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Abstract

The correct alignment of real and virtual objects
is one of the key technologies in Augmented Reality
(AR). The user’s point of view must be determined
accurately and tracked over time.

In this paper, we present an optical tracking sys-
tem, focusing on real time performance and robustness
including fast recovery from unpredictable abrupt mo-
tions, as well as stable handling of partial occlusions
of tracking targets. The algorithm tracks linear fea-
tures of landmarks and other objects. For increased
performance, we do not extract entire lines but rather
use only a few sample points. The 3D motion recovery
is done iteratively using robust estimation methods.

The system is able to run on standard hardware
with high frame rate (20-25 Hz on a O2) and is robust
enough to track a hand-held or head-worn camera.

We finish with a presentation of AR-applications in
the domains of exterior construction, 3D user inter-
faces and games.

1 Introduction

Augmented Reality (AR) integrates computer gen-
erated information into views of the real world, being
potentially useful in many application domains. It can
assist users in maintenance and repair tasks for com-
plex devices [18]. In exterior construction, the CAD
model can be overlaid on video of the construction site
and thus help during the planning and the construc-
tion phase[10]. Furthermore, information from other
sensors can also be directly merged into the user’s view
to provide supplementary information on-line in oper-
ations, as presented in the medicine and surgery con-
text [4, 7).

1.1 Related work

The registration of the virtual objects with the real
world is a crucial problem in AR. In order to preserve
the coherence of the augmented scene the different sen-

sors have to be carefully calibrated [23]. Commercial
tracking devices can be used, like magnetic trackers
[18] and active LED-systems [20, 25], but the precision
or the extent of the working space are not sufficient for
a lot of AR applications, so that many researchers are
now developing computer vision-based methods. Typ-
ically, special landmarks are placed in the scene and
used to calibrate and track the camera [9, 5, 28, 15].
Other approaches use directly image features but the
initial pose has to be given interactively [17] or the
system automatically finds correspondences in already
calibrated images, from which the camera pose is de-
rived [24]. For real time applications, the measure-
ment frequency plays a crucial role, thereby limiting
the system complexity and the set of motions that can
be tracked [3]. Improvements of the robustness can be
achieved by fusing the image measurements with in-
formations of other sensors like an inertial tracker [2]
or a magnetic tracker [21].

In computer vision, 3D camera motion is a classic
topic often related to robotic and navigation tasks. A
particularly successful approach is based on the physi-
cal modeling of the motion and exploitation of the im-
age measurements with a Kalman filter [6, 30, 1, 11].

In our applications, we assume that motion of head
worn cameras can be very abrupt and unpredictable
because users can turn their heads very quickly, re-
sulting in major shift in the image. Thus, we do not
use a motion model and favor the dynamic properties
of the tracker. Our system has been influenced by the
approaches related in [12, 27, 13], but we pay more
attention to the dynamic and real time aspects by op-
timizing the feature search process and developing a
new adapted motion recovery algorithm.

1.2 Paper outline

The goal of our system is to track a hand-held or
head-worn camera with high frame rate using stan-
dard hardware. We present an algorithm showing the



feasibility of highly precise and fast 3D tracking with
computer vision methods. After an overview of our
system we describe the details of the initialization and
the 3D tracking algorithms. Finally, we evaluate the
system performance and present some applications.

2 System overview
2.1 Requirements

The user should feel free in his movements and ac-
tions. This goal imposes the following system features:

o Automatic and fast initialization. The system
should not require users to interactively support
the tracker initialization phase.

e Real time tracking. The frame rate should be
higher than 10 Hz, ideally more than 20 Hz. The
goal is to minimize the dynamic error, i.e., the
lag between rendering the augmented view for the
user and the view of the real world. This condi-
tion is not only relevant for see-through (Figure 1)
[2] but also for video feed-through applications or
when the image augmentation is done by another
process. Fast tracking minimizes also the inter-
frame difference and thus the searching distance
between tracking features.

e Error supervision and fast re-initialization. The
system should guarantee error margins for the
alignment of the augmentation with the real
world. When it fails, it should be able to reinitial-
ize itself with minimal disturbance for the user,
i.e., without user interaction and in a very short
time.

Figure 1: Camera used as a tracker device

To achieve the above requirements, we use land-
marks for fully automatic calibration and we optimize
the tracking system developing appropriate robust al-
gorithms.

2.2 System components

Our approach is model-based, using dark rectan-
gles on a bright background. In order to identify the
rectangles independently of the current field of view,
they contain one or two rows of red marks defining an
4-bit (or 8-bit) code. This kind of bar-code gives the
system a significant flexibility, due to the full iden-
tification of each landmark and the potentially high
number of them (up to 255).
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Figure 2: Global software architecture

The initialization is achieved in two steps: First,
the corners of the landmarks are extracted and a rough
calibration is computed. Next, after back-projecting
the landmarks model into the image, the corner posi-
tions are refined, enabling an accurate re-calibration.
The subsequent image-to-image feature tracking is
composed of a position prediction and a target re-
detection phase, followed by the update of the 3D
position and the corresponding error estimation (see
Figure 2).

3 Initialization and calibration
3.1 Robust rectangle detection

The rectangles are first extracted as blob candi-
dates which are defined by three points assumed to
lie on three of the four edges. They points are found
by scanning the image every n-lines. Two consecu-
tive image gradients white-to-dark and dark-to-white



define the left and right borders of the blob. Start-
ing from their center between them the third point is
found by looking vertically for a strong image gradi-
ent. We then check the homogeneity of the blob and
its average level of blackness along the scanned seg-
ments of the blob.

Figure 3: Landmark detection and identification

We then follow the blob contour. Starting from a
border pixel, we calculate the gradient norm of all its
eight neighbors. To chose the next pixel, we use a
criterion C;; defined below. It combines the neighbor
gradient, the actual one and the displacement vector.

Cij = (VI(Poo)-vj) IVI(Py)|

Where vj; is the unit vector orthogonal to the dis-
placement from the current pixel at position (0,0) to
the neighbor pixel at position (i, j), I(Poo) and I(P;;)
represent the the intensity value of the pixel P at po-
sition (0,0) and (4,7) (1 = —1,1;5 = —1,1)

To fit rectangles to each blob, the contour samples
are classified into four clusters according to their gra-
dient direction, using a standard ISO-data algorithm.
After a statistical homogeneity test, i.e. a comparison
of cluster sizes, mean values and standard deviations
of the gradient norm and direction, we fit a straight
line to the edges. The intersection of neighboring lines
determines the corner points of the rectangle.

3.2 Identification

To uniquely relate each blob to one of the squares
described in a 3D model of the environment, we ex-
amine the labeling area within each blob, interpreting
the line of red markers as a binary code. The code is
read by sampling the line of marks and correlating it
with templates representing the encoding of all pos-
sible identification numbers. We use the zero mean
normalized correlation and consider the rectangle as
identified if the highest score can be defined without
ambiguity. This method has proven to be very robust

and works well also with low quality cameras (like an
Indy-Cam) and under bad illumination conditions.
3.3 Calibration

A priori we do not know the kind of virtual object,
which will be inserted in the scene and choose for this
reason the most general camera model, the pin-hole
model. The pose of the camera is defined by the rigid
transformation:

Zc T
Ye =R Yw +T
Ze Zw

And the relation to the image coordinate system is:

Zc
u= f.8;— + Czo
Zc

Ye
v=f.55= +cyo
zC

We calculate by full calibration the internal (f, s,
Sy, Cz0, Cz0) and external parameters (R, T) of the
camera using the algorithms described in [26, 22]. The
lens distortion is actually not compensated.

4 Tracking algorithm

The main steps of the tracking algorithm are the
target position prediction, the re-detection and finally
the motion recovery. Each point is detailed in this
section.

4.1 Prediction

Due to the randomness character of user head mo-
tion, camera motions can be very erratic. We thus
limit motion prediction to very basic, linear 2D extrap-
olations in the image. Our experiments have shown
that such fast linear approximations by far outper-
form in robustness complex, physically more correct
3D motion models. 3D models are much more time-
consuming to compute, and thus have to deal with
much longer intervals of measurements.

The velocities of the corners of each square are cal-
culated individually from their current and previous
position and used to predict their approximate loca-
tion in the next image. This specifies the search areas
within which their exact location will be determined.
4.2 Target re-detection

In the tracking process, linear features of the targets
need to be found in the new image. To avoid time con-
suming feature extraction processing across the entire
image, we work locally along search segments. The
image, Figure 5, shows those segments, which are de-
fined perpendicular to the re-projected model square
sides. In praxis, we limit their directions to the image
row, column and diagonal.



Figure 4: Search segments for target re-detection

We then compute the gradient along each one us-
ing a Gaussian kernel and localize the maximum with
sub-pixel accuracy by interpolating to the second or-
der. Those new points determine implicitly the new
position of the landmarks in the image.

Figure 5: Target re-detection

Let S,, denote the n®* segment of the re-projected
landmarks model in the image (Figure 5) and S,,; the
ith search segment of S,. The point with maximum
gradient found along S,; is noted P,;.

4.3 Discussion

Pose and motion estimation is usually done with
well defined primitives like points, lines and conics [30,
12].

From the precedent processing, a line could be fit-
ted, through the detected points P,; of a same segment
S, to determine the landmark side. The intersection
of them would define the square corner in the image
and we could apply points algorithm like in [10].

Yet, we have found formal line fitting and corner
computation approaches not to be very robust un-
der the presence of partial occlusions, fast motion and
noise: Since the line must be extrapolated from a small

number of points and since some points P,; are dis-
carded or poorly localized (because of occlusions or
fast motions), the derived location of lines is often im-
precise.

On the other hand, most of the originally detected
points P,,; are well located on the target border. The
idea of the following algorithm is to exploit directly
those informations and not first derived new (uncer-
tain) primitives from them. We are so statistically
more robust because we work with the larger number
of independent primitives.

4.4 Recovery of the motion parameters

To recover the motion, we have to define a con-
straint between the new detected points P,; and the
projected model in the image.

The position of the camera should be updated, so
that the re-projected segment S, lies on the landmarks
border in the image. That means also that the dis-
tance of the points P,; to this segment is null.

We express the distance constraint formally as fol-
lows: If U, is an orthogonal unit vector of the segment
S, and M an arbitrary point of S,,, we have the equal-
ity:

Up.(Ppi — M) =0

Thus, we recover iteratively the position of the cam-
era taking the previously determined parameters (3
rotation angles and the 3 translation components) as
initial value and minimizing the objective function F:

N S
F =Y (UnPni — M))?

n=1 i=1

with N being the number of segments in the model
and S being the number of samples per segment S,,.

This criterion minimizes the orthogonal distance of
the points P,; to the corresponding model segment
Sh.
4.5 Minimal number of samples

Camera pose is defined by 6 parameters [8]. Thus,
pose can in principle be recovered from 3 points with
each providing two constraints, one per coordinate
axis. Yet, the points P,; are defined along the seg-
ments Sy;. They are constrained only in the S,,; direc-
tion. Each point P,; provides therefore only one con-
straint, so that the algorithm needs at least 6 points,
not all collinear.

5 Robustness

We have explore several ways of improving the
tracker to make it robust and flexible enough for real



and difficult applications. The critical issues are ro-
bustness to occlusion, integration of already existing
scene lines and extension to hybrid tracking.

5.1 Partial occlusions and outliers

If marks are partially occluded, some of the points
P,; are not determined correctly. To limit their in-
fluence on the pose estimation process, we use robust
statistic methods, such as the M-estimator [14, 16, 29].

In principle, we can also use outlier detection tech-
niques. Yet, practical experience has shown that out-
lier detection is not advantageous at this stage: Since
the precision of the camera calibration is inherently
related to the location of the currently visible squares
in the scene, new squares that become visible during
head rotations may not fit the current camera model
well. Declaring such misfits to be outliers means that
they are excluded from influencing the camera model
to adapt to scene information beyond the initial field
of view.

5.2 Integration of scene lines

The presented algorithm is not only valuable for
the designed targets but can be extended to arbitrary
polyhedral objects.

Figure 6: Camera tracking without landmarks

The advantage is twofold: First the user can go
away from the targets after the initialization phase
(see Figure 6). The camera is still track in 3D. Sec-
ondly it stabilizes the tracking when a few number of
targets are present in the image.

5.3 Externally available information and
hybrid tracking

For monitor-based AR, the camera is often placed

on a tripod near the user (see Figure 7). Camera mo-

tion then is typically limited to rotations around its

fixation point on the tripod. In other cases, other sen-
sors like GPS for wide environment can determine the
camera position.

Figure 7: Monitor-based AR: the camera translation
is constant

In such scenarios, we estimate only the rotation
parameters; the translation is considered constant or
provided by the other sensors. The result is an appre-
ciable reduction of computation time combined with
increased robustness and stability. Use of such ex-
ternal knowledge is shown for an application on an
exterior construction site in section 7.

6 System performance

Figure 8 shows a comparison between the new line
based algorithm and a previous corner based approach
(dashed line) (refer to section 4.3 and also [10]). Using
a synthetic image sequence of 95 pictures, we calculate
the relative errors of the camera position for the two
algorithms.
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Figure 8: Relative error measurement

The spikes indicate situations when some targets
were only partially in the field of view. They are not



taken into account by the precedent algorithm. The
position estimation error grows so that a new initial-
ization is necessary. The proposed algorithm main-
tains the relative error under 2.5 %.

| Machine | Initialization | Tracking |
(o 5 Hz 23 Hz
Indy 5000 3 Hz 12 Hz

Table 1: Real time performance

The real time performance of the above table have
been measured with four landmarks in image video of
size 768x576.

7 Applications

The following applications illustrate the potential
of AR and the robustness of the presented system.
7.1 Exterior construction

In Figure 9(a), taken during the construction phase
of a building, a virtual grid and a wall are added into
the scene to show the next planned step. The original
picture of Figure 9(b) was taken after construction of
the wall. The user sees the water pipes ”"through” the
wall using an "X-ray augmentation”, thus being able
to see their real position during a maintenance task.

Figure 9: Construction planning and maintenance

Figure 10: Hybrid tracking with GPS

In the next scenario, the position (translation) of
the camera was determined by a differential GPS and
the 3D position of the squares was measured with
a laser pointer. The system is then able to recover
correctly and reliably the camera rotation parameters
during a panorama swing, augmenting images with a
virtual wall.

7.2 Model presentation and physical in-
teraction

Virtual models can be presented in 3D in the real
environment using stereo rendering on a see through
head mounted display (Figure 11).

Figure 11: Physical manipulation of a virtual model

The virtual and the real object (the card board)
are components of one entity, a ”"mized object”. The
manipulation is then very intuitive because the user
interacts with a virtual object having a physical mean.

7.3 Game

The Tic Tac Toe game in Figure 12 explores dif-
ferent interaction schemes in an augmented environ-
ment. The user sets his stone and pushes a virtual
?GO”-button.

Figure 12: Interaction in an Augmented Environment



The computer analyzes the scene, localizes the
stone (by color segmentation), places its own next vir-
tual cross and instructs the user on a virtual panel to
continue. All interactions occur directly in the real
world - away from the keyboard.

If the camera is static, a background subtraction
enables scene change detection, like for example mov-
ing hands of the Tic-Tac-Toe player in front of the
camera. By initializing the Z-buffer, we can resolve
the occlusion problem under this particular assump-
tion; the moving real object are considered to be in
foreground of the scene. We have experienced that
the dynamic occlusion handling helps users strongly
to understand and interact intuitively with the aug-
mented scene. This application runs at about 8 Hz.

8 Summary and conclusions

In this article, we have presented a robust tracking
algorithm developed to efficiently recover moderately
fast camera motion. The system allows for experi-
ments in AR with a hand-held or head-mounted cam-
era. It does not require interactive support from the
user and works on standard hardware.

Nevertheless, the camera motions are currently lim-
ited to registered areas with known landmarks, or pre-
defined polyhedral objects. Further developments will
integrate an automatic detection of new image fea-
tures [19], which can be reconstructed in 3D and used
for the tracking.
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