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Abstract
Objective Intravascular ultrasound (IVUS) is a diagnostic
imaging technique for tomographic visualization of coro-
nary arteries. Automatic analysis of IVUS images is difficult
due to speckle noise, artifacts of the catheter, and shadows
generated by calcifications. We designed and implemented a
system for automated segmentation of coronary artery IVUS
images.
Methods Two methods for automatic detection of the intima
and the media-adventitia borders in IVUS coronary artery
images were developed and compared. The first method uses
the parametric deformable models, while the second method
is based on the geometric deformable models. The initial
locations of the borders are approximated using two dif-
ferent edge detection methods. The final borders are then
defined using the two deformable models. Finally, the cal-
cified regions between the extracted borders are identified
using a Bayesian classifier. The performance of the proposed
methods was evaluated using 60 different IVUS images
obtained from 7 patients.
Results Segmented images were compared with manually
outlined contours. We compared the performance of calci-
fied region characterization methods using ROC analysis and
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by computing the sensitivity and specificity of the Bayesian
classifier, thresholding, adaptive thresholding, and textural
features. The Bayesian method performed best.
Conclusion The results shows that the geometric deformable
model outperforms the parametric deformable model for
automated segmentation of IVUS coronary artery images.

Keywords Border detection · Deformable models · IVUS ·
Plaque characterization

Introduction

Intravascular ultrasound (IVUS) is a catheter-based medical
imaging technique that is adjunct to angiography in diagnosis
for the coronary artery diseases. Using a specially designed
ultrasound catheter, it provides real-time tomographic images
of the arterial wall that shows the morphological and histolog-
ical properties of the cross-section of the vessel. Compared to
angiography which only depicts a 2D silhouette of the lumen,
IVUS not only provides a quantitative assessment of the ves-
sel’s wall but also introduces information about the nature of
atherosclerotic lesions as well as the plaque shape and size
[1,17]. Different types of plaques (fibrous, lipid, and cal-
cium) are accumulated between the two layers of the vessel
wall (Intima, the inner layer and media-adventitia, the outer
layer). The amount of calcium plaques accumulated between
the borders is an indicator of the overall plaque burden, and
also the degree of calcification will correlate with overall
risk of plaque rupture in the coronary arterial tree. So, char-
acterizing the shape and position of the calcified plaques will
help the cardiologists to choose the best treatment in order to
reduce the risk of operation. The first step towards this impor-
tant goal is to identify the intima and the media-adventitia
borders and to segment the plaque regions. It is a difficult,
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subjective, and time-consuming task to manually perform
the segmentation. Therefore, there is an increasing interest
in the development of automatic border detection and tissue
characterization methods for IVUS images.

Several automatic and semiautomatic border detection
techniques are reported in the literature [7,8,15,18,24].
Energy minimization of an initial contour either by means
of the guided snakes or a cost function was proposed for bor-
der detection in IVUS images in [15,24]. Different segmenta-
tion methods based on the probabilistic approaches have been
proposed in [7,8]. Spatial continuity along the sequences of
IVUS images was used in [18]. On the other hand, various
methods for plaque characterization have been suggested in
the past including the use of adaptive thresholding [5] and
analyzing the texture based features [2,20,23]. The adaptive
thresholding method suffers from the normal variations of the
gray values in the plaque regions, since it is a crisp method.
On the other hand, the texture based methods need computa-
tionally expensive procedures while do not provide desirable
accuracy.

In order to solve some of these problems, this paper focuses
on the development of an automated border detection and
tissue characterization algorithm based on the deformable
models. In the proposed method, the input images are despec-
kled by an anisotropic diffusion filter [6]. This is because
the speckle noise is an inherent drawback of the ultrasound
images making it very difficult to apply any ordinary edge
operator to these images. Next, the initial locations of the bor-
ders are roughly estimated using different kind of ordinary
edge detection methods. The final borders are then identi-
fied using both geometric and parametric deformable models.
Finally, the calcified regions between the extracted borders
are identified using the Bayesian classifier. The performances
of the proposed geometric and parametric deformable mod-
els are evaluated using 60 different IVUS images obtained
from 7 patients. The resulting automatically defined borders
are compared to those manually identified by two experts.
The statistical analysis of the obtained results shows that
the geometric deformable model outperforms the parametric
deformable model in extracting the intima and the media-
adventitia borders produce errors in the range of the inter-
observer variability. After detecting the intima and media-
advenitia boundaries the region between them is analyzed by
the Bayesian classifier for plaque type characterization. The
thresholding method is also used in this section. The char-
acterized regions as calcified plaques were also compared to
the ones that had been detected by the experts. The results
show that the bayesian classifier can effectively character-
ize the calcified regions with a sensitivity and specificity of
92.674 and 98.5%, respectively.

The rest of the paper is organized as follows. The overall
description of the proposed methods is explained in “Meth-
ods”. The validation procedure of the proposed methods is

presented in “Method of Validation”. The results of the appli-
cation of the proposed methods to the data set are presented
in “Results”. “Discussions” provides a detailed discussion
over the results. Finally “Conclusions” concludes the paper.

Method

Preprocessing

The anisotropic diffusion filter is used to despeckle medical
ultrasound images; this method preserves the features and
enhances the edges [6,16].

There are some parts of the image in the IVUS frames
that are not significant as far as image processing is con-
cerned. These include, for example, the calibration marks
and the scale marks. These regions along with the bright
catheter ring artifact are replaced by the neighboring gray
values. Furthermore, because of the more or less circular
structures of the vessels, the planar image in the Cartesian
coordinates is converted into the Polar coordinates in order
to facilitate the detection steps such as the contour
initialization.

The initial contours used in the deformable models have
to be as near as possible to the real borders. For detecting an
initial contour for intima, the intensity information is used
for thresholding. This is done by sweeping the pixels starting
from the center of the catheter toward the image borders on a
constant angle on a radius (r) while the angle is constant. I(r,
θ) denote the intensity of a pixel located in a radius of r and
an angle of θ in polar coordinate. If I(r, θ) �T, where T is the
threshold value for intensity, then this pixel will be assumed
as a point on the initial border. The value of T is empirically
set to 42. Figure 1b illustrates the intima’s initial contour. For
the media-adventitia initial contour the image is first filtered
using a 3 × 3 low pass filter with a sigma value equal to
unity. Then a canny edge detection operator with α = 8 is
applied to each frame in Polar coordinate. An example result
is shown in Fig. 1a. After the initial border detection step,
the images are converted back to the Cartesian coordinate for
further processing.

Fig. 1 a Media adventitia initial contour using canny edge detection
method. b Intima initial contour using thresholding method
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Border detection

Parametric deformable models

Parametric deformable models or snakes are energy-
minimizing splines guided by the internal constraint forces
and influenced by the image forces that pull it towards dis-
tinct features (e.g. lines, edges). It was first proposed by
Kass et al. [12]. The snake’s algorithm is an iterative process
used in the image segmentation tasks, particularly for objects
whose edges are not well-defined. By taking into account the
quantitative energy values for each of the points that make
up the snake, the algorithm seeks to find the position of the
various snake points that minimize the overall energy of the
snake. The energy function for the snake defined by Kass et
al. was represented by a vector, v(s) = (x(s), y(s)) having arc
length, s, as parameter:

Esnale(v) =
1∫

0

(Eint(v(s)) + Eext(v(s))ds) (1)

Eint, represents the internal energy of the snake due to bend-
ing or discontinuities, and Eext is the image force. The image
forces can be due to various events, such as lines, edges
and terminations [14]. The algorithm involves firstly ini-
tializing a set of snake points defined in the preprocessing
step from which the iterative process then begins. The para-
meters of this algorithm were set to the following weights:
α = 0.5, β = 0.5, γ = 4.2, and ρ = 1. These values are
defined through an optimization procedure using the results
of the border detection method applied to 30 different images
(used as the training set) and comparing them to the manu-
ally defined borders by experts. The snake algorithm ends
when the zero snake points are moved to new positions for
five consecutive iterations.

Geometric deformable models

As mentioned before, the Geometric deformable model
scheme is also used for the vessel boundary detection in this
work [10,19]. As in parametric deformable models the evo-
lution is coupled with the image data to recover object bound-
aries. Since the evolution is independent of parameterization,
the evolving curves and surfaces can be represented implic-
itly as a level set of a higher dimension function; as a result,
topology changes can be handled automatically [11]. Let u
be a level set function u = R2 × [0,∞] → R and c is a
level set of u, such that c = {

x ∈ R2 : u(x, t) = r
}
, r ∈ R.

The model is defined as follows:

∂u

∂t
= |∇u|

(
div(g(I ))

∇u

|∇u|
)

(2)

u(x, 0) = u0(x) (3)

where u0 is the initial level set function. The Eq. 2 is equiv-
alent to:

∂u

∂t
= g(I )(c + k)|∇u| + ∇g∇u (4)

where g(I ) is the stopping function chosen as

g(I ) = 1

1 + |∇ Î |2 (5)

Its main purpose is to stop the propagation when the evolv-
ing front reaches the desired position, i.e. boundaries of the
intima or the media-adventitia in the IVUS images. ( Î ) is a
convolved image that ensures the motion of c is less affected
by the noise in the image. K is the mean curvature. For the
added constant term c, we can suppose cg(I )|∇u| as an extra
speed of the convergence. The last term in Eq. (4) denotes the
projection of an attractive force vector on the normal to the
moving interface. The narrow band method and fast marching
method are two computationally fast and widely used algo-
rithms for the numerical implementation of the geometric
deformable models [21]. Instead of computing the evolution
of all level sets, which means all the grid points, the narrow
band method consists of just updating a small set of points
in the neighborhood of the zero level set for each iteration.
However, the results of this method depend on the position
of the initialized curve/surface. To solve this problem, a new
methodology is proposed in this work that can choose the
right interface positions, so that the complete boundaries of
the intima and the media-adventitia are detected automati-
cally.

Calcified region characterization

In the previous section, the intima and the media-adventitia
boundaries were detected using the geometric and parametric
deformable models. The plaque region is defined by extract-
ing the region between these borders. Vessels’ plaques are
generally composed of calcium, fibrous, and lipid. Calcified
regions in IVUS images can be recognized by following char-
acteristics:

• They are usually represented by bright intensity among
plaque region.

• As calcium is a hard plaque, the ultrasound beam is not
strong enough to penetrate it. Therefore, the calcified
region is usually followed by a dense shadow. Two meth-
ods for characterizing the calcified regions are studied
here. The first is the Bayesian classifier and the other
is implemented via setting a threshold value on the
pixel intensities. Each of these methods is explained
briefly.
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Bayesian classifier

Bayesian classifier is based on the maximum a posteriori
probability, in which the feature vector X is assigned to class
ω j if

P(ωj|X) � P(ωk|X), k = 1, 2. . .M, (6)

where M is the number of classes and P is the probability.
As in most applications the amount of a posteriori probabil-
ities are unknown, its value should be calculated through the
Bayes algorithm as follows

P(ω|X) = P(X |ω) × P(ω)

P(X)
(7)

From the above equation and considering that P(X) is equal
for all classes, (6) can be written as

P(X |ωj) × P(ωj) � P(X |ωk) × P(ωk) , k = 1, 2. . .M (8)

Here, there are two classes, one calcified (ω1) and another
non-calcified (ω2). The probability density function (pdf) of
classes is assumed to be Gaussian; therefore, only the values
of mean and variance of pdf’s should be estimated. These
values are attained from the 30 training images, which were
collected by the expert from the dataset, and set as follows:
mu1 = 245, mu2 = 70, sig1 = 20, sig2 = 20. The values
of a priori probabilities are achieved experimentally from the
30 training images and are as follows: P(calcified region) =
0.1, P (Non-calcified region) = 0.9.

Thresholding method

To find an appropriate threshold value in this method, the
pixel intensities for the two classes of calcified and non-
calcified pixels in the 30 training images are defined and
their average value (173.5) is used as the threshold. There-
fore, the pixel intensities which are greater than the threshold
value are set to be as calcified while the others are set to be
non-calcified.

Checking the shadows

In order to increase the accuracy and reliability of the pro-
posed method, the shadow behind the calcified regions is
considered as an important feature. Therefore, for those pix-
els which are identified as the calcified regions by the thresh-
olding method, the existence of the shadow behind them is
examined. In the case of existing shadow, these identified
regions are accepted to be calcified region, otherwise they
are set back to the non-calcified class. As the IVUS images
have circular trait, we first transform the images to the Polar
coordinates where the shadows behind the detected calcified
regions can easily be checked. For this goal, the average of

pixels’ intensities, which are placed in the same angle as iden-
tified regions, is calculated and the one whose value is below
70, is accepted to remain as calcified class. The threshold
value of 70 was emprically assessed by studying the charac-
teristic of the shadows in the 30 training images.

Method of validation

Study group

The IVUS image data set which is used for method validation
in this work includes a sequence of IVUS images obtained
from 7 different patients. These images, each 500 ×500 pix-
els, were acquired using a 30-MHz transducer at a pullback
speed of 0.55 m/s and a grabbing rate of 10 frames/s. This
process is carried out using the ultrasound system devel-
oped by the Volcano therapeutics INC. (model Invision TM,
IVG-EE). Sixty frames from each patient have been gath-
ered. The accuracy of the results produced by the proposed
methods is determined by comparing them to those produced
by the experts. Two experts were asked to manually extract
the intima and the media-adventitia borders. The calcified
regions are also manually identified by one of the experts.

Accuracy measurements

For the performance analysis of the proposed algorithms the
Average Distance (AD) and the Hausdorff Distance (HD)
(the maximum distance) between the automatically identified
boundaries and the expert defined ones are determined [9].
These are the most commonly used evaluation parameters
proposed and used by other researchers in the past [3,13].
Distance maps serve to compute the differences in positions
between automatic and manually traced borders. Such maps
encode, for each pixel, (xai , yai ) its distance to the closest
point on the manual contour:

D(a) = min
ai∈border

(√
(Xai − Xmi )2 + (Yai − Ymi )2

)
(9)

Where ai are points on the manually identified contour [3].
Signed distances weigh a value depending on whether the
pixel ai is inside or outside the target border. Its mean value
detects any bias in curve position (whether detections are
systematically bigger or smaller than manual segmentations).
We consider these values (absolute distance errors, D(a)) in
millimeter and if we want them in percent(relative distance
error) we use D(a)=100.(D(a))/(d(I,O)), for the origin O the
mass center of the manual border and i the point achieving
the min in Da . as in reference [9]. For each distance error,
its maximum and mean values on the automated contour are
the error measures used to assess position accuracy. If PIX
denotes the image spatial resolution and ai is any piont on
the automatically traced adventitia, then the mean distance
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error(in mm) will be:

M = mean
ai∈border

(D(a).P I X) (10)

Also the percentage of the area differences between the
manually traced contours and the automated results were cal-
culated. Another parameter for performance analysis used in
this work is the William Index (WI) [22], which is the ratio of
the average computer-to-observer agreement and the average
interobserver agreement [4] as calculated in Eq. 11:

WI =
1
n

∑n
j=1

1
D0, j

2
n−1

∑
j
∑

j ′ �= j
1

D j, j ′
(11)

where n is the number of observers, D j, j ′ is the average
interobserver errors and D0, j is the average error of the pro-
posed method compared to each of the borders defined by

expert. The WI values that are close to unity indicate that the
difference between our methods and manually detected ones
are not significant, so the proposed methods can be consid-
ered as accurate as the experts.

Results

Border detection

The performances of the border detection methods are inves-
tigated. Figure 2 demonstrates the typical intima and the
media-adventitia borders identified by each of the proposed
automatic methods. The comparative numerical results are
demonstrated in Tables 1 and 2. These include the aver-
age distances, the HDs and the area difference between the

Fig. 2 a Original IVUS image
without calcified regions or
stent, b IVUS image with
calcified regions, c and d results
of parametric deformable model
and e and f are the results of
geometric deformable model

Table 1 AD is the average distance, HD is the Hausdorff distance (maximum distance), and Area diff is the absolute difference between the
automatically detected and manually traced contour for the Intima border

Method Area diff (mm2) HD (mm) AD (mm)

Automatic1 (snake) 7.5367 ± 4.6274 0.8817 ± 0. 3115 0. 3011 ± 0. 2512

Automatic2 (level set) 6.2653 ± 1.7284 0.7081 ± 0. 2491 0. 2031 ± 0.1502

Interobserver variability 5.9312 ± 1.2573 0.6812 ± 0.2107 0.1949 ± 0.0862

Automatic1 is the parametric deformable model method and Automatic 2 is the geometric deformable model method

Table 2 AD is the average distance, HD is the Hausdorff distance (maximum distance), and Area diff is the absolute difference between the
automatically detected and manually traced contour for the Media-adventitia border

Method Area diff (mm2) HD (mm) AD (mm)

Automatic1 (snake) 6.1232 ± 1.8332 0.5982 ± 0. 2510 0. 3015 ± 0. 0125

Automatic2 (level set) 5.0179 ± 3.7915 0.4531 ± 0. 3120 0. 2132 ± 0.0510

Interobserver variability 4.1253 ± 1.0381 0.5011 ± 0.1287 0.1158 ± 0.1013

Automatic1 is the parametric deformable model method and Automatic 2 is the geometric deformable model method
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Fig. 3 Comparison of a Media adventitia and b intima cross section areas, segmented with geometric deformable models (n = 60)

manually traced and automatically defined boundaries for
the intima and the media-adventitia borders, respectively.
Moreover, Fig. 3(a) and (b) illustrate the linear regression
analysis between the results of the geometric deformable
model and the experts for the intima and for the media-
adventitia borders respectively.

Calcified region detection

The calcified regions detected by the proposed methods were
also compared with those manually detected by the expert.

In order to validate the proposed methods, the sensitivity
and specificity of the calcified class were calculated. For
this purpose, the true positive (TP), false positive (FP), true
negative (TN) and false negative (FN) values were computed.
The sensitivity for a class is the percentage of members of
that class that are correctly classified by the test. As such, it
has to be as high as possible. The specificity for a class is
the percentage of members of the other classes that are cor-
rectly classified by the test. Table 3 shows these parameters
for the two proposed methods and also for other algorithms
proposed in the literature. The results of different steps of

Table 3 Comparing the
performances of the calcified
region characterization methods

Classification method Specificity (%) Sensitivity (%)

Bayesian classifier 98.5 92.674

Thresholding method 83.7 74.14

Adaptive thresholding [5] 88 84

Texturural features [2] 97.2 85.5

Fig. 4 Characterizing calcified
region. a IVUS image, b High
intensity plaque identification
by Bayes algorithm (yellow
regions indicates calcified area),
c Transformed image in Polar
coordinate, d Removing
identified plaques which are not
followed by shadow, e
Reconstructed image in
Cartesian coordinate (final
result), f Manually characterized
calcified image by expert
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Fig. 5 The receiver operating characteristic (ROC) Curve. The area
under the ROC curve is shadowed

characterizing calcified region by means of Bayesian classi-
fier are also demonstrated in Fig. 4.

Another parameter which is used for evaluation of the
proposed algorithm is the receiver operating characteristic
(ROC) of the Bayesian method, which is more accurate than
the thresholding method. This is illustrated in Fig. 5. The
area under the ROC curve (AUC) is a reasonable performance
statistic for classifier systems. The value of AUC for Bayesian
classifier is equal to 0.943.

Discussions

At first, the nonlinear anisotropic diffusion filter was applied
to the IVUS images. The intraobserver and interobserver
variabilities (mean ± SD%) of the two experts for the intima
and the media-adventitia areas have been computed. The
intima’s intraobserver variability for the first and the second
expert was 3.8512±2.1245% (mm) and 4.1307 ± 1.8579%,
respectively. The variability values for the media-adventitia
were 3.0565±3.1645% for the first expert and 1.96±0.40%
for the second expert. The values of the interobserver vari-
ability are shown in Tables 1 and 2. The results demon-
strate that the variability of the two experts is higher for the
intima borders. Detection of the intima is more problomatic
because of the speckle artifacts and the irregular shape of
the intima layer. The linear regression analysis for the geo-
metric deformable model indicates that this method is accu-
rate (r = 0.97, y = 0.9623 x + 1.53 for the media-adventitia
and r = 0.96, y = 0.9137 x + 1.3214 for the intima border
detection). The slopes are close to unity, the y-interception
confidence interval is close to zero and the correlation co-
efficient is higher than 0.95. By comparing the AD and HD
values from the automatic methods in Tables 1 and 2 the
detected borders by the two implemented methods are near
the borders detected manually by the experts. Smaller aver-
ages and HDs were obtained with the level set method in
comparison to the snake algorithm. This shows that the seg-
mentation errors in the second method were small and near

the differences between the manual analyses and is pow-
erful for IVUS image segmentation, as we were expecting
these values to be significantly higher for the intima than
the media-adventitia in both the methods and the experts.
We can conclude that, the automatically determined borders
corresponded very well with expert manual measurements.
The area differences between the borders detected by the
two methods show that these values were slightly higher
in the parametric deformable model method, but they were
still acceptable for the experts. The William index for non-
overlapping areas for the intima in both automated methods
were 0.89 and 0.91, and for media-adventitia 0.90 and 0.93,
respectively. This discrepancy is caused by the lower inter-
observer variability for the media-adventitia which decreases
the value of the William index. As expected, these values
also illustrate that the second method (geometric deformable
model) is more accurate than the first applied method (the
values were closer to unity in second method). In the section
of characterizing the calcified regions, the bayesian clas-
sifier was applied to IVUS images and the sensitivity of
92.674 ± 4.6% was achieved and the specificity was above
98.5% for all images, in comparison with the regions defined
by an expert. In images which exist small and discontinious
calcified regions the sensitivity of classifier is reduced to
about 85%, but in the case of fragmented or diffused calci-
fied regions this value increases to above 90%.

Conclusions

In this paper, two automatic methods for defining the calcified
regions within the IVUS images were presented. The meth-
ods are based on the automatic identification of the intima
and the media-adventitia borders by means of the parametric
and geometric deformable models.

Border detection and region identification in IVUS images
are challenging tasks in medical imaging analysis. Few algo-
rithms have been developed in order to trace the intima and
the media-adventitia automatically. In this paper, the pre-
processing includes at first a nonlinear anisotropic diffusion
filtering that reduces the noise well and preserves the edges of
the image. secondly, the initial contours are detected using
edge detection methods that makes the deformable model
methods automatic. For the geometric deformable model the
initial contours are defined to be a distance function for the
evolution equation. The level set function in the geomet-
ric deformable model was implemented using the narrow
band method. This method consists of updating a small set
of points in the neighborhood of the zero level set for each
iteration.

After detecting the borders with the geometric deformable
models method, the calcified regions are identified using the
Bayesian classifier and the results are visualized in three
dimensions. In our validation methodology, we compared
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the results from the implemented methods with the man-
ual estimation of borders by the two experts. Small varia-
tions was observed between the manual and the automated
detection of borders, which denotes the accuracy of the meth-
ods. The geometric deformable models have some advan-
tages over the parametric ones. First, they are completely
intrinsic and, therefore, are independent of the parameteriza-
tion of the evolving contour. In fact, the model is generally
not parameterized until the evolution of the level set func-
tion is complete. Second, the intrinsic geometric properties
of the contour, such as the unit normal vector and the cur-
vature, can be easily computed from the level set function.
This contrasts with the parametric one, where inaccuracies in
the calculations of the normal and the curvature result from
the discrete nature of the contour parameterization. Besides,
because of the leakage of the function, once the curve passes
the boundary, it will not be able to pull back to recover the
correct boundary. We have solved the problem of the places
of the nodes in initialization stage for both methods. The
proposed methods have limitations such that they are not
accurate where there are side branches or the curvature of
the vessel or the catheter. Also, sometimes the frames with
the calcified shadowing artifacts will affect on the decision
of the methods. For solving the above problems, we suggest
to use other frames around this frame for deciding the place
of the borders.

Also in this paper, the ability of the Bayesian classifier
in characterizing the calcified regions was investigated. The
results of our study show that this method has improved the
value of sensitivity and specificity in comparison with other
algorithms such as the thresholding method or using the tex-
ture based features. The Bayes classifier has the advantage
of high speed compared to the methods including feature
extraction. Therefore, considerable time be saved by using
this method.
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