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Abstract Smartphones in general and Android in partic-
ular are increasingly shifting into the focus of cyber crim-
inals. For understanding the threat to security and privacy,
it is important for security researchers to analyze malicious
software written for these systems. The exploding number
of Android malware calls for automation in the analysis. In
this paper, we present Mobile-Sandbox, a system designed to
automatically analyze Android applications in novel ways:
First, it combines static and dynamic analysis, i.e., results
of static analysis are used to guide dynamic analysis and
extend coverage of executed code. Additionally, it uses spe-
cific techniques to log calls to native (i.e., “non-Java”) APIs,
and last but not least it combines these results with machine-
learning techniques to cluster the analyzed samples into
benign and malicious ones. We evaluated the system on more
than 69,000 applications from Asian third-party mobile mar-
kets and found that about 21 % of them actually use native
calls in their code.
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1 Introduction

1.1 Android (malware) on the rise

In recent years, smartphone sales had tremendously increased.
This explosive growth has drawn the attention of cyber crim-
inals who try to trick the user into installing malicious soft-
ware on the device. Google’s smartphone platform Android
is the most popular operating system and recently overtook
Symbian- and iOS-based installations.

But attackers are misusing this openness to spread mali-
cious applications through common Android application
markets. In previous work [30,31], we analyzed about 6.100
malicious applications and clustered them into 51 malware
families with the help of the VirusTotal API [20]. Nearly
57 % of our analyzed malware families tried to steal per-
sonal information from the smartphone such as address book
entries, the IMEI, or GPS coordinates. Additionally, 45 %
of our analyzed malware families sent SMS messages. Most
common was sending these messages to premium-rated num-
bers to make money immediately. The last main feature that
was implemented in nearly 20 % of the malware families was
the ability to connect to a remote server in order to receive
and execute commands; this behavior is typical for a bot-
net. Another detailed and well-readable overview of all these
existent malware families is provided by Zhou et al. [37].

1.2 The need for automated analysis

Given the enormous growth and amount of Android mal-
ware, security researchers and vendors must analyze more
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and more applications (apps) in a given period of time to
understand the purpose of the software and to develop coun-
termeasures. Until recently, analysis was done manually by
using tools like decompilers and debuggers. This process is
very time-consuming and error-prone depending on the skill
set of the analyst. Therefore, tools for automatic analysis of
apps were developed.

The classical approach to automated analysis of suspi-
cious applications is static analysis. Static analysis investi-
gates software properties that can be investigated by inspect-
ing the downloaded app and its source code only. Signature-
based detection of apps, the common approach by anti-
virus technologies, is an example of static analysis. In prac-
tice, malware uses obfuscation techniques to make sta-
tic analysis harder. A particular form of obfuscation used
by Android apps is to hide system activities by calling
functions outside the Dalvik/Java runtime library, i.e., in
native libraries written in C/C++ or other programming lan-
guages.

In contrast to static analysis, dynamic analysis does not
inspect the source code, but rather executes it within a con-
trolled environment, often called sandbox. By monitoring
and logging every relevant operation of the execution (such
as sending SMS messages, reading data from storage, and
connecting to remote servers), an analysis report is automat-
ically generated for the analysis. Dynamic analysis can com-
bat obfuscation techniques rather well, but can be circum-
vented by runtime detection methods. Therefore, it usually
makes sense to combine static and dynamic analysis, which
can be done in many different ways (one example of such a
combination is shown in Sect. 3).

1.3 Existing Android analysis systems

Similar to the development in the desktop PC world, the early
systems for analysis of Android apps used a static approach.
A typical system for this approach was proposed by Schmidt
et al. [28]. They attempt to extract the function calls from an
Android application (using the readelf utility) and compare
the resulting list with the data of known malware.

Another example for the static approach is Androguard
by Desnos et al. [9,10], which decompiles the application
and applies signature-based malware detection. This system
is completely open source.

In response to static analysis systems in the desktop PC
world, malware authors developed various obfuscation tech-
niques that have been shown to be effective against static
analysis [22,34]. This is also an emerging trend in Android
applications, and it is clear that static analysis alone can-
not ensure complete analysis coverage anymore. Therefore,
researchers have begun to develop systems for dynamic
analysis of Andoid apps.

One of the first such systems is TaintDroid by Enck
et al. [12]. It is an efficient and dynamic taint-tracking sys-
tem that provides real-time analysis by leveraging Android’s
execution environment. This system was complemented with
a fully automated user emulation and reporting system by
Lantz [21] and is available under the name Droidbox. Droid-
box is an effective tool to analyze Android apps; however, it
lacks support to track native API calls. In fact, we are unaware
of any system that supports native API call tracking during
dynamic analysis to date. TaintDroid and Droidbox are open
source and publicly available.

Another interesting system using dynamic analysis is
pBMDS by Xie et al. [36]. It uses machine learning to create
user and system profiles for a specified behavior. Afterward,
it tries to correlate user inputs with system calls by compar-
ing their behavior profiles to detect anomalous application
activities. This system was built for Symbian OS and tested
with a very small dataset. Crowdroid, by Burguera [6] uses
a similar approach, but with a much wider set of behavior
data and with a more advanced monitoring system. Crow-
Droid uses strace, a debugging utility for Linux and some
other Unix-like systems, to monitor every system call and
the signals it receives. Crowdroid, however, does not con-
sider information from Android’s Dalvik VM.

The system AASandbox of Bläsing et al. [5] was the first
system combining static and dynamic analysis in a very basic
way for the Android platform. Unfortunately, AASandbox
does not seem to be maintained anymore. Another system
combining static and dynamic analysis is DroidRanger by
Zhou et al. [38]. DroidRanger implements a combination
of permission-based behavioral footprinting to detect sam-
ples of already known malware families and a heuristic-
based filtering scheme to detect unknown malicious families.
With this approach, they were able to detect 32 malicious
samples inside the official Android Market in June 2011.
Within their dynamic part, they use a kernel module to log
only system calls used by known Android exploits or mal-
ware.

The system that is most similar to our approach is Andru-
bis from the Vienna University of Technology [33]. In their
approach, they also use Droidbox and TaintDroid for auto-
mated analysis, but they are limited to applications that need
a minimum of Android 2.3 to be able to run on a device
(which is equal to API level 9 as can be seen in the plat-
form versions overview of Android [3]). In contrast, we are
able to analyze applications that support a minimum API
level of 13 and will be able to analyze applications that are
build for API level 17 and beneath by end of March 2014.
This difference can be very important when you compare the
market share of API level 7 and below (1.3 %) to the share
of API level 17 and below (75.4 %). Additionally, they are
not able to track calls inside native code at the time of this
writing.

123



Machine-learning techniques

1.4 Contribution: Mobile-Sandbox

Overall, there are only few analysis systems that combine sta-
tic and dynamic analysis and none that dynamically monitor
both actions within the Dalvik VM and outside it in native
libraries. Moreover, many of these systems are not readily
available for research or not maintained anymore. In this
paper, we seek to fill this gap by introducing Mobile-Sandbox,
a system that

1. uses a novel combination of static and dynamic analysis
as well as machine-learning techniques,

2. can track native API calls, and
3. is easily accessible for everyone through a web inter-

face [8].

Within the static analysis part, we analyze the application
with various modules to get an overview of the application.
First, we perform several anti-virus scans using the VirusTo-
tal service [20], secondly parse the manifest file, and finally,
we decompile the application to better identify suspicious
code.

Within the dynamic analysis, we execute the application
in an emulator and log every operation of the application, i.e.,
we log both the actions executed in the Java Virtual Machine
Dalvik and actions executed in native libraries, which may
be bundled with the application.

The information collected during static analysis is used
to classify the application as malicious or benign using
machine-learning techniques. For this purpose, a classifica-
tion model has been learned using a linear Support Vector
Machines [7] as described in Sect. 3.4.

To the best of our knowledge, Mobile-Sandbox is the first
Android analysis framework that has this capability.

For evaluating our system, we collected 69,223 apps
from the most important Asian markets (like 92Apk, Anzhi,
HiApk, etc.) and 6,162 malicious samples from different mal-
ware families. We then used the Mobile-Sandbox system to
automatically analyze 10,500 randomly chosen apps from
both sample sets. Within these 10,500 samples, our system
detected 726 malicious applications and additionally 2 sus-
picious samples that hide their malicious action inside native
code. Considering the fact that of these 10,500 apps only
500 had been classified as malicious by tools of the anti-virus
companies, these analysis systems are overlooking important
potential threats.

1.5 Roadmap

The remainder of this paper is organized as follows: Sect. 2
characterizes the current threat landscape in mobile devices
especially for malware on the Android platform and gives
some background on the Android platform. In Sect. 3, we

illustrate our framework and explain the main ideas behind
our static and dynamic analysis as well as our machine-
learning techniques. In Sect. 4, we present the results of our
evaluation. We conclude in Sect. 5 with a brief discussion
and outlook on future work.

2 Background

2.1 The Android threat landscape

With the increase in smartphone usage and the distribution
model of applications, criminals identified smartphones as
a potential target for malware to steal private information,
misuse it for premium SMS services, or try to manipulate
necessary banking information (mTAN) on these devices.
Very often, you can even find a combination of these threats
within one malicious app. In this section, we give a short
overview about current mobile threats and describe why the
Android platform is the most targeted mobile platform.

Mobile threats can be categorized into two classes: web-
based and application-based threats. The web-based threats
on mobile devices are a growing attack vector used by crim-
inals. These threats rely on the enormous usage of mobile
browsers and their feature-rich implementations. Modern
web browsers support features like embedded video players
or support for video calls. Due to the nature of these features,
e.g., parsing huge amounts of external data, the possibility
for the existence of exploitable vulnerabilities is high. Addi-
tionally, attackers are able to trick the user to follow a web
link, sent to them via email or social media, and infect the
smartphone by exploiting a browser vulnerability.

The other type of mobile threats are application-based
threats posed by third-party applications in the mobile mar-
kets. To install applications on the smartphones, the hard-
ware vendors (like Lenovo, Samsung, etc.) created so-called
mobile markets like Apple’s “App Store” and Google’s
“Google Play”. On iOS-based devices, software can be
obtained from the App Store only. Furthermore, Apple evalu-
ates every software uploaded to the App Store and only adds
the app if it passes certain (unknown) security checks. On
Android devices, the end user is also allowed to install apps
from third-party markets. Especially in Asia, a lot of these
markets emerged. Typically, these third-party markets pose
a high risk to install malicious applications due to the fact
that the market owners often do not adequately evaluate the
applications they offer.

According to Felt et al. [13], mobile applications pose the
following three types of threats:

Malware: Attackers want to gain access to the device by
installing malware on it. The purpose is to steal data or dam-
age the device. Malware is installed by tricking the user to
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install a legitimate-looking application or in most cases to
exploit a vulnerability on the device, e.g., a security flaw in
the web browser.
Personal spyware: The purpose of spyware is to collect
information about the victim and send them to the person
who installed the spyware. Felt et al. argue that personal spy-
ware will be installed on the victim’s device by an attacker
with physical access to the device and without his knowledge.
Grayware: The main purpose of grayware is to spy on users
who installed the software on their own because they thought
that it is legitimate software. Partly that is correct because the
authors include real functionality as advertised. Nevertheless,
they also collect information from the system such as the
user’s address book or this browsing history. The main goal
is to collect information for marketing purposes, etc.

So overall, the threat landscape for Android is real and
powerful analysis systems have to be developed to fight
against these kind of threats.

2.2 Android system basics

We briefly introduce Android and its relevant parts for this
paper in this section. For a thorough introduction, we refer
to Six [29].

Android is based on Linux and therefore consists of the
same core components as usual Linux distributions do. The
core components are a (patched) Linux kernel, the Bionic
libc and libraries like WebKit, SQLite and OpenGL.

The Android runtime environment consists of core
libraries that provide most functionality provided by the core
Java libraries. It additionally consists of the Dalvik Virtual
Machine, which is responsible for running Android applica-
tions in the operating system.

Applications are written in the Java language, and each
application is executed in its own Dalvik VM. This VM runs
dalvik-dex code, which is translated from Java byte code. Dex
code is an optimized bytecode suited for mobile devices; the
biggest difference is that dex code is register based instead
of stack based, as is “traditional” Java bytecode.

One relevant feature of the Dalvik VM for this paper is
the ability that applications written in the Java language can
additionally access native libraries through the Native Devel-
opment Kit (NDK), which makes use of the Java Native
Interface (JNI). Developers may move performance critical
operations to native libraries (shared objects in the ELF for-
mat), which are then directly called from running dex code.
Due to being executed natively and possibly faster, the code
runs outside the Dalvik VM directly on the processor of the
smartphone or emulator.

The inclusion of native code within Android applications
does not alter the Android security model. The same architec-
tural separations between apps and the well-known Android

permission model is enforced regardless of the type of appli-
cation.

3 Mobile-Sandbox: architecture and implementation

In order to determine whether an app is malicious or not, it
needs to be analyzed with great effort. Its attributes as well
as the function range need to be documented. Within this
section, we describe the process of our automated analysis
system (for a schematic overview see Fig. 1). The analysis
process has been divided into two parts. We first discuss the
static analysis in Sect. 3.1. The results of the static analysis
are used to guide the following dynamic analysis, which is
described in Sect. 3.2. The dynamic analysis automatically
executes the apps on a modified Android system with the
help of the Android emulator.

3.1 Static analysis

Our static analysis consists of several modules. In order to
gain a first impression of the application that should be ana-
lyzed, the corresponding hash value is matched against the
VirusTotal database. In this step, our system compares the
md5 hash of the analyzed application with all hashes in the
VirusTotal database, and if the hash can be found, then it
calculates the detection rate (the number of tools that had
classified the application as malicious divided through the
number of anti-virus tools that had analyzed the given appli-
cation). This received detection rate is stored for the report.
However, it does not play a vital role within further process-
ing as it is only there for a human investigator to get additional
indicators if an application is malicious or not.

Afterward, the application is extracted—with the help of
the tool unzip—in order to get access to its components;
this is required for further analysis. As a following step, we
analyze the Android manifest to get a listing of all required
permissions. For this reason, we use the tool aapt being
delivered with the Android SDK [16]. While parsing the
manifest, we extract the intents as well as the services and
receivers for further analysis, too. We also read out the SDK-
version; this is another important detail to assure that only
applications being compatible to the provided Android sys-
tem are passed on to dynamic analysis (all the other applica-
tions will not be analyzed by our dynamic system and will
be classified based on static analysis and machine-learning
results only).

Now, the Dalvik byte code that is stored in the
classes.dex file is converted to smali [15] to allow better
automated parsing. We can determine and filter the embed-
ded advertising networks from the resulting files and their
directory structure as not to dilute the results of the analysis.
This is done to not falsify the results because some advertis-
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Mobile-Sandbox Backend

SamplesDatabase Reports

API

Webinterface Worker

(1) Static analysis with the help of code review

(2) VirusTotal

(3) Dynamic analysis with the help of DroidBox and ltrace

(4) Machine-Learning techniques for malware detection

Fig. 1 Schematic overview of the MobileSandbox’s components

ing network use similar API calls than less evolved malware.
Afterward, the complete smali code is searched for poten-
tially dangerous functions and methods. Here, we take care
of calls that can be found frequently, and in particular within
malware, we used empirical values from our analysis of more
than 300,000 samples to determine these calls. This includes,
for example:

– sendTextMessage(): This call is responsible for the
sending of SMS messages.

– getPackageInfo(): With the help of this method, mal-
ware often searches for installed AV products.

– getSimCountryIso(): This call is used to find out in
which country the user currently resides. This is important
in case of malware to contact the right premium services.

– Ljava/lang/Runtime;–>exec(): Executes the
specified command in a separate process. In case of mal-
ware, the commands are often ‘su’ or ‘chmod’.

Moreover, we look for calls of the available encryption
libraries. With this step, we try to gain deeper knowledge of
the use of encryption and obfuscation within the applications.
During the code-review, we try to recognize the functions and
methods that normally need a permission for their error-free
execution. For this reason, we refer to data of Felt et al. [14],
which we translated from Java to smali. With the help of the
gathered list, we can now compare whether the app is over-
or underprivileged.

Over- and underprivileged apps are often used in correla-
tion with each other or with apps that have the correct relation
between permissions and function calls. For example: if you
have an application A that is allowed to connect to the Inter-
net (corresponding permission is requested from the user),
but doesn’t use this functionality, this app is overprivileged.
Another application B is able to read all your contacts from
your local address book, but is not able to send this data to a
remote server as the needed functionality is missing. If a user
now has both of these apps installed on his device, applica-
tion B could send the sensitive data from the address book
via an intent to application A, which then sends this data to a
remote server. This example should demonstrates why over-
privileged apps can represent a risk to a user. A similar risk
goes out from underprivileged applications.

As an ongoing step, the source code is searched for sta-
tically coded URL’s with the help of the following simple
regular expression:

We extract all implemented timers and broadcasts the app
is waiting for, as a preparation for the dynamic analysis.
Timers and broadcasts are event triggers for certain code
to be executed in Android. We analyze these mechanisms to
either trigger the corresponding events or wait for a specified
time period in the ongoing dynamic analysis to improve the
coverage of executed code. By this, we assure for example
that the analysis is not stopped before a timer has expired.
This is a common problem in Windows-based dynamic
analysis [35].

At the end of the static analysis, a XML file is created,
containing all data generated during the previous steps.

3.2 Dynamic analysis

While certain types of malicious behavior can already be
recognized through static analysis, many kinds of malware
can only be reliably detected by looking at its runtime behav-
ior.
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3.2.1 Building blocks

To perform a dynamic analysis of the application in question,
we rely on the Android emulator provided by Google [2].
This software simulates a full ARMv7 device with key
peripherals such as GSM module and touchscreen, thereby
allowing to run unknown apps in a safe environment on a host
computer. As an added benefit, the emulator can be reset to its
previous state after an app has been tested by simply replac-
ing the system image files with the original ones. Figure 2
gives an overview of the integration of the emulator into the
entire Mobile-Sandbox framework.

Since the “stock” emulator offers only limited log-
ging capabilities, we have chosen the well-known Taint-
Droid/DroidBox [12,21] system as basis for our dynamic
analyzer. TaintDroid focuses on providing real-time privacy
information to a user on a private device, while DroidBox
builds on this work by logging all data accessed by the app
to the system log, thereby creating a comprehensive picture
of the app’s runtime activities. This includes data read from
and written to files, sent and received over the network, SMS
messages sent, and many more.

While TaintDroid supports Android up to version 4.1.x,
thereby covering at least 90 % of the device market as of Jan-
uary 2013, DroidBox only supports Android up to version

Fig. 2 Dynamic analyzer component overview

2.1, which can be considered severely outdated. Therefore,
we updated the DroidBox patchset in a first step to work
with TaintDroid 2.3.4, including some additional enhance-
ments such as UDP support in the process and are going to
update DroidBox to work with version 4.1.x at the time of
this writing.

3.2.2 Tracking native code

However, this setup still has a “blind spot”: since both Taint-
Droid as well as DroidBox are built on the Dalvik virtual
machine used by Android to execute dex bytecode, only dex
bytecode (in general translated from Java bytecode) can be
traced by those tools. Native code executed using the JNI will
not be visible. Since the introduction of the Android NDK,
it is easily possible to call native code in external libraries.

In order to trace code included in such shared objects, we
have included a modified version of theltrace command, a
common Linux debugging utility that intercepts library calls
of a monitored application [32]. The modifications are nec-
essary to run ltrace on the Android platform [11].

After the app to be examined has been started, an ltrace
instance is launched and attached to the Dalvik process run-
ning the app in question. All native calls made into dynami-
cally loaded shared objects are then logged to a separate file.
To reduce the amount of log data and increase performance,
functions commonly introduced by the NDK compiler
are excluded from logging (like _Unwind_Backtrace).
Another problem we were facing when logging all functions
is that ltrace kills the app and the analysis ended in a
kernel panic.

3.2.3 Network traffic

A third logging component that is already supported natively
by the emulator is capturing of network traffic to a PCAP file.
This common format can later be analyzed using tools such
as WireShark.

From this captured network traffic, we extract information
such as the hostname, the service port, and the data the app is
sending. These kinds of data later help to classify whether the
application is malicious, for example by checking whether
the connected system’s DNS name is a known malicious one.

Additionally, we convert the pcap file into plain text with
the help of derrick [25]. This output is easier to read for
humans when it is displayed on the website and it is also
used for our machine-learning approach.

In summary, our setup produces three separate log files
detailing the app’s behavior (see also Fig. 2):

– DroidBox logfile containing important Java method calls
and data from the Dalvik VM,
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– ltrace logfile containing native method calls in shared
objects using JNI and

– network PCAP file containing all data sent over the sim-
ulated 3G network.

3.2.4 User interaction

Another issue that has to be considered for dynamic analysis
is that of code coverage. For most types of malware, simply
launching the app will not trigger any malicious payload;it
is necessary for the user to interact with the app and perhaps
even confirm some malicious actions.

In order to test a significant fraction of the code paths
present in the examined app, we use the MonkeyRunner
toolkit provided by the Android SDK. Using this utility, it is
possible to automatically send simulated interaction events,
such as touchscreen contacts or key presses, to the tested
app. Since MonkeyRunner does not take any UI elements
into account, but rather produces random events, a sufficient
number of events should be generated to make sure that most
interaction elements have been triggered at least once.

3.2.5 Summary

In summary, the following steps are executed in order to
dynamically analyze an app:

1. Reset emulator to the initial state.
2. Launch emulator and wait until startup is completed.
3. Install app to be analyzed using adb.
4. Launch app in a new Dalvik VM.
5. Attach ltrace to the VM process running the app.
6. Launch MonkeyRunner to generate simulated UI events.
7. Simulate additional user events like phone calls.
8. Launch a second run of MonkeyRunner that will run until

all timers have passed.
9. Collect the Dalvik and ltrace log and the PCAP file.

The resulting log files of this process are inserted in our data-
base. This database can be used to perform multiple other
analyses.

3.3 Examples

To demonstrate the full range of functions of Mobile-
Sandbox and the format of the log files, we now show
some results of the log files that resulted from some appli-
cations we analyzed. We start with some information from
our dynamic analysis that can be very useful when look-
ing at encrypted data inside the application. In this case, the
application has encrypted IMEI and IMSI numbers with the
help of the DES algorithm before sending these data to a
remote server. If you take a look at the network traffic, you

would only see a package with encrypted data, but looking
in the results from Mobile-Sandbox you get the decrypted
data and the DES key that was used for encryption (see
Listing 1).

Data −− 357242043237517|310005123456789
Algorithm used −− DES
Key −− 7719681242490101965167123

Listing 1 Decrypted IMEI and IMSI and used encryption key

While executing the applications inside the emulator, we
monitored several outgoing SMS messages (see Listing 2 for
two examples).

Number: 84242 −− Message: QUIZ
Number: 7132 −− Message: 844858

Listing 2 Two examples for outgoing SMS messages

In addition, we found several kinds of data leakage. In
Listing 3, we displayed the content of a file that was generated
by the application.

File : /mnt/ sdcard /Tencent /v1. log
Operation : write
Data: DeviceInfo [imei=357242043237517,

telNum=, phModel=generic ,
sysSdk=10, RELEASE=2.3.4]

Listing 3 Data leakage to a file located on the unprotected SDcard

Within our network traffic analysis, we found a lot of pri-
vacy related data such as IMSI, IMEI or smartphone model,
which was uploaded to remote servers or web services. One
example for such an information leakage via HTTP POST
can be seen in Listing 4.

<?xml version="1.0" encoding="utf−8"?>
<request>

<version>1.15</version>
<platform>2</platform>
<pVersion>2.3</pVersion>
<IMEI>357242043237517</IMEI>
<simID>89014103211118510720</simID>

</request>

Listing 4 Information leakage found inside recorded network traffic

3.4 Malware detection using machine-learning techniques

During static and dynamic analysis, many features of an
application are collected, which can be used to decide
whether the application is malicious or benign. To achieve
this, one would like to automatically identify specific patterns
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and combinations of extracted features that reflect malicious
behavior. Machine-learning algorithms have already proven
to solve this task very efficiently in other settings similar to
ours [1,23,27]. In our setting, we apply a linear Support Vec-
tor in order to learn a classification model on a large dataset
that contains malicious and benign samples. The resulting
model can then be used to classify unknown applications as
malicious or benign.

3.4.1 Embedding in vector space

Support Vector Machines operate on numerical vectors, and
thus, one needs to find an appropriate vector representa-
tion for an application in order to apply this algorithm. To
this end, we use a simple bag-of-words representation [26],
where each possible feature string is associated with a cer-
tain dimension. The feature strings we use for the embedding
are extracted statically as described in Sect. 3.1. The vector
representation of an application can then be constructed by
setting the respective dimension for each extracted feature to
1 and all remaining dimensions to 0.

3.4.2 Learning-based detection

Using this representation, applications sharing similar fea-
tures lie closer to each other in the vector space than applica-
tions with few similar features. Ideally, malicious and benign
applications only share few similar features and can thus be
easily separated by a classifier, which considers geometrical
information. In our case, a linear Support Vector Machine
learns a hyperplane on a training set, which contains mali-
cious and benign samples. The learned hyperplane separates
both classes with a maximum margin and can afterward be
used to classify unknown samples. An unknown application
is then either classified as benign or malicious depending on
which side of the hyperplane its vector is located.

We evaluate the detection performance of the classifier
on a large dataset that contains 123,453 benign and 5,560
malicious samples [4]. For this purpose, we randomly split
the dataset into a training and a test set. The detection model
and respective parameters are determined on the training set,
whereas the testing set is only used for measuring the final
detection performance. We repeat this procedure 10 times
and average results. Using the resulting classification model,
we are able to detect about 94 % of the malware at a low
false-positive rate of about only 1 %.

4 Evaluation

We now present an evaluation of our sandbox system. We
analyzed the following aspects: correctness, performance,
detectability, and scalability. At the end of this section, we

Table 1 Overview of mobile malware used for evaluation

Malware family Number of samples Primary usage

Adsms 2 S

BaseBrid 5 I, B

SerBG 2 R, I, B

RootSmart 1 R, I, B, A

LeNa 1 R, I, B, A

Moghava 1 C

FakeInst 7 S

TapSnake 1 L

R gains root access, C compromises local storage, S sends SMS mes-
sages, I steals privacy related information, B botnet characteristics, L
steals location data, A installs additional apps

also present a short case study of a malicious app using native
calls.

4.1 Correctness

By correctness, we mean that an entry in the mobile-sandbox
log file only appears if and only if the corresponding action
was performed by the analyzed app. To check correctness,
we chose 20 samples from a set of malicious applications that
we collected from different sources. These samples represent
different families of Android malware as shown in Table 1
meant to assure a wide coverage of malicious actions and
different points in the development states of malware evolu-
tion. More specifically, we chose samples that hit the mar-
kets from mid 2010 until the beginning of 2012. The LeNa
and RootSmart families use exploits and native calls, Fake-
Inst and Adsms send premium SMS messages. The Moghava
family acts only on the smartphone itself and modifies locally
stored pictures, i.e., there is no malicious action observable
that “leaves” the smartphone. The TapSnake family sends
location information from the smartphone to a remote server.

Within this sample set, we consider RootSmart to be the
most sophisticated malware sample which is, among other
capabilities, also able to exploit the Android OS while Tap-
snake is the simplest sample when looking at the techniques
used for malicious behavior.

We manually inspected samples from all these families
and consulted all available analysis reports by anti-virus com-
panies and from other sources on the Internet. The resulting
action sequences yielded the ground truth to which we com-
pared the behavior the was output by Mobile-Sandbox. Over-
all, Mobile-Sandbox only detected actions that were part of
the ground truth. However, after initial analysis, we failed
to see certain behaviors that were described in the analysis
reports on the Web. Later, we realized that the missing behav-
iors were due to missing external stimuli, i.e., remote servers
of a botnet not being active anymore. These insights gave
us additional confidence that Mobile-Sandbox was working
correctly.
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Table 2 Differences in build information between the emulator and a
Samsung Galaxy S2

Build information Emulator Galaxy S2

Build.BOARD Unknown smdk4210

Build.DEVICE Generic GT–I9100

Build.MODEL sdk GT–I9100

Build.PRODUCT sdk GT–I9100

Build.TAGS Test-keys Release-keys

ro.kernel.qemu 1 0

ro.hardware Goldfish smdk4210

4.2 Performance

The performance of some parts of our system is still rather
weak. During the evaluation for this paper, we measured run-
times between 9 and 14 min for the analysis of one single
application. The system is running on an ESXi infrastruc-
ture on a server with Intel Xeon 2,4 GHz CPU and 48 GB of
RAM.

In average, Mobile-Sandbox finishes the virus check
within 3 s and the subsequent static analysis within additional
8–15 s. Afterward, the system needs about 2 min to reset and
reboot a clean version of the emulator. After successfully
booting the emulator, it takes another 2–6 min to install the
application. This step depends on the file size of the applica-
tion. The execution of the application and the MonkeyRunner
scripts lasts another 6–10 min depending on the amount of
user events and timers we want to trigger. After shutting down
the emulator, the system needs additional 10 s for analysis of
all log files and network traffic. The machine-learning tech-
niques take less than 1 s, as we rate all relevant parts of the
collected reports by reference to a generated model, which
will be updated from time to time.

The performance can be enhanced tremendously by run-
ning multiple instances of the analysis frameworks, espe-
cially of the dynamic analysis, simultaneously.

4.3 Detectability

As we know from malware targeting the Windows environ-
ment, there are mechanisms to detect virtualized or sand-
boxed environments to make the analysis process of the mali-
cious application more difficult or to act differently in these
environments. Even if this behavior is not prevalent with
Android at the moment, we think that this will change in the
future. So an important security aspect is the detectability of
our analysis platform.

A mechanism to detect the Android emulator deals with
the specific builds of the operating systems that are used for
it. An application querying this information can easily detect

whether it is running inside an emulator or on a real device.
Table 2 shows some system values that can be used for iden-
tification as they are sufficiently different from real smart-
phones. To prevent this detection mechanism, a custom-build
of the Android system is required. In this build, we changed
the first five variables from Table 2 to the values of a real Sam-
sung Galaxy S2. Unfortunately, modifying the last two values
can cause system crashes while running the emulator because
there are some Android system services that rely on the fact
that these values are set correctly. Another problem hiding
the emulator is the fact, that Android launches the qemud
and qemu-props daemons that offer emulation assistance
to Qemu when running inside the emulator. Removing these
two daemons is not feasible as they are needed to emulate
the radio equipment.

Another weak point is Qemu itself. As emulated hardware
always behaves differently from native hardware, an applica-
tion is able to detect whether it is running inside an emulator
by observing the behavior of certain performance aspects of
the CPU. Raffetseder et al. [24] show multiple ways to detect
the x86 version of Qemu. Similar techniques could also be
applied to the ARM architecture to detect the corresponding
Qemu version.

Additionally, we changed the default IMSI and IMEI of
the emulator (originally both “0”) to random values that are
consistent with regular IMEI and IMSI numbers. We did this
modification to avoid emulator detection mechanisms that
check for nonstandard or empty values in these device iden-
tifiers. We have seen this detection technique employed in
various samples.

4.4 Scalability

Our last evaluation criterion refers to the scalability of
Mobile-Sandbox, i.e., the question whether it can be used in
large-scale analysis projects with several hundreds or thou-
sands of apps.

4.4.1 Malware in third-party apps

To evaluate the scalability aspect, we collected 69,223 apps
between December 2011 and March 2012 from the most
important Asian markets by downloading them using the
Android emulator in an automated fashion. We call this set
of apps the “Asian set”.

We also received 6,162 Android malware samples from
different families through anonymous uploads to our web-
service [8] and through the VirusTotal Malware Intelligence
Services (VTMIS) [19]. We call this set of samples the “mal-
ware set”.

We then used Mobile-Sandbox to automatically analyze
10,000 randomly chosen apps from the Asian set and 500
randomly chosen samples from the malware set. The analysis

123



M. Spreitzenbarth et al.

0

20

40

60

D
ialer

C
eshark

K
iser

S
cavir

F
akelogo

G
lodream

D
ougalek

F
aceN

iff
P

irater
G

apev
N

etisend
M

oghava
M

ania
M

obileT
x

S
pyoo

Loicdos
R

ooter
A

ntares
Jifake
A

rspam
D

ogow
ar

N
isev

Tapsnake
S

pitm
o

R
ootS

m
art

M
obilespy

TigerB
ot

F
lexispy

R
aden

S
erB

G
S

tealer
S

endP
ay

R
eplicator

C
rW

ind
F

akengry
D

roidS
heep

F
oncy

G
onca

S
m

spacem
C

osha
N

ickspy
G

G
track

F
akeP

layer
Z

itm
o

F
akeD

oc
B

oxer
Y

zhc
F

atakr
B

aseB
rid

A
dsm

s
D

orD
rae

F
akeTim

er
P

langton
K

ungF
u

A
drd

G
einim

i
E

xploitLinuxLotoor
O

pfake
F

akeInst
K

m
in

N
um

be
r 

of
 S

am
pl

es
 p

er
 F

am
ily

Fig. 3 Detected malware families and number of corresponding samples in the union of Asian and malware set

results were stored in a database on which we performed
statistical analysis. These analyses were performed using a
single installation of Mobile-Sandbox within a time span of
11 days.

Besides exhibiting that the use of Mobile-Sandbox can
scale to several thousand apps, the statistical analysis pro-
vides some very interesting results. Considering the union of
the Asian set and the malware set, we found 726 malicious
samples according to our machine learning technique. Due to
the fact that the malware set consisted of only 500 samples,
there had to be 226 samples from the Asian set that were
classified as malicious by our system.

Taking a deeper look at the distribution of the malicious
applications, we noticed that about 26 % of the 726 sam-
ples belong to only three malware families (see Fig. 3 for a
comprehensive overview). These families are Kmin, Opfake
and FakeInst and their main functionality is sending premium
SMS messages and, in the case of Kmin, information stealing.

4.4.2 Native calls

Another point of interest is the use of native interface calls
inside Android applications. According to our analysis, about
21 % of the samples from the Asian set use native API calls.
When one considers that the author of an app can poten-
tially “hide” all malicious actions inside the native part of
the application and that common tools are not able to trace
or log this part of the application, the share of one out of
four shows why it is so important to develop a system, which
is able to log these events. Figure 4 also depicts the share
of native calling apps in the malware set. Interestingly, this
share is about 15 %. This means that the existence of native
calls does not necessarily imply a higher probability that the
app is malicious.
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Within the Asian set samples that use native code, we
found two samples that were hiding their malicious actions
inside the native part of their code. When uploading these
samples to VirusTotal at the time of this writing we got a
detection rate of 0 %. This again makes clear how important
it is to monitor and analyze native code.

4.4.3 Statistical implications

In summary, we found 2.26 % (226 out of 10,000) samples
from the Asian set to be malicious. Recall that 2 out of these
226 were not detected by VirusTotal (0.02 % of the entire
Asian set). But how representative are the results from our
measurements? Since we have a rather large measurement
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base (number of measurements) and we have taken a ran-
dom sample, we can apply quality assurance techniques from
surveys performed in the area of social sciences by Groves
[17,18].

In general, there are two quality criteria for statistical value
estimations. The first is the probability of error, i.e., the prob-
ability that a statement is not true. In empirical research, the
probability of error is acceptable if it is below 5 %. The second
criterion is the margin of error, meaning the margin of per-
centages that the measurement could be different. Acceptable
values are 5 % or below. Measuring a value of 75 with 5 %
error probability and 5 % error margin, for example, means
that with 95 % probability, the “real” value is between 70 and
80 %.

Following Groves [17,18], it is sufficient to analyze at
least 664 samples to guarantee 1 % error probability and 5 %
error margin. The measurements given above about the use of
native code calls in the Asian set can therefore be generalized
with high probability. To reach below a 1 % error margin in
our finding regarding the part of malicious applications inside
the Asian set (2.26 %) analyzed 10,000 samples [17,18].

4.5 Case study: a suspicious application using native calls

To show the full usefulness of our analysis engine, we now
give a detailed analysis of one of the suspicious applications
mentioned above which uses native code. The application
appeared to be a map application, was not flagged as mali-
cious by VirusTotal (detection ratio: 0/41).

During our dynamic analysis we found that the sample
queried various privacy-relevant resources using the NDK.
Overall, we rated the sample as suspicious due to the fact that
it was collecting personal data.

In our static analysis, we saw that the application was
requesting the following (unusually long) list of permissions:

– ACCESS_COARSE_LOCATION
– ACCESS_FINE_LOCATION
– INTERNET
– VIBRATE
– READ_CONTACTS
– WRITE_CONTACTS
– RECEIVE_SMS
– READ_SMS
– WRITE_SMS
– SEND_SMS
– READ_PHONE_STATE
– ACCESS_NETWORK_STATE
– CHANGE_NETWORK_STATE
– WAKE_LOCK
– WRITE_EXTERNAL_STORAGE
– CHANGE_WIFI_STATE
– WRITE_SETTINGS

– SYSTEM_ALERT_WINDOW
– ACCESS_WIFI_STATE
– GET_TASKS
– CALL_PHONE
– BROADCAST_STICKY
– RECORD_AUDIO
– RECEIVE_BOOT_COMPLETED
– READ_PHONE_STATE
– GET_ACCOUNTS

Although many of these permissions are required for
a social map application such as the sample appeared to
be, the high number of additional permissions such as
READ_PHONE_STATE and CHANGE_NETWORK_STATE
is questionable. Comparing the requested permissions with
the permissions the app really needs for running, we noticed
that the app is highly overprivileged.

In particular, it was interesting that, for example, the
IMEI number was accessed by the regular Java API call
getDeviceID() as well as by a native function
getImeiNumEv(), which is not part of the Android
API, but rather part of a native library packaged with
the application. The same applied to the IMSI number
(getSubscriberID vs. getImsiNumEv()).

Looking in the decompiled smali code, we found some
more questionable code fragments like the following exam-
ples:

– android/net/wifi/WifiManager;
–>startScan

– android/app/ActivityManager;
–>getRunningTasks

– android/media/MediaRecorder;
–>setAudioSource

– android/telephony/SmsManager;
–>sendTextMessage

Through our dynamic analysis we found that the app
attempted to connect the mobile advertising network flurry
and to various rather “dodgy” sites using the network proto-
cols HTTP and HTTPS. Looking at this network traffic, we
found various encrypted packages containing IMEI, IMSI
and location data. Additionally, the application is listening
for the BOOT_COMPLETED broadcast to start a background
activity which is monitoring the location of the smartphone
user and is listening to a remote server. Overall, we rated this
application as highly suspicious.

5 Conclusions

In this paper, we proposed Mobile-Sandbox, a static and
dynamic analyzer combined with machine-learning tech-
niques for Android applications with the purpose to sup-
port malware analysts to detect malicious behavior. In the
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static analysis, we parse the application’s Manifest file and
decompile the application. In a further step, we determine
whether the application is using suspicious looking permis-
sions or intents. The second part of our sandbox performs the
dynamic analysis where we execute the application in order
to log all performed actions including those stemming from
native API calls. Within our third set, we combine all of these
results and try to detect malicious applications with the help
of machine-learning techniques.

There are still many points to improve with Mobile-
Sandbox, especially regarding the usability and compatibility
with Android 4.x. For a better performance and usability, we
need a substitute for MonkeyRunner as this solution is not
precise and reliable enough. Or at least, we need to fix the
crashes of MonkeyRunner. These improvements will proba-
bly also lead to a more reliable system.

For all the mobile users, we will provide an application for
the Android platform that is able to check the status of already
installed applications and is able to upload them directly into
our sandbox for analyzing if no report is available.
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