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Abstract—In this paper, we present a method for the automated 
detection of lumen and media–adventitia border in intravascular 
ultrasound (IVUS) images. The method is based on non-
parametric deformable models for accurate IVUS image 
segmentation.The proposed method is evaluated using 50 IVUS 
frames from 10 patients. The obtained results demonstrate that 
our method is statistically accurate and capable to identify 
boundaries automatically. In IVUS images Calcified deposits 
appear as bright echoes between two detected borders and 
obstruct the penetration of ultrasound, a phenomenon known as 
“acoustic shadowing.”We visualized the segmented frames and 
highlighted the calcified regions in the 3D representation of 
IVUS images.   

1 Introduction 

Intravascular Ultrasound (IVUS) is a catheter-based medical 
imaging technique. Using a specially designed ultrasound 
catheter it provides real-time tomographic images of the 
arterial wall that shows the morphology and histological 
properties of a cross-section of the vessel. IVUS not only 
provides a quantitative assessment of the vessels' wall but 
also introduces information about the nature of atherosclerotic 
lesions as well as the plaque shape and size [1], [2]. The first 
step for plaque characterization is segmentation and 
processing of IVUS images and with a better segmentation 
we will have a better classification.  Nevertheless, it is a 
difficult, subjective and time-consuming procedure to 
perform the analysis of segmentation manually. Therefore, 
there is an increasing interest in developing automatic tissue 
segmentation algorithms for IVUS images [3]. 
Several algorithms for lumen and media-Adventitia contours 
detection have been reported in the last decade. Various edge 
detection and contour identification techniques together with 
different border optimization algorithms such as dynamic 
programming, graph searching, simulated annealing, solution 
of partial differential equations, and genetic algorithms have 
been applied to the IVUS images in these articles [4], [5]. 

Recent approaches are mostly based on the active contours 
together with minimizing an energy or cost function which 
guides a snake towards the vessel borders.  
The active contours used in the previous approaches are 
mostly based on a kind of parametric deformable model. 
However, parametric deformable models have two main 
limitations. First, in situations where the initial model and 
desired object boundary differ greatly in size and shape, the 
model must be re-parameterized dynamically to faithfully 
recover the object boundary. The second limitation is that it 
has difficulty dealing with topological adaptation such as 
splitting or merging model parts, a useful property for 
recovering either multiple objects or objects with unknown 
topology [6].  
In this work, we focus on the development and validation of 
an automated method based on non-parametric deformable 
models for accurate IVUS image segmentation. 
While IVUS images are noisy and the actual boundaries of 
regions of interest are difficult to be identified in many cases, 
it is essential to perform a denoising method before any edge 
detection algorithm. Many methods are known to be useful in 
smoothing noisy images. In this research anisotropic diffusion 
is used to preserve and to enhance edges in IVUS images. 
The non-parametric models (also referred to as geometric 
deformable models) are used for boundary detection. These 
models are based on the curve evolution theory and the level 
set method. It provides an elegant solution to address the 
above mentioned primary limitation of the parametric 
deformable models. Other advantages of the geometric 
deformable models compared to parametric formulation 
include: (1) no parameterization of the contour, (2) 
topological flexibility, (3) good numerical stability, and (4) 
straightforward extension of the 2D formulation to n-D. The 
results of the application of the proposed algorithm to real 
IVUS images of different patients are presented and 
compared with snake methods. 
Fibrous or calcified tissues are relatively echogenic. Calcium 
obstructs ultrasound penetration, obscuring the underling 
vessel wall (acoustic shadowing; Figure 1). After identifying 
the plaque region that is between the detected borders, 



visualized the segmented frames in 3D form and highlight the 
calcified regions. 
 

 
 

Fig.1.Mixed Fibrous and Calcified (shadowing) 

2 Method 

 
2.1 Pre Processing 
 
In medical ultrasonic images like IVUS, edges and local 
details are the most interesting part for cardiologists. 
Therefore, to preserve and to enhance edges and local details 
on denoising are very important. 
A feature preserving ultrasonic image denoising is put forth, 
which includes the anisotropic diffusion, which is controlled 
by the optimum smoothing time. The anisotropic diffusion is 
governed by the local coordinate transformation and the first 
and the second order normal derivatives of the image [7]. 
 
The operators of this class are capable of smoothing images 
without blurring the boundaries between their homogeneous 
regions. One choice is to use the following affine invariant 
anisotropic smoothing filter: 
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Here I(x, y, t) represents the image to be filtered, which is 
now considered to be a function of two spatial coordinates x 
and y, as well as of time t. It can be shown, that the above 
equation involving only the first and second order spatial 
derivatives of the image I defines the affine geometric heat 
flow, under which the level sets of I undergo affine curve 
shortening. Moreover, such a diffusion process has the 
desirable characteristics of preserving edges while exhibiting 
numerical stability and straightforward computation [8]. 
 
 
2.2 Borders Detection 
 
Manual processing of IVUS images is a tedious and time 
consuming procedure. A lot of effort has been made in order 
to develop an accurate automated method for the detection of 
the regions of interest in IVUS images. 
 Many restrictions in automated segmentation of IVUS 
images derive from the quality of the image, such as the lack 

of homogeneity of regions of interest and shadowed regions, 
which are produced by the presence of calcium. 
In this work, we focus on the development and validation of 
automated methods based on deformable models for accurate 
IVUS image segmentation[8], [9]. 
 
 

2.2.1 Geometric Deformable Models 
 

In the second stage of the proposed algorithm, the Geometric 
deformable model scheme is used for vessel boundary 
detection [10], [11] . 
Let us consider a dynamic curve as ( ) ( ) ( )[ ]tsYtsXtsX ,,,, =  
where t is the time and s  is the curve parameter. Let us also 
to denote the curve's inward unit normal as N  and its 
curvature asκ . The evolution of the curve along its normal 
direction can be characterized by the following partial 
differential equation: 

( )NV
t
X κ=
∂
∂

                 (2) 

 ( )κV   is speed function since it determines the speed of the 
curve evolution. In the level set method, the curve is 
represented implicitly as a level set of a 2D scalar function 
which is usually defined on the same domain as the image 
itself. The level set is defined as the set of points that have the 
same function value.  
 
We now derive the level set embedding of the curve evolution 
equation (1). Given a level set function ( )tyx ,,φ  with the 
contour ( )tsX ,  as its zero level set we have: 
 

( )[ ] 0,, =ttsXφ      (3) 
 
Differentiating the above equation with respect to t and using 
the chain rule, we obtain: 
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Where φ∇  denotes the gradient ofφ , assuming that φ  is 
negative inside the zero level set and positive outside it. 
Accordingly, the inward unit normal to the level set curve is 
given by 

φ
φ

∇
∇
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Using Eqs. (1) and (4), the Eq. (3) can be rewritten as: 
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Where κ  the curvature at the zero level set is given by: 
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The relationship between Eq. (2) and Eq. (6) provides the 
basis for performing curve evolution using the level set 
method. Since the evolution equation (6) is derived for the 
zero level set only, the speed function ( )κV , in general, is not 
defined on other level sets. Hence, we need a method to 
extend the speed function ( )κV  to all of the level sets. A 
speed function that is used by geometric deformable contours, 
takes the following form:  
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A positive value of V0 shrinks the curve while a negative V0 
expands it. The curve evolution is coupled with the image 
data through a multiplicative stopping term. This scheme can 
work well for objects that have good contrast. However, when 
the object boundary is indistinct or has gaps like the IVUS 
image in our case, the geometric deformable contour may 
leak out because the multiplicative term only slows down the 
curve near the boundary rather than completely stopping the 
curve. Once the curve passes the boundary, it will not be 
pulled back to recover the correct boundary.  
To overcome this deficiency a new term is added to Eq.(9) as 
shown in Eq.(10).  

( ) φφκφ
∇∇+∇+=

∂
∂ cVc

t 0                      (10) 

 
The resulting speed function has an extra stopping 
term φ∇∇c that can pull back the contour if it passes the 
boundary.  
 
3 Results 
 
In this work, we used a data set provided by a local hospital 
that includes 50 IVUS frames obtained from 10 different 
patients.  
The level set based method was applied to each frame to 
detect intimia layer by defining a circle of radius 1.5 times 
larger than radius of the catheter located at the centre of he 
image and can be located easily due to its clearly different 
contrast with the surrounding region.  
A negative value is assigned for V0 in equation (9) in order to 
expand the curve after some iteration to locate the Intimia 
boundary. Figure 2 shows an example outcome of the 
method. At the next step, considering a large circle whose 
diameter is as large as the diameter of the IVUS image itself 
and with a positive value for V0 the curve shrinks to the 
Media- Adventitia layer after some iteration as shown in 
Figure 3. 

 
Fig. 2. Intimia border Detection 

 

 
Fig. 3. Media-Adventitia border Detection 

  
These results were compared to the boundaries manually 
identified by an expert cardiologist. The sensitivity and 
specificity of the proposed method were measured based on 
the occurrence of true positive and false positive (TP and FP, 
respectively), and true negative and false negative (TN and 
FN) results as follows: 
 
Sensitivity = TP/ (TP + FN) 
 
Specificity =TN/(TN + FP) 
 
 
The sensitivity for a class is the percentage of members of 
that class that are correctly defined by the test while the 
specificity for a class is the percentage of members of the 
other classes that are correctly classified by the test.  
The resulting sensitivity and specificity of the proposed 
algorithm are 72% and 78% respectively. 
After detecting these two borders we identify the calcified 
regions. The regions in frames witch have shadow behind a 
white area, is the place that calcium or hard plaque is 
accumulated [12]. By finding these regions in a sequence of 
IVUS segmented images we can visualize them with VTK 
(Visualization Toolkit) software. Accumulated plaques 
between the two detected borders can be seen In Figure 4. 

(8)

Where 

(9)



Figure 5 is the illustration of calcified regions in our 
visualization step. 
 

 
 

Fig. 4. Top view of 3D representation of detected borders and 
the plaques between these layers. 

 

 
 

Fig. 5. Calcified regions in 3D visualized form in a part of 
vessel wall 

 
 
4 Conclusion  
Vessel border detection is of special interest for plaque 
assessment and quantification of lumen narrowing in IVUS 
images. In this paper, we propose a new automatic algorithm 
for vessel border detection in IVUS images based on the 
geometric deformable models to detect Intimia and Medial-
adventitial borders. The inner and outer arterial wall 
boundaries generated by our segmentation algorithm are close 
to those manually identified by an IVUS expert. 
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