merging
During the label propagation stage, different segments on the

GSM might correspond to the same segments on the depth map.
This is typically the case for a surface which is initially sepa-
rated into multiple segments due to occluding foreground ob-
jects: when the camera viewpoint changes, the occlusion might
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Figure 5: Benefits of the proposed Segment Merging procedure: an object ini-
tially segmented into two parts due to an occluding foreground surface (left),
is then merged into the same segment when a different camera view reveals the
right connectivity (middle and right)

disappear to reveal that such multiple segments are indeed part
of the same surface. An example of such a situation is depicted
in Fig. 5. The goal of this stage is to identify and merge together
these corresponding segments on the GSM.

To determine whether the underlying surface of the two seg-
ments is the same based on their 3D overlap, we rely on the
same criterion used in the previous Segment Propagation stage.
In particular, during the computation of term Π̃(l j), we identify
all segments li ∈ Lm

t yielding an overlap higher than a certain
threshold with l j ∈ Lt (set to 0.2 in our experiments). Such
segments form the label set Ll j .

Since the segments obtained from the depth map are often
noisy, it is not robust to perform such a merging procedure only
from the observations derived from a single depth map. There-
fore, we introduce a pairwise confidence that estimates to what
extent a pair of segments are part of the same surface based on
all input data seen so far, inspired by the confidence measure
used on each surfel with the SLAM method [20]. Specifically,
all possible label pairs (la, lb), where la, lb ∈ Ll j and la , lb, are
associated with a confidence Ψm

t (la, lb). If a pair (la, lb) is iden-
tified for the first time, its associated confidence is initialized as
follows: Ψm

t (la, lb) = 0. Instead, when such a segment pair has
been already observed, its associated confidence is updated by
incrementing it:

Ψm
t (la, lb) = Ψm

t−1 (la, lb) + 1 . (8)

Finally, for all those segment pairs which are not observed at
the current time t, but for which a confidence was already ini-
tialized in the previous frames, their confidence is updated as
follows:

Ψm
t (la, lb) = max

(
0,Ψm

t−1(la, lb) − 1
)
. (9)

In addition, when the confidence associated to a certain seg-
ment pair grows higher than a specific threshold (set to 3 in our
experiments), the segment pair (la, lb) is merged by replacing
the label la with label lb in L.

2.2.4. Segment Update
The last step of the incremental segmentation procedure con-

cerns updating the GSM with the label map obtained at the end
of the Segment Label Propagation stage, i.e. Lp

t . Analogously
to the Segment Merging stage, it is not robust to directly mod-
ify our GSM based on the label indications contained in Lp

t ,
since such a label map, being based on one single depth frame,
usually contains noisy information. Hence, and similarly to the
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previous stage, we follow a confidence based approach, by as-
sociating each element of the GSM mapL(v) with a confidence
Ψu

t (v).
To initialize and update such a confidence, for each element

L
p
t (u), we compute the corresponding GSM element L(v) by

means of the estimated camera pose, and follow these three
cases:

1. If L(v) is unlabeled (e.g., the corresponding surfel has
been just added due to the new observation), it is set to
the label of the new observation: L(v) = L

p
t (u), while the

confidence is initialized as Ψu
t (v) = 0.

2. If the labels of u and v are the same, the confidence is
incremented:

Ψu
t (v) = min

(
Ψu

t−1(v) + 1,Ψu
max

)
(10)

where Ψu
max is the cap value for the confidence associated

surfels (set to 10 in our experiments).
3. If the labels of u and v are different, the label confidence

is decreased:

Ψu
t (v) = max

(
0,Ψu

t−1(v) − 1
)
. (11)

When the confidence associated with a point L(v) drops to 0,
it means that the segment is frequently corresponded to different
label, and the current label is not confident. In such a case, the
point is assigned the corresponding label on Lp

t , i.e. L(v) =

L
p
t (u).

3. Loop Closure with Global Label Consistency

A typical problem of SLAM reconstruction algorithms is the
accumulation of the camera pose estimation error from frame-
to-frame, resulting in remarkable drifts in time. To alleviate
such problems when dealing with large-scale reconstructions,
graph optimization and loop closure are usually exploited. The
objective is to detect when the current key-frame matches a pre-
viously seen one and perform a global optimization on the key-
frame graph so to reduce the accumulated drift error in the over-
all reconstruction [12, 23]. Importantly, when applying the loop
closure in our framework to produce a globally consistent seg-
mentation map, we also need to enforce a global optimization
in terms of overlapping segments between pairs of connected
key-frames.

To this goal, we propose a loop closure and graph optimiza-
tion approach based on four stages, as depicted in Fig. 6. Here,
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the input is represented by a stream of depth maps acquired
from a moving 3D/RGB-D sensor, which are processed one at
a time. These four stages are run on an independent thread as a
back-end process, in order to keep reconstruction and segmen-
tation real-time. The proposed method is based on the pose-
graph based loop closure of [12, 23]. To detect loop-closure,
we use a place recognition approach based on matching the en-
tire image associated to each key-frame [24]. In contrast to
[12, 23, 24], our loop-closure enforces global label consistency
on the GSM by matching segments on key-frames. In addition,
we employ a set of synthesized depth map rendered from the
Global Model to improve key-frame matching, as illustrated in
the following.

To achieve this goal, we utilize the input variables given as
a set of key-frames k1, .., kn ∈ K as well as the global model S
and GSM L. Each key-frame kn consists of the key-frame pose
Tkn , the model vertex mapVm

kn
, the model normal map Nm

kn
, the

model label mapLm
kn

and the index map of its surfels Ikn , which
are rendered from the global model (see Sec. 2.1).

3.1. Key-frame collection
While the system is carrying out reconstruction and segmen-

tation, a subset of frames is collected as key-frames. To deter-
mine whether the current frame should be considered as a key-
frame, we threshold the relative translation and angle distance
between the current estimated pose and nearest pose from the
accumulated set of key-frames K . If both the angle and trans-
lation distance are larger than the threshold, the current frame
is selected as key-frame. Note that the key-frame only relates
to the surfels that are updated within the last 150 frames: such
limitation aims to prevent a contamination of the key-frame due
to inaccurate surfels caused by the presence of drift error.

3.2. Key-frame Graph Creation
After the insertion of a key-frame, key-frame pairs having

overlapping viewing volumes and overlapping segments are de-
tected by means of a spatial criterion and a similarity criterion,
respectively. As for the former criterion, given a newly inserted
key-frame ki and the accumulated key-frames k1, .., kn ∈ K ,
key-frame pair sharing overlapping viewing volume are de-
tected by evaluating the similarity between their respective
poses. The distance between two poses is the same as the one
deployed for key-frame collection, i.e. based on thresholding
the angle and translation distances. In particular, all key-frame
pairs with a pose angle lower than 20 degrees are sorted by their
translation distance. The best nl key-frames are selected as po-
tentially connected key-frames k1, .., knl ∈ Kl (nl is set to 5 in
our experiments).

This spatial criterion, based solely on the key-frame pose,
can fail due to the presence of severe tracking drift affecting the
pose of each key-frame. For this reason, we apply an additional
similarity criterion based on matching the rendered depth maps
associated to each key-frame. To compare them, we calculate
the Sum of Absolute Distances (SAD) of the depth components
of the vertex map between ki and all other key-frames:

SAD(ki, k) =
∑
u∈Dt

∣∣∣Vm
ki

(u) .z −Vm
k (u) .z

∣∣∣ , k ∈ K (12)

where the operator .z indicates the depth component of the ver-
tex map. All key-frame pairs are sorted based on the obtained
SAD distance, and the best ns are retained as potential loop-
closing key-frames k1, .., kns ∈ Ks (ns is set to 5).

After detecting potential key-frames connected with the
newly inserted key-frame ki, their relative pose is refined via
ICP. If ICP fails to converge, then the potential key-frame
is discarded. All remaining key-frames are marked as con-
nected with ki, and an edge is created for each key-frame pair
E(ki, k j) ∈ E, ki ∈ K , ki ∈ K and inserted in the key-frame
graph E. The edge of key-frame graph is associated with the
index of the two key-frames, as well as with their relative pose
E(i, j) = {ki, k j,Ti, j}.

3.3. Key-frame Segment Merging

In general, the obtained key-frame pairs will present incon-
sistencies in terms of the labels associated to the segment ap-
pearing in each respective key-frame. To solve this, a global la-
bel consistency stage is carried out on the key-frame graph, by
matching segment shapes on connected key-frames and merg-
ing labels on those segments presenting a significant overlap.

Contrary to the case described in Subsection 2.2.2 where
label propagation was performed between two already aligned
vertex maps, the pair of key-frames in this case is not aligned

to each other. The alignment of the vertex mapVm
k j

, the normal
map Nm

k j
and the label map Lm

k j
is performed by means of the

relative pose of the key-frame pair Ti, j = [Ri, j, ti, j] such that:

Ṽm
k j

(ũ) = Ti, jV
m
k j

(u) (13)

Ñm
k j

(ũ) = Ri, jN
m
k j

(u) (14)

L̃m
k j

(ũ) = Lm
k j

(u) (15)

where each transformed and reprojected pixel location is ob-
tained as: ũ = π(KTi, jV

m
k j

(u)). Then, the same algorithm for la-
bel propagation described in Subsection 2.2.2 is applied on the
aligned vertex, normal and label maps. Therefore, by applying
such procedure for all edges associated to the newly inserted
key-frame, the segment labels on all key-frame pairs with over-
lapping viewing volume are kept globally consistent.

3.4. Key-frame Graph Optimization

Once the key-frame graph is created, the poses of each key-
frame are refined via graph optimization [25]. Using the relative
key-frame pose Ti, j constrained on key-frame edges and the ab-
solute key-frame poses Ti,T j, the following error is minimized:

E =
(
Ti, jT jT−1

i

)>
Σ−1

i, j Ti, jT jT−1
i . (16)

Here, Σi, j is the uncertainty of relative pose and it is calculated
from the Jacobian of the alignment error provided by dense ICP.

After pose optimization, the vertex v and associated normal
n of each surfel s are also updated by averaging the effects of
the 6DOF increments ∆Tn = [∆Rn,∆tn] across the key-frames:

v =
∑
k∈Kv

∆Tkv
|Kv|

, n =
∑
k∈Kv

∆Rk n
|Kv|

(17)
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Figure 7: Flow diagram of the proposed pipeline for failure recovery.

where Kv is the set of key-frames observing the same surfel s.
At the end of this process, the pose and associated surfels at
each key-frame are globally optimized.

4. Failure recovery

While large-scale reconstruction can typically be achieved
via graph optimization and loop closure as explained in the pre-
vious Section, another typical limitation of SLAM-based recon-
struction approaches is represented by tracking failure. When
tracking fails, a specific failure recovery algorithm has to be
employed to first detect the failure, then to match the newly
acquired sequence with the previously obtained reconstruction.

To recover from tracking failures, we deploy an approach
based on place recognition and on matching the entire image
of the stored key-frames [24]. Contrary to [24], our method
introduces a temporary map, used while tracking is lost. Af-
ter a tracking failure, the reconstructed map is stashed, and a
temporary map is initialized with the current depth frame, from
which the system restarts performing simultaneous reconstruc-
tion and segmentation. At the same time, the system performs
failure recovery via key-frame matching: once matching with
a previous key-frame is successful, the stashed map is merged
with the temporary map, applying label propagation to enforce
global segmentation consistency between the two maps. Due
to this approach, the system can keep on performing recon-
struction and segmentation after tracking failures, guaranteeing
long-standing functioning to our framework. The stages carry-
ing out failure recovery are depicted in Fig. 7.

4.1. Failure Detection
Failure recovery is initiated when tracking fails and the cur-

rent camera pose cannot be retrieved. A tracking failure is de-
tected by thresholding the mean residual between the vertex
mapVt (u) on current frame and model vertex mapVm

t (u) with
model normal map Nm

t (u) on point to plane error metrics:

∑
u∈Dt

∣∣∣(Vt (u) −Vm
t (u)) · Nm

t (u)
∣∣∣

|Dt |
< τV (18)

where |Dt | is the number of point on input vertex map, and τN is
the normal angle threshold. when this averaging residual error
exceeds a threshold, the tracking is considered to be failed.

Once a tracking failure is detected, the current map M =

{S,L,K} – consisting of the global model S, the GSM L and
their set of key-frames K – is stashed as a background map
Mb = M,Mb = {Sb,Lb,Kb}. Then, a temporary map is ini-
tialized with the current depth frame, and used thereafter as cur-
rent map.

4.2. Relocalization
After the creation of the temporary map, each new depth

frame is matched with the key-frames in the background map.
The objective is to recover the camera pose with respect to the
coordinate frame of the background map. Similarly to the key-
frame matching carried out within the proposed loop closure in
Subsection 3.2, we calculate the SAD between the depth com-
ponents of the vertex map of each key-frame and that of the
current frame, and determine the key-frame yielding the mini-
mum SAD, i.e. k̃:

k̃ = arg min
k∈Kb

∑
u∈Dt

∣∣∣Vm
t (u) .z −Vm

k (u) .z
∣∣∣ . (19)

The absolute pose Tk̃ associated to k̃ is used as the initial
guess of the camera pose with respect to the background map.
Then, this pose is refined by computing the relative pose T(b, k̃)
via ICP. If the residual error on the estimation of such relative
pose is higher than a certain threshold, the estimated pose is
considered incorrect and the current frame is discarded. Other-
wise, the camera pose of the current frame with respect to the
background map is computed as: Tb = Tb,k̃Tk̃.

4.3. Temporary Map Merging
After failure recovery is successful, the system needs to

merge the temporary map with the background map. Since the
camera pose on the temporary map Tp has already been esti-
mated by the SLAM reconstruction stages, the transformation
from the coordinate system of the temporary map to that of the
background map can be computed as:

Tb,p = TbT−1
p , Tb,p = [Rb,p, tb,p] . (20)

Then, the surfel vertex and normal vp, np ∈ Sp, and key-
frame position Tkp ∈ Kp on the temporary map are transformed
into the coordinate system on the background map and merged
together:

ṽp = Tb,pvp (21)
ñp = Rb,pnp (22)
T̃kp = Tb,pTkp . (23)

While merging, label propagation between overlapping seg-
ments among the key-frames of the temporary map and those
of the background map is necessary to obtain a globally consis-
tent segmentation. This is done by applying the key-frame label
propagation algorithm described in Subsection 3.2.

5. Experimental Results

In this section, we provide quantitative and qualitative exper-
imental results to validate the three main contributions of our
method. In Subsection 5.1 we evaluate the simultaneous re-
construction and segmentation framework in terms of compu-
tational efficiency and segmentation accuracy, and we demon-
strate how it can enable real-time and accurate reconstruction
and segmentation of diverse indoor environments. Succes-
sively, in Subsection 5.2, we test the proposed loop closure and
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Figure 8: Comparison between the proposed segmentation framework and [13]
in terms of measured execution times as a function of, respectively, (a) the
number of input frames merged into the SLAM sequence, and (b) the total
number of points of the reconstructed scene.

failure recovery approaches on a benchmark dataset designed
to include tracking failures and loop closures.

We wish to point out that an implementation of the proposed
incremental segmentation framework is publicly available1.

5.1. Evaluation in terms of efficiency and accuracy
We compare the proposed simultaneous reconstruction and

segmentation framework against the graph-based segmentation
algorithm of Felzenszwalb and Huttenlocher [13], since it is
a widely used segmentation method for reconstructed 3D data
[4], whose implementation is publicly available2. Since this
approach relies on the 3D mesh topology in order to build the
segment graph, to test it on our point clouds reconstructed via
SLAM, we have employed the fast meshing algorithm proposed
in [26], whose implementation is publicly available in the Point
Cloud Library (PCL)3.

For the comparison, we have used one sequence (fr1/room)
from the public TUM RGB-D SLAM benchmark dataset [27].

1campar.in.tum.de/Chair/ProjectInSeg
2cs.stanford.edu/people/karpathy/discovery
3www.pointclouds.org

Table 1: Measured execution times of each stage of the proposed incremental
segmentation averaged on the fr1/room sequence [27] at different resolutions of
the input frames (all stages are implemented on CPU)

Number of frames 739 739 739
Resolution of depth map 160×120 320×240 640×480

Depth Map Segmentation [ms] 1.81 7.63 32.39
Segment Label Propagation [ms] 1.5 5.58 29.2

Segment Merging [ms] 0.08 0.09 0.11
Segment Update [ms] 0.13 0.51 1.92

Segmentation Total [ms] 3.52 13.82 63.58
Segmentation Frame-Rate [fps] 284 72 15

Figure 9: Reconstruction results with texture at different resolutions of the input
depth map (from left to right: 160×120, 320×240, 640×480 pixel resolution).

Both algorithms have been tested on the same platforms, a stan-
dard laptop PC equipped with an Intel Core i7 CPU at 2.6GHz
with 16GB of RAM. Both algorithms run totally on CPU pro-
cessing (no GPU optimization of any part). The resolution of
the input depth maps is converted to 160x120 to allow the dense
SLAM framework employed to run in real-time on such CPU.

Fig. 8 shows the comparison in terms of efficiency between
the two algorithms. For both algorithms, only the time required
for segmentation is measured, while the time spent on SLAM
is not taken into account. In the Figure, the measured execu-
tion times of both methods are plotted as a function of, respec-
tively, the number of input frames merged into the SLAM se-
quence (Fig. 8,a), and (the total number of points of the recon-
structed scene (Fig. 8, b), so to compare the two methods in
terms of scalability with the size of reconstructed point clouds.
As shown in the Figure, while [13] exhibits a clearly linear
complexity with the point cloud size, the proposed algorithm
demonstrates a constant complexity with such size, thanks to
the incremental nature of its approach. Also, the proposed
method demonstrates real-time capabilities, running at an av-
erage of 3.5 ms per frame.

Also, we wish to point out here the advantage with respect
to the method in [17], which, as mentioned in Sec. 1, also
performs incremental segmentation of 3D reconstructions. As
stated in Sect. IV of [17], the complexity of this method grows
on the size of the map, and its run-time exhibits a linear depen-
dency with the number of points of the 3D reconstruction, as
reported by the results in Fig. 5 in [17]. Our method, instead,
due to the properties outlined in Subsection 2.2, has a constant
run-time with respect to the global model size, as shown in Fig.
8.

The execution time measured relatively to each stage in-
volved in our incremental segmentation, averaged over the
benchmark fr1/room sequence, is summarized in Table 1, while
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Figure 10: Qualitative comparison between the segmentation obtained by the proposed method (left) and that obtained by the method in [13] (right).

the final reconstruction result on each input resolution is shown
in Fig. 9, and the final segmentation of the whole sequence is
shown in Fig. 10.

As shown by the table, the whole segmentation framework
can run in real-time at different resolutions of the input depth
map, yielding 284 frame per second on the 160×120 resolu-
tion, and running at 72 and 15 frames per second at a resolu-
tion of, respectively, 320×240 and 640×480. We expect that
even higher frame rates could be achieved if the segmentation
stages were to be processed on GPU. Also interestingly, the
Table shows that the most time consuming stage is the initial
frame-wise segmentation step: hence, an even higher efficiency
can be achieved by plugging in a different, more efficient frame-
wise segmentation algorithm with respect to the one currently
being deployed.

As for the reconstruction quality, we wish to point out that
different resolutions of the input depth map simply affect the
density and detail of the reconstructed point cloud, as shown by
the Fig. 9. Hence, the input resolution should be chosen so as to
satisfy the required trade-off between expected level of details
of the final reconstruction and computational cost.

A snapshot of the results of reconstruction and segmenta-
tion obtained with our method, together with the ground truth,
are shown in Fig. 11. The obtained weighted average overlap
scores and unweighted one are shown in Table 2.

In addition to previous results, we also compare our method
with [13] in terms of the segmentation accuracy of the same
benchmark sequence, i.e. fr1/room from the TUM RGB-D
SLAM benchmark. Fig. 10 shows a qualitative comparison in
terms of segmentation yielded by the proposed framework (left)
and that given by [13] (right). Overall, while the segmentation

accuracy appears to be comparable, the proposed method seems
able to better segment small objects on top of planar surfaces,
as witnessed also by the right close-up snapshot shown at the
bottom of the Figure.

Additionally, we show some quantitative results in terms of
segmentation accuracy with human annotated ground truth of
labeled point clouds. Specifically, we used 14 sequences from
the public RGB-D Scenes Dataset v2 [32]. The dataset provides
manually labeled point clouds with RGB-D image sequences,
although the ground truth segmentation relates to semantic cate-
gories (i.e., semantic segmentation). To provide quantitative re-
sults, we calculated a weighted average overlap score between
our segmented point clouds and the ground truth, which is an
extended version of the area-weighted average overlap score
proposed in [33].

The weighted average overlap score for a reconstructed point
cloud is computed as

S coreweighted =

∑
i |Gi|max j Overlap

(
Gi, S j

)∑
i |Gi|

(24)

where Gi is the ith ground truth segment, |Gi| is the number of
points of Gi, S j is the jth segment from our incremental seg-
mentation, and Overlap

(
Gi, S j

)
=

Gi∩S j

Gi∪S j
. The overlap between

the reconstructed point clouds and the ground truth is calcu-
lated using a fast Nearest Neighbor Search method such as a
kd-tree. Moreover, we compute also the unweighted average
overlap score as:

S coreunweighted =
∑

i

max j Overlap
(
Gi, S j

)
Ng

(25)
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Table 2: Weighted and unweighted average overlap scores yielded by our approach on the 14 sequences of the public RGB-D Scenes Dataset v2 [32]

Scene 01 02 03 04 05 06 07 08 09 10 11 12 13 14 Total
Weighted score [%] 54.4 52.9 55.4 51.7 78.1 77.6 83.9 83.5 63.8 62.1 59.0 60.2 65.9 67.5 65.4

Unweighted score [%] 70.0 69.1 70.0 68.1 85.7 67.0 87.0 77.0 80.4 75.2 66.9 65.0 87.3 80.8 74.9

Figure 11: Results of reconstruction and segmentation obtained with our method and compared to the ground truth on the public RGB-D Scenes Dataset v2 [32].
From left to right: our result and the ground truth on the sequence of ( scene 07) , our result and the ground truth on the sequence of ( scene 14).

0 [mm] 30 [mm]

Figure 12: Reconstruction and segmentation result on one sequence of the ICL-NUIM dataset [30]. From left to right: reconstruction result with texture, segmentation
result, point-wise reconstruction error (ranging from 0 mm(blue) to 30 mm (red)).

where Ng is the number of ground truth segments.
Two examples of the result of reconstruction and segmenta-

tion obtained with our method, together with the ground truth,
are shown in Fig. 11. The obtained weighted and unweighted
average overlap scores over all 14 dataset sequences are shown
in Table 2. Overall, we can notice that, although providing an
accurate segmentation, our method tends to lean towards over-
segmentation, mostly because our approach detains geometri-
cally connected 3D components, in contrast with the ground
truth which defines segments as semantically connected com-
ponents.

Moreover, we show a quantitative result in terms of recon-
struction accuracy on a synthetic dataset. Specifically, we used
one sequence (lr kt1 with noise) from the public ICL-NUIM
dataset [30]. The sequence is made by rendering a mesh model
with adding a synthetic depth noise. The ground truth model is
also provided. Results are reported in Fig. 12, where the left
image shows the reconstruction result with texture, the middle
image shows the segmentation result and the right image shows
the reconstruction error on each point compared to the ground
truth. Notably, the mean point-wise reconstruction error on the
whole point cloud is 9.73 mm.

Finally, we show some qualitative results of the segmentation
reported by our method for reconstructed indoor environments
acquired with our own setup based on a PrimeSense Carmine
1.09 RGB-D sensor. Three examples are shown in Figure 13
together with zoomed-in details, showing, from left to right,
a kitchen-like scenario, a table-top scenario and a large scale
reconstruction across two rooms.

5.2. Evaluation of loop closure and failure recovery

We evaluate here the capability of the proposed loop clo-
sure and failure recovery approaches to provide large-scale
and long-standing reconstructions with globally consistent seg-
mentation. To this aim, we have selected a subset of se-
quences from three benchmark datasets that include loop clo-
sures and independent sequences from the same scene: the
7Scenes dataset[29], the 3D Scene dataset[28] and the ICL-
NUIM dataset [30].

To evaluate the proposed loop closure with global label con-
sistency, we used the sequence named Copy room from 3D
Scene dataset[28]. The result is shown in Fig. 14, where the
loop closure is highlighted with a red rectangle. The top image
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Figure 13: Reconstruction and segmentation yielded by the proposed framework relatively to, from left to right: a kitchen-like scenario, a table-top scenario, a large
scale reconstruction across two rooms. Bottom row reports zoomed-in segmentation details of each scene.

Figure 14: The reconstruction and segmentation result obtained by our method before (top) and after the proposed loop closure with global label consistency
(bottom) on the (Copy room) sequence from the public 3D Scene benchmark dataset [28]. The loop closure is highlighted with a red rectangle.

and bottom images show the result, respectively, before and af-
ter loop closure. As it can be seen, the proposed approach is
able to obtain global consistency among the segment labels, as
well as in terms of point cloud geometry.

In addition, to evaluate the proposed failure recovery algo-
rithm, we used 2 scenes (fire, office), containining four and
ten sequences respectively, from the public 7Scenes benchmark
dataset [29]. The dataset on each scene consists of multiple
independent sequences acquired within the same environment
but including different viewpoints. Also, the sequences include
significant viewpoint jumps when the sequence changes, simu-
lating potential tracking failures. The results of failure recov-
ery on the office scene is shown in Fig. 1. The top right image
shows the reconstructed map relatively to two independent se-

quences (i.e., before and after tracking is lost), while the bottom
right image shows the merged result by the proposed approach.
In the figure, gray points denote the key-frames, while blue
lines are key-frame edges. Thanks to relocalization and label
propagation based on graph optimization, globally consistency
among segment labels is enforced before and after tracking fail-
ure. The overall results are shown in Fig. 15. The left part in
the figure shows the results on the fire scene, and the right part
shows the results on the office scene. On each scene, The center
image (bigger one) represents the final map merging all inde-
pendent sequences, which are respectively shown in the smaller
images. The final map demonstrates that the proposed failure
recovery algorithm is able to withstand several tracking failures
without label contamination.
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Figure 15: Reconstruction and segmentation results on the fire (left) and office (right) sequences, both from the 7Scenes benchmark dataset [29]. In both figures,
the central image is the final map obtained by merging all independent sequences via the proposed failure recovery approach, while smaller images show the result
from each independent sequence from the same scene.

Additional material concerning the reconstructions obtained
on the presented benchmark sequences, as well as further re-
sults on real data acquired by our own is available in the sup-
plementary material attached with this submission.

6. Conclusion

We have proposed a framework for simultaneous reconstruc-
tion and segmentation, where segments obtained from each
depth frame are incrementally merged within a unified segmen-
tation model of the scene built on top of the SLAM reconstruc-
tion. Conversely to available methods in literature, our method
demonstrated the capability of processing frames in real-time,
and to scale advantageously with the size of the reconstructed
point cloud. Moreover, we proposed an approach based on loop
closure and failure recovery that makes our framework able to
cope with large scale and long standing reconstructions while
maintaining the segmentation globally consistent.

We believe that large scale and long standing segmentation of
reconstructed environments can pave the way to new directions
in the field of robotic perception, computer vision and scene un-
derstanding. A few examples are represented by real-time ob-
ject discovery in unknown environments (currently done offline
[4]), real-time object recognition from fully-3D point clouds
(currently done on single view only [1]), real-time 3D tracking
and augumented reality on fully-3D point clouds.
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